1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
|
/*
* SPDX-License-Identifier: GPL-2.0-or-later
*
* Since 7a3000f7ba548cf7d74ac77cc63fe8de228a669e (v2.30) hwclock is linked
* with parse_date.y from gnullib. This gnulib code is distributed with GPLv3.
* Use --disable-hwclock-gplv3 to exclude this code.
*
*
* clock.c was written by Charles Hedrick, hedrick@cs.rutgers.edu, Apr 1992
* Modified for clock adjustments - Rob Hooft <hooft@chem.ruu.nl>, Nov 1992
* Improvements by Harald Koenig <koenig@nova.tat.physik.uni-tuebingen.de>
* and Alan Modra <alan@spri.levels.unisa.edu.au>.
*
* Major rewrite by Bryan Henderson <bryanh@giraffe-data.com>, 96.09.19.
* The new program is called hwclock. New features:
*
* - You can set the hardware clock without also modifying the system
* clock.
* - You can read and set the clock with finer than 1 second precision.
* - When you set the clock, hwclock automatically refigures the drift
* rate, based on how far off the clock was before you set it.
*
* Reshuffled things, added sparc code, and re-added alpha stuff
* by David Mosberger <davidm@azstarnet.com>
* and Jay Estabrook <jestabro@amt.tay1.dec.com>
* and Martin Ostermann <ost@coments.rwth-aachen.de>, aeb@cwi.nl, 990212.
*
* Fix for Award 2094 bug, Dave Coffin (dcoffin@shore.net) 11/12/98
* Change of local time handling, Stefan Ring <e9725446@stud3.tuwien.ac.at>
* Change of adjtime handling, James P. Rutledge <ao112@rgfn.epcc.edu>.
*
*
*/
/*
* Explanation of `adjusting' (Rob Hooft):
*
* The problem with my machine is that its CMOS clock is 10 seconds
* per day slow. With this version of clock.c, and my '/etc/rc.local'
* reading '/etc/clock -au' instead of '/etc/clock -u -s', this error
* is automatically corrected at every boot.
*
* To do this job, the program reads and writes the file '/etc/adjtime'
* to determine the correction, and to save its data. In this file are
* three numbers:
*
* 1) the correction in seconds per day. (So if your clock runs 5
* seconds per day fast, the first number should read -5.0)
* 2) the number of seconds since 1/1/1970 the last time the program
* was used
* 3) the remaining part of a second which was leftover after the last
* adjustment
*
* Installation and use of this program:
*
* a) create a file '/etc/adjtime' containing as the first and only
* line: '0.0 0 0.0'
* b) run 'clock -au' or 'clock -a', depending on whether your cmos is
* in universal or local time. This updates the second number.
* c) set your system time using the 'date' command.
* d) update your cmos time using 'clock -wu' or 'clock -w'
* e) replace the first number in /etc/adjtime by your correction.
* f) put the command 'clock -au' or 'clock -a' in your '/etc/rc.local'
*/
#include <errno.h>
#include <getopt.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/syscall.h>
#include <time.h>
#include <unistd.h>
#include "c.h"
#include "closestream.h"
#include "nls.h"
#include "optutils.h"
#include "pathnames.h"
#include "hwclock.h"
#include "timeutils.h"
#include "env.h"
#include "xalloc.h"
#include "path.h"
#include "strutils.h"
#ifdef HAVE_LIBAUDIT
#include <libaudit.h>
static int hwaudit_fd = -1;
#endif
UL_DEBUG_DEFINE_MASK(hwclock);
UL_DEBUG_DEFINE_MASKNAMES(hwclock) = UL_DEBUG_EMPTY_MASKNAMES;
/* The struct that holds our hardware access routines */
static struct clock_ops *ur;
/* Maximal clock adjustment in seconds per day.
(adjtime() glibc call has 2145 seconds limit on i386, so it is good enough for us as well,
43219 is a maximal safe value preventing exact_adjustment overflow.) */
#define MAX_DRIFT 2145.0
struct adjtime {
/*
* This is information we keep in the adjtime file that tells us how
* to do drift corrections. Elements are all straight from the
* adjtime file, so see documentation of that file for details.
* Exception is <dirty>, which is an indication that what's in this
* structure is not what's in the disk file (because it has been
* updated since read from the disk file).
*/
int dirty;
/* line 1 */
double drift_factor;
time_t last_adj_time;
double not_adjusted;
/* line 2 */
time_t last_calib_time;
/*
* The most recent time that we set the clock from an external
* authority (as opposed to just doing a drift adjustment)
*/
/* line 3 */
enum a_local_utc { UTC = 0, LOCAL, UNKNOWN } local_utc;
/*
* To which time zone, local or UTC, we most recently set the
* hardware clock.
*/
};
static void hwclock_init_debug(const char *str)
{
__UL_INIT_DEBUG_FROM_STRING(hwclock, HWCLOCK_DEBUG_, 0, str);
DBG(INIT, ul_debug("hwclock debug mask: 0x%04x", hwclock_debug_mask));
DBG(INIT, ul_debug("hwclock version: %s", PACKAGE_STRING));
}
/* FOR TESTING ONLY: inject random delays of up to 1000ms */
static void up_to_1000ms_sleep(void)
{
int usec = random() % 1000000;
DBG(RANDOM_SLEEP, ul_debug("sleeping ~%d usec", usec));
xusleep(usec);
}
/*
* time_t to timeval conversion.
*/
static struct timeval t2tv(time_t timet)
{
struct timeval rettimeval;
rettimeval.tv_sec = timet;
rettimeval.tv_usec = 0;
return rettimeval;
}
/*
* The difference in seconds between two times in "timeval" format.
*/
double time_diff(struct timeval subtrahend, struct timeval subtractor)
{
return (subtrahend.tv_sec - subtractor.tv_sec)
+ (subtrahend.tv_usec - subtractor.tv_usec) / 1E6;
}
/*
* The time, in "timeval" format, which is <increment> seconds after the
* time <addend>. Of course, <increment> may be negative.
*/
static struct timeval time_inc(struct timeval addend, double increment)
{
struct timeval newtime;
newtime.tv_sec = addend.tv_sec + (int)increment;
newtime.tv_usec = addend.tv_usec + (increment - (int)increment) * 1E6;
/*
* Now adjust it so that the microsecond value is between 0 and 1
* million.
*/
if (newtime.tv_usec < 0) {
newtime.tv_usec += 1E6;
newtime.tv_sec -= 1;
} else if (newtime.tv_usec >= 1E6) {
newtime.tv_usec -= 1E6;
newtime.tv_sec += 1;
}
return newtime;
}
static int
hw_clock_is_utc(const struct hwclock_control *ctl,
const struct adjtime adjtime)
{
int ret;
if (ctl->utc)
ret = 1; /* --utc explicitly given on command line */
else if (ctl->local_opt)
ret = 0; /* --localtime explicitly given */
else
/* get info from adjtime file - default is UTC */
ret = (adjtime.local_utc != LOCAL);
if (ctl->verbose)
printf(_("Assuming hardware clock is kept in %s time.\n"),
ret ? _("UTC") : _("local"));
return ret;
}
/*
* Read the adjustment parameters out of the /etc/adjtime file.
*
* Return them as the adjtime structure <*adjtime_p>. Its defaults are
* initialized in main().
*/
static int read_adjtime(const struct hwclock_control *ctl,
struct adjtime *adjtime_p)
{
FILE *adjfile;
char line1[81]; /* String: first line of adjtime file */
char line2[81]; /* String: second line of adjtime file */
char line3[81]; /* String: third line of adjtime file */
if (access(ctl->adj_file_name, R_OK) != 0)
return EXIT_SUCCESS;
adjfile = fopen(ctl->adj_file_name, "r"); /* open file for reading */
if (adjfile == NULL) {
warn(_("cannot open %s"), ctl->adj_file_name);
return EXIT_FAILURE;
}
if (!fgets(line1, sizeof(line1), adjfile))
line1[0] = '\0'; /* In case fgets fails */
if (!fgets(line2, sizeof(line2), adjfile))
line2[0] = '\0'; /* In case fgets fails */
if (!fgets(line3, sizeof(line3), adjfile))
line3[0] = '\0'; /* In case fgets fails */
fclose(adjfile);
sscanf(line1, "%lf %ld %lf",
&adjtime_p->drift_factor,
&adjtime_p->last_adj_time,
&adjtime_p->not_adjusted);
sscanf(line2, "%ld", &adjtime_p->last_calib_time);
if (!strcmp(line3, "UTC\n")) {
adjtime_p->local_utc = UTC;
} else if (!strcmp(line3, "LOCAL\n")) {
adjtime_p->local_utc = LOCAL;
} else {
adjtime_p->local_utc = UNKNOWN;
if (line3[0]) {
warnx(_("Warning: unrecognized third line in adjtime file\n"
"(Expected: `UTC' or `LOCAL' or nothing.)"));
}
}
if (ctl->verbose) {
printf(_
("Last drift adjustment done at %ld seconds after 1969\n"),
(long)adjtime_p->last_adj_time);
printf(_("Last calibration done at %ld seconds after 1969\n"),
(long)adjtime_p->last_calib_time);
printf(_("Hardware clock is on %s time\n"),
(adjtime_p->local_utc ==
LOCAL) ? _("local") : (adjtime_p->local_utc ==
UTC) ? _("UTC") : _("unknown"));
}
return EXIT_SUCCESS;
}
/*
* Wait until the falling edge of the Hardware Clock's update flag so that
* any time that is read from the clock immediately after we return will be
* exact.
*
* The clock only has 1 second precision, so it gives the exact time only
* once per second, right on the falling edge of the update flag.
*
* We wait (up to one second) either blocked waiting for an rtc device or in
* a CPU spin loop. The former is probably not very accurate.
*
* Return 0 if it worked, nonzero if it didn't.
*/
static int synchronize_to_clock_tick(const struct hwclock_control *ctl)
{
int rc;
if (ctl->verbose)
printf(_("Waiting for clock tick...\n"));
rc = ur->synchronize_to_clock_tick(ctl);
if (ctl->verbose) {
if (rc)
printf(_("...synchronization failed\n"));
else
printf(_("...got clock tick\n"));
}
return rc;
}
/*
* Convert a time in broken down format (hours, minutes, etc.) into standard
* unix time (seconds into epoch). Return it as *systime_p.
*
* The broken down time is argument <tm>. This broken down time is either
* in local time zone or UTC, depending on value of logical argument
* "universal". True means it is in UTC.
*
* If the argument contains values that do not constitute a valid time, and
* mktime() recognizes this, return *valid_p == false and *systime_p
* undefined. However, mktime() sometimes goes ahead and computes a
* fictional time "as if" the input values were valid, e.g. if they indicate
* the 31st day of April, mktime() may compute the time of May 1. In such a
* case, we return the same fictional value mktime() does as *systime_p and
* return *valid_p == true.
*/
static int
mktime_tz(const struct hwclock_control *ctl, struct tm tm,
time_t *systime_p)
{
int valid;
if (ctl->universal)
*systime_p = timegm(&tm);
else
*systime_p = mktime(&tm);
if (*systime_p == -1) {
/*
* This apparently (not specified in mktime() documentation)
* means the 'tm' structure does not contain valid values
* (however, not containing valid values does _not_ imply
* mktime() returns -1).
*/
valid = 0;
if (ctl->verbose)
printf(_("Invalid values in hardware clock: "
"%4d/%.2d/%.2d %.2d:%.2d:%.2d\n"),
tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec);
} else {
valid = 1;
if (ctl->verbose)
printf(_
("Hw clock time : %4d/%.2d/%.2d %.2d:%.2d:%.2d = "
"%ld seconds since 1969\n"), tm.tm_year + 1900,
tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min,
tm.tm_sec, (long)*systime_p);
}
return valid;
}
/*
* Read the hardware clock and return the current time via <tm> argument.
*
* Use the method indicated by <method> argument to access the hardware
* clock.
*/
static int
read_hardware_clock(const struct hwclock_control *ctl,
int *valid_p, time_t *systime_p)
{
struct tm tm;
int err;
err = ur->read_hardware_clock(ctl, &tm);
if (err)
return err;
if (ctl->verbose)
printf(_
("Time read from Hardware Clock: %4d/%.2d/%.2d %02d:%02d:%02d\n"),
tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour,
tm.tm_min, tm.tm_sec);
*valid_p = mktime_tz(ctl, tm, systime_p);
return 0;
}
/*
* Set the Hardware Clock to the time <newtime>, in local time zone or UTC,
* according to <universal>.
*/
static void
set_hardware_clock(const struct hwclock_control *ctl, const time_t newtime)
{
struct tm new_broken_time;
/*
* Time to which we will set Hardware Clock, in broken down format,
* in the time zone of caller's choice
*/
if (ctl->universal)
gmtime_r(&newtime, &new_broken_time);
else
localtime_r(&newtime, &new_broken_time);
if (ctl->verbose)
printf(_("Setting Hardware Clock to %.2d:%.2d:%.2d "
"= %ld seconds since 1969\n"),
new_broken_time.tm_hour, new_broken_time.tm_min,
new_broken_time.tm_sec, (long)newtime);
if (!ctl->testing)
ur->set_hardware_clock(ctl, &new_broken_time);
}
static double
get_hardware_delay(const struct hwclock_control *ctl)
{
const char *devpath, *rtcname;
char name[128 + 1];
struct path_cxt *pc;
int rc;
devpath = ur->get_device_path();
if (!devpath)
goto unknown;
rtcname = strrchr(devpath, '/');
if (!rtcname || !*(rtcname + 1))
goto unknown;
rtcname++;
pc = ul_new_path("/sys/class/rtc/%s", rtcname);
if (!pc)
goto unknown;
rc = ul_path_scanf(pc, "name", "%128[^\n ]", &name);
ul_unref_path(pc);
if (rc != 1 || !*name)
goto unknown;
if (ctl->verbose)
printf(_("RTC type: '%s'\n"), name);
/* MC146818A-compatible (x86) */
if (strcmp(name, "rtc_cmos") == 0)
return 0.5;
/* Another HW */
return 0;
unknown:
/* Let's be backwardly compatible */
return 0.5;
}
/*
* Set the Hardware Clock to the time "sethwtime", in local time zone or
* UTC, according to "universal".
*
* Wait for a fraction of a second so that "sethwtime" is the value of the
* Hardware Clock as of system time "refsystime", which is in the past. For
* example, if "sethwtime" is 14:03:05 and "refsystime" is 12:10:04.5 and
* the current system time is 12:10:06.0: Wait .5 seconds (to make exactly 2
* seconds since "refsystime") and then set the Hardware Clock to 14:03:07,
* thus getting a precise and retroactive setting of the clock. The .5 delay is
* default on x86, see --delay and get_hardware_delay().
*
* (Don't be confused by the fact that the system clock and the Hardware
* Clock differ by two hours in the above example. That's just to remind you
* that there are two independent time scales here).
*
* This function ought to be able to accept set times as fractional times.
* Idea for future enhancement.
*/
static void
set_hardware_clock_exact(const struct hwclock_control *ctl,
const time_t sethwtime,
const struct timeval refsystime)
{
/*
* The Hardware Clock can only be set to any integer time plus one
* half second. The integer time is required because there is no
* interface to set or get a fractional second. The additional half
* second is because the Hardware Clock updates to the following
* second precisely 500 ms (not 1 second!) after you release the
* divider reset (after setting the new time) - see description of
* DV2, DV1, DV0 in Register A in the MC146818A data sheet (and note
* that although that document doesn't say so, real-world code seems
* to expect that the SET bit in Register B functions the same way).
* That means that, e.g., when you set the clock to 1:02:03, it
* effectively really sets it to 1:02:03.5, because it will update to
* 1:02:04 only half a second later. Our caller passes the desired
* integer Hardware Clock time in sethwtime, and the corresponding
* system time (which may have a fractional part, and which may or may
* not be the same!) in refsystime. In an ideal situation, we would
* then apply sethwtime to the Hardware Clock at refsystime+500ms, so
* that when the Hardware Clock ticks forward to sethwtime+1s half a
* second later at refsystime+1000ms, everything is in sync. So we
* spin, waiting for gettimeofday() to return a time at or after that
* time (refsystime+500ms) up to a tolerance value, initially 1ms. If
* we miss that time due to being preempted for some other process,
* then we increase the margin a little bit (initially 1ms, doubling
* each time), add 1 second (or more, if needed to get a time that is
* in the future) to both the time for which we are waiting and the
* time that we will apply to the Hardware Clock, and start waiting
* again.
*
* For example, the caller requests that we set the Hardware Clock to
* 1:02:03, with reference time (current system time) = 6:07:08.250.
* We want the Hardware Clock to update to 1:02:04 at 6:07:09.250 on
* the system clock, and the first such update will occur 0.500
* seconds after we write to the Hardware Clock, so we spin until the
* system clock reads 6:07:08.750. If we get there, great, but let's
* imagine the system is so heavily loaded that our process is
* preempted and by the time we get to run again, the system clock
* reads 6:07:11.990. We now want to wait until the next xx:xx:xx.750
* time, which is 6:07:12.750 (4.5 seconds after the reference time),
* at which point we will set the Hardware Clock to 1:02:07 (4 seconds
* after the originally requested time). If we do that successfully,
* then at 6:07:13.250 (5 seconds after the reference time), the
* Hardware Clock will update to 1:02:08 (5 seconds after the
* originally requested time), and all is well thereafter.
*/
time_t newhwtime = sethwtime;
double target_time_tolerance_secs = 0.001; /* initial value */
double tolerance_incr_secs = 0.001; /* initial value */
double delay;
struct timeval rtc_set_delay_tv;
struct timeval targetsystime;
struct timeval nowsystime;
struct timeval prevsystime = refsystime;
double deltavstarget;
if (ctl->rtc_delay != -1.0) /* --delay specified */
delay = ctl->rtc_delay;
else
delay = get_hardware_delay(ctl);
if (ctl->verbose)
printf(_("Using delay: %.6f seconds\n"), delay);
rtc_set_delay_tv.tv_sec = 0;
rtc_set_delay_tv.tv_usec = delay * 1E6;
timeradd(&refsystime, &rtc_set_delay_tv, &targetsystime);
while (1) {
double ticksize;
ON_DBG(RANDOM_SLEEP, up_to_1000ms_sleep());
gettimeofday(&nowsystime, NULL);
deltavstarget = time_diff(nowsystime, targetsystime);
ticksize = time_diff(nowsystime, prevsystime);
prevsystime = nowsystime;
if (ticksize < 0) {
if (ctl->verbose)
printf(_("time jumped backward %.6f seconds "
"to %ld.%06ld - retargeting\n"),
ticksize, nowsystime.tv_sec,
nowsystime.tv_usec);
/* The retarget is handled at the end of the loop. */
} else if (deltavstarget < 0) {
/* deltavstarget < 0 if current time < target time */
DBG(DELTA_VS_TARGET,
ul_debug("%ld.%06ld < %ld.%06ld (%.6f)",
nowsystime.tv_sec, nowsystime.tv_usec,
targetsystime.tv_sec,
targetsystime.tv_usec, deltavstarget));
continue; /* not there yet - keep spinning */
} else if (deltavstarget <= target_time_tolerance_secs) {
/* Close enough to the target time; done waiting. */
break;
} else /* (deltavstarget > target_time_tolerance_secs) */ {
/*
* We missed our window. Increase the tolerance and
* aim for the next opportunity.
*/
if (ctl->verbose)
printf(_("missed it - %ld.%06ld is too far "
"past %ld.%06ld (%.6f > %.6f)\n"),
nowsystime.tv_sec,
nowsystime.tv_usec,
targetsystime.tv_sec,
targetsystime.tv_usec,
deltavstarget,
target_time_tolerance_secs);
target_time_tolerance_secs += tolerance_incr_secs;
tolerance_incr_secs *= 2;
}
/*
* Aim for the same offset (tv_usec) within the second in
* either the current second (if that offset hasn't arrived
* yet), or the next second.
*/
if (nowsystime.tv_usec < targetsystime.tv_usec)
targetsystime.tv_sec = nowsystime.tv_sec;
else
targetsystime.tv_sec = nowsystime.tv_sec + 1;
}
newhwtime = sethwtime
+ ceil(time_diff(nowsystime, refsystime)
- delay /* don't count this */);
if (ctl->verbose)
printf(_("%ld.%06ld is close enough to %ld.%06ld (%.6f < %.6f)\n"
"Set RTC to %ld (%ld + %d; refsystime = %ld.%06ld)\n"),
nowsystime.tv_sec, nowsystime.tv_usec,
targetsystime.tv_sec, targetsystime.tv_usec,
deltavstarget, target_time_tolerance_secs,
newhwtime, sethwtime,
(int)(newhwtime - sethwtime),
refsystime.tv_sec, refsystime.tv_usec);
set_hardware_clock(ctl, newhwtime);
}
static int
display_time(struct timeval hwctime)
{
char buf[ISO_BUFSIZ];
if (strtimeval_iso(&hwctime, ISO_TIMESTAMP_DOT, buf, sizeof(buf)))
return EXIT_FAILURE;
printf("%s\n", buf);
return EXIT_SUCCESS;
}
/*
* Adjusts System time, sets the kernel's timezone and RTC timescale.
*
* The kernel warp_clock function adjusts the System time according to the
* tz.tz_minuteswest argument and sets PCIL (see below). At boot settimeofday(2)
* has one-shot access to this function as shown in the table below.
*
* +-------------------------------------------------------------------------+
* | settimeofday(tv, tz) |
* |-------------------------------------------------------------------------|
* | Arguments | System Time | TZ | PCIL | | warp_clock |
* | tv | tz | set | warped | set | set | firsttime | locked |
* |---------|---------|---------------|-----|------|-----------|------------|
* | pointer | NULL | yes | no | no | no | 1 | no |
* | NULL | ptr2utc | no | no | yes | no | 0 | yes |
* | NULL | pointer | no | yes | yes | yes | 0 | yes |
* +-------------------------------------------------------------------------+
* ptr2utc: tz.tz_minuteswest is zero (UTC).
* PCIL: persistent_clock_is_local, sets the "11 minute mode" timescale.
* firsttime: locks the warp_clock function (initialized to 1 at boot).
*
* +---------------------------------------------------------------------------+
* | op | RTC scale | settimeofday calls |
* |---------|-----------|-----------------------------------------------------|
* | systz | Local | 1) warps system time*, sets PCIL* and kernel tz |
* | systz | UTC | 1st) locks warp_clock* 2nd) sets kernel tz |
* | hctosys | Local | 1st) sets PCIL* & kernel tz 2nd) sets system time |
* | hctosys | UTC | 1st) locks warp* 2nd) sets tz 3rd) sets system time |
* +---------------------------------------------------------------------------+
* * only on first call after boot
*
* POSIX 2008 marked TZ in settimeofday() as deprecated. Unfortunately,
* different C libraries react to this deprecation in a different way. Since
* glibc v2.31 settimeofday() will fail if both args are not NULL, Musl-C
* ignores TZ at all, etc. We use __set_time() and __set_timezone() to hide
* these portability issues and to keep code readable.
*/
#define __set_time(_tv) settimeofday(_tv, NULL)
#ifndef SYS_settimeofday
# ifdef __NR_settimeofday
# define SYS_settimeofday __NR_settimeofday
# elif defined(__NR_settimeofday_time32)
# define SYS_settimeofday __NR_settimeofday_time32
# endif
#endif
static inline int __set_timezone(const struct timezone *tz)
{
#ifdef SYS_settimeofday
errno = 0;
return syscall(SYS_settimeofday, NULL, tz);
#else
return settimeofday(NULL, tz);
#endif
}
static int
set_system_clock(const struct hwclock_control *ctl,
const struct timeval newtime)
{
struct tm broken;
int minuteswest;
int rc = 0;
localtime_r(&newtime.tv_sec, &broken);
minuteswest = -get_gmtoff(&broken) / 60;
if (ctl->verbose) {
if (ctl->universal) {
puts(_("Calling settimeofday(NULL, 0) "
"to lock the warp_clock function."));
if (!( ctl->universal && !minuteswest ))
printf(_("Calling settimeofday(NULL, %d) "
"to set the kernel timezone.\n"),
minuteswest);
} else
printf(_("Calling settimeofday(NULL, %d) to warp "
"System time, set PCIL and the kernel tz.\n"),
minuteswest);
if (ctl->hctosys)
printf(_("Calling settimeofday(%ld.%06ld, NULL) "
"to set the System time.\n"),
newtime.tv_sec, newtime.tv_usec);
}
if (!ctl->testing) {
const struct timezone tz_utc = { 0 };
const struct timezone tz = { minuteswest };
/* If UTC RTC: lock warp_clock and PCIL */
if (ctl->universal)
rc = __set_timezone(&tz_utc);
/* Set kernel tz; if localtime RTC: warp_clock and set PCIL */
if (!rc && !( ctl->universal && !minuteswest ))
rc = __set_timezone(&tz);
/* Set the System Clock */
if ((!rc || errno == ENOSYS) && ctl->hctosys)
rc = __set_time(&newtime);
if (rc) {
warn(_("settimeofday() failed"));
return EXIT_FAILURE;
}
}
return EXIT_SUCCESS;
}
/*
* Refresh the last calibrated and last adjusted timestamps in <*adjtime_p>
* to facilitate future drift calculations based on this set point.
*
* With the --update-drift option:
* Update the drift factor in <*adjtime_p> based on the fact that the
* Hardware Clock was just calibrated to <nowtime> and before that was
* set to the <hclocktime> time scale.
*/
static void
adjust_drift_factor(const struct hwclock_control *ctl,
struct adjtime *adjtime_p,
const struct timeval nowtime,
const struct timeval hclocktime)
{
if (!ctl->update) {
if (ctl->verbose)
printf(_("Not adjusting drift factor because the "
"--update-drift option was not used.\n"));
} else if (adjtime_p->last_calib_time == 0) {
if (ctl->verbose)
printf(_("Not adjusting drift factor because last "
"calibration time is zero,\n"
"so history is bad and calibration startover "
"is necessary.\n"));
} else if ((hclocktime.tv_sec - adjtime_p->last_calib_time) < 4 * 60 * 60) {
if (ctl->verbose)
printf(_("Not adjusting drift factor because it has "
"been less than four hours since the last "
"calibration.\n"));
} else {
/*
* At adjustment time we drift correct the hardware clock
* according to the contents of the adjtime file and refresh
* its last adjusted timestamp.
*
* At calibration time we set the Hardware Clock and refresh
* both timestamps in <*adjtime_p>.
*
* Here, with the --update-drift option, we also update the
* drift factor in <*adjtime_p>.
*
* Let us do computation in doubles. (Floats almost suffice,
* but 195 days + 1 second equals 195 days in floats.)
*/
const double sec_per_day = 24.0 * 60.0 * 60.0;
double factor_adjust;
double drift_factor;
struct timeval last_calib;
last_calib = t2tv(adjtime_p->last_calib_time);
/*
* Correction to apply to the current drift factor.
*
* Simplified: uncorrected_drift / days_since_calibration.
*
* hclocktime is fully corrected with the current drift factor.
* Its difference from nowtime is the missed drift correction.
*/
factor_adjust = time_diff(nowtime, hclocktime) /
(time_diff(nowtime, last_calib) / sec_per_day);
drift_factor = adjtime_p->drift_factor + factor_adjust;
if (fabs(drift_factor) > MAX_DRIFT) {
if (ctl->verbose)
printf(_("Clock drift factor was calculated as "
"%f seconds/day.\n"
"It is far too much. Resetting to zero.\n"),
drift_factor);
drift_factor = 0;
} else {
if (ctl->verbose)
printf(_("Clock drifted %f seconds in the past "
"%f seconds\nin spite of a drift factor of "
"%f seconds/day.\n"
"Adjusting drift factor by %f seconds/day\n"),
time_diff(nowtime, hclocktime),
time_diff(nowtime, last_calib),
adjtime_p->drift_factor, factor_adjust);
}
adjtime_p->drift_factor = drift_factor;
}
adjtime_p->last_calib_time = nowtime.tv_sec;
adjtime_p->last_adj_time = nowtime.tv_sec;
adjtime_p->not_adjusted = 0;
adjtime_p->dirty = 1;
}
/*
* Calculate the drift correction currently needed for the
* Hardware Clock based on the last time it was adjusted,
* and the current drift factor, as stored in the adjtime file.
*
* The total drift adjustment needed is stored at tdrift_p.
*
*/
static void
calculate_adjustment(const struct hwclock_control *ctl,
const double factor,
const time_t last_time,
const double not_adjusted,
const time_t systime, struct timeval *tdrift_p)
{
double exact_adjustment;
exact_adjustment =
((double)(systime - last_time)) * factor / (24 * 60 * 60)
+ not_adjusted;
tdrift_p->tv_sec = (time_t) floor(exact_adjustment);
tdrift_p->tv_usec = (exact_adjustment -
(double)tdrift_p->tv_sec) * 1E6;
if (ctl->verbose) {
printf(P_("Time since last adjustment is %ld second\n",
"Time since last adjustment is %ld seconds\n",
(systime - last_time)),
(systime - last_time));
printf(_("Calculated Hardware Clock drift is %ld.%06ld seconds\n"),
tdrift_p->tv_sec, tdrift_p->tv_usec);
}
}
/*
* Write the contents of the <adjtime> structure to its disk file.
*
* But if the contents are clean (unchanged since read from disk), don't
* bother.
*/
static int save_adjtime(const struct hwclock_control *ctl,
const struct adjtime *adjtime)
{
char *content; /* Stuff to write to disk file */
FILE *fp;
xasprintf(&content, "%f %ld %f\n%ld\n%s\n",
adjtime->drift_factor,
adjtime->last_adj_time,
adjtime->not_adjusted,
adjtime->last_calib_time,
(adjtime->local_utc == LOCAL) ? "LOCAL" : "UTC");
if (ctl->verbose){
printf(_("New %s data:\n%s"),
ctl->adj_file_name, content);
}
if (!ctl->testing) {
fp = fopen(ctl->adj_file_name, "w");
if (fp == NULL) {
warn(_("cannot open %s"), ctl->adj_file_name);
return EXIT_FAILURE;
}
if (fputs(content, fp) < 0 || close_stream(fp) != 0) {
warn(_("cannot update %s"), ctl->adj_file_name);
return EXIT_FAILURE;
}
}
return EXIT_SUCCESS;
}
/*
* Do the adjustment requested, by 1) setting the Hardware Clock (if
* necessary), and 2) updating the last-adjusted time in the adjtime
* structure.
*
* Do not update anything if the Hardware Clock does not currently present a
* valid time.
*
* <hclocktime> is the drift corrected time read from the Hardware Clock.
*
* <read_time> was the system time when the <hclocktime> was read, which due
* to computational delay could be a short time ago. It is used to define a
* trigger point for setting the Hardware Clock. The fractional part of the
* Hardware clock set time is subtracted from read_time to 'refer back', or
* delay, the trigger point. Fractional parts must be accounted for in this
* way, because the Hardware Clock can only be set to a whole second.
*
* <universal>: the Hardware Clock is kept in UTC.
*
* <testing>: We are running in test mode (no updating of clock).
*
*/
static void
do_adjustment(const struct hwclock_control *ctl, struct adjtime *adjtime_p,
const struct timeval hclocktime,
const struct timeval read_time)
{
if (adjtime_p->last_adj_time == 0) {
if (ctl->verbose)
printf(_("Not setting clock because last adjustment time is zero, "
"so history is bad.\n"));
} else if (fabs(adjtime_p->drift_factor) > MAX_DRIFT) {
if (ctl->verbose)
printf(_("Not setting clock because drift factor %f is far too high.\n"),
adjtime_p->drift_factor);
} else {
set_hardware_clock_exact(ctl, hclocktime.tv_sec,
time_inc(read_time,
-(hclocktime.tv_usec / 1E6)));
adjtime_p->last_adj_time = hclocktime.tv_sec;
adjtime_p->not_adjusted = 0;
adjtime_p->dirty = 1;
}
}
static void determine_clock_access_method(const struct hwclock_control *ctl)
{
ur = NULL;
#ifdef USE_HWCLOCK_CMOS
if (ctl->directisa)
ur = probe_for_cmos_clock();
#endif
#ifdef __linux__
if (!ur)
ur = probe_for_rtc_clock(ctl);
#endif
if (ur) {
if (ctl->verbose)
puts(ur->interface_name);
} else {
if (ctl->verbose)
printf(_("No usable clock interface found.\n"));
warnx(_("Cannot access the Hardware Clock via "
"any known method."));
if (!ctl->verbose)
warnx(_("Use the --verbose option to see the "
"details of our search for an access "
"method."));
hwclock_exit(ctl, EXIT_FAILURE);
}
}
/* Do all the normal work of hwclock - read, set clock, etc. */
static int
manipulate_clock(const struct hwclock_control *ctl, const time_t set_time,
const struct timeval startup_time, struct adjtime *adjtime)
{
/* The time at which we read the Hardware Clock */
struct timeval read_time = { 0 };
/*
* The Hardware Clock gives us a valid time, or at
* least something close enough to fool mktime().
*/
int hclock_valid = 0;
/*
* Tick synchronized time read from the Hardware Clock and
* then drift corrected for all operations except --show.
*/
struct timeval hclocktime = { 0 };
/*
* hclocktime correlated to startup_time. That is, what drift
* corrected Hardware Clock time would have been at start up.
*/
struct timeval startup_hclocktime = { 0 };
/* Total Hardware Clock drift correction needed. */
struct timeval tdrift = { 0 };
if ((ctl->set || ctl->systohc || ctl->adjust) &&
(adjtime->local_utc == UTC) != ctl->universal) {
adjtime->local_utc = ctl->universal ? UTC : LOCAL;
adjtime->dirty = 1;
}
/*
* Negate the drift correction, because we want to 'predict' a
* Hardware Clock time that includes drift.
*/
if (ctl->predict) {
hclocktime = t2tv(set_time);
calculate_adjustment(ctl, adjtime->drift_factor,
adjtime->last_adj_time,
adjtime->not_adjusted,
hclocktime.tv_sec, &tdrift);
hclocktime = time_inc(hclocktime, (double)
-(tdrift.tv_sec + tdrift.tv_usec / 1E6));
if (ctl->verbose) {
printf(_ ("Target date: %ld\n"), set_time);
printf(_ ("Predicted RTC: %ld\n"), hclocktime.tv_sec);
}
return display_time(hclocktime);
}
if (ctl->systz)
return set_system_clock(ctl, startup_time);
if (ur->get_permissions())
return EXIT_FAILURE;
/*
* Read and drift correct RTC time; except for RTC set functions
* without the --update-drift option because: 1) it's not needed;
* 2) it enables setting a corrupted RTC without reading it first;
* 3) it significantly reduces system shutdown time.
*/
if ( ! ((ctl->set || ctl->systohc) && !ctl->update)) {
/*
* Timing critical - do not change the order of, or put
* anything between the follow three statements.
* Synchronization failure MUST exit, because all drift
* operations are invalid without it.
*/
if (synchronize_to_clock_tick(ctl))
return EXIT_FAILURE;
read_hardware_clock(ctl, &hclock_valid, &hclocktime.tv_sec);
gettimeofday(&read_time, NULL);
if (!hclock_valid) {
warnx(_("RTC read returned an invalid value."));
return EXIT_FAILURE;
}
/*
* Calculate and apply drift correction to the Hardware Clock
* time for everything except --show
*/
calculate_adjustment(ctl, adjtime->drift_factor,
adjtime->last_adj_time,
adjtime->not_adjusted,
hclocktime.tv_sec, &tdrift);
if (!ctl->show)
hclocktime = time_inc(tdrift, hclocktime.tv_sec);
startup_hclocktime =
time_inc(hclocktime, time_diff(startup_time, read_time));
}
if (ctl->show || ctl->get) {
return display_time(startup_hclocktime);
}
if (ctl->set) {
set_hardware_clock_exact(ctl, set_time, startup_time);
if (!ctl->noadjfile)
adjust_drift_factor(ctl, adjtime, t2tv(set_time),
startup_hclocktime);
} else if (ctl->adjust) {
if (tdrift.tv_sec > 0 || tdrift.tv_sec < -1)
do_adjustment(ctl, adjtime, hclocktime, read_time);
else
printf(_("Needed adjustment is less than one second, "
"so not setting clock.\n"));
} else if (ctl->systohc) {
struct timeval nowtime, reftime;
/*
* We can only set_hardware_clock_exact to a
* whole seconds time, so we set it with
* reference to the most recent whole
* seconds time.
*/
gettimeofday(&nowtime, NULL);
reftime.tv_sec = nowtime.tv_sec;
reftime.tv_usec = 0;
set_hardware_clock_exact(ctl, (time_t) reftime.tv_sec, reftime);
if (!ctl->noadjfile)
adjust_drift_factor(ctl, adjtime, nowtime,
hclocktime);
} else if (ctl->hctosys) {
return set_system_clock(ctl, hclocktime);
}
if (!ctl->noadjfile && adjtime->dirty)
return save_adjtime(ctl, adjtime);
return EXIT_SUCCESS;
}
/**
* Get or set the kernel RTC driver's epoch on Alpha machines.
* ISA machines are hard coded for 1900.
*/
#if defined(__linux__) && defined(__alpha__)
static void
manipulate_epoch(const struct hwclock_control *ctl)
{
if (ctl->getepoch) {
unsigned long epoch;
if (get_epoch_rtc(ctl, &epoch))
warnx(_("unable to read the RTC epoch."));
else
printf(_("The RTC epoch is set to %lu.\n"), epoch);
} else if (ctl->setepoch) {
if (!ctl->epoch_option)
warnx(_("--epoch is required for --setepoch."));
else if (!ctl->testing)
if (set_epoch_rtc(ctl))
warnx(_("unable to set the RTC epoch."));
}
}
#endif /* __linux__ __alpha__ */
static void out_version(void)
{
printf(UTIL_LINUX_VERSION);
}
static void __attribute__((__noreturn__))
usage(void)
{
fputs(USAGE_HEADER, stdout);
printf(_(" %s [function] [option...]\n"), program_invocation_short_name);
fputs(USAGE_SEPARATOR, stdout);
puts(_("Time clocks utility."));
fputs(USAGE_FUNCTIONS, stdout);
puts(_(" -r, --show display the RTC time"));
puts(_(" --get display drift corrected RTC time"));
puts(_(" --set set the RTC according to --date"));
puts(_(" -s, --hctosys set the system time from the RTC"));
puts(_(" -w, --systohc set the RTC from the system time"));
puts(_(" --systz send timescale configurations to the kernel"));
puts(_(" -a, --adjust adjust the RTC to account for systematic drift"));
#if defined(__linux__) && defined(__alpha__)
puts(_(" --getepoch display the RTC epoch"));
puts(_(" --setepoch set the RTC epoch according to --epoch"));
#endif
puts(_(" --predict predict the drifted RTC time according to --date"));
fputs(USAGE_OPTIONS, stdout);
puts(_(" -u, --utc the RTC timescale is UTC"));
puts(_(" -l, --localtime the RTC timescale is Local"));
#ifdef __linux__
printf(_(
" -f, --rtc <file> use an alternate file to %1$s\n"), _PATH_RTC_DEV);
#endif
printf(_(
" --directisa use the ISA bus instead of %1$s access\n"), _PATH_RTC_DEV);
puts(_(" --date <time> date/time input for --set and --predict"));
puts(_(" --delay <sec> delay used when set new RTC time"));
#if defined(__linux__) && defined(__alpha__)
puts(_(" --epoch <year> epoch input for --setepoch"));
#endif
puts(_(" --update-drift update the RTC drift factor"));
printf(_(
" --noadjfile do not use %1$s\n"), _PATH_ADJTIME);
printf(_(
" --adjfile <file> use an alternate file to %1$s\n"), _PATH_ADJTIME);
puts(_(" --test dry run; implies --verbose"));
puts(_(" -v, --verbose display more details"));
fputs(USAGE_SEPARATOR, stdout);
printf(USAGE_HELP_OPTIONS(22));
printf(USAGE_MAN_TAIL("hwclock(8)"));
exit(EXIT_SUCCESS);
}
int main(int argc, char **argv)
{
struct hwclock_control ctl = {
.show = 1, /* default op is show */
.rtc_delay = -1.0 /* unspecified */
};
struct timeval startup_time;
struct adjtime adjtime = { 0 };
/*
* The time we started up, in seconds into the epoch, including
* fractions.
*/
time_t set_time = 0; /* Time to which user said to set Hardware Clock */
int rc, c;
/* Long only options. */
enum {
OPT_ADJFILE = CHAR_MAX + 1,
OPT_DATE,
OPT_DELAY,
OPT_DIRECTISA,
OPT_EPOCH,
OPT_GET,
OPT_GETEPOCH,
OPT_NOADJFILE,
OPT_PREDICT,
OPT_SET,
OPT_SETEPOCH,
OPT_SYSTZ,
OPT_TEST,
OPT_UPDATE
};
static const struct option longopts[] = {
{ "adjust", no_argument, NULL, 'a' },
{ "help", no_argument, NULL, 'h' },
{ "localtime", no_argument, NULL, 'l' },
{ "show", no_argument, NULL, 'r' },
{ "hctosys", no_argument, NULL, 's' },
{ "utc", no_argument, NULL, 'u' },
{ "version", no_argument, NULL, 'V' },
{ "systohc", no_argument, NULL, 'w' },
{ "debug", no_argument, NULL, 'D' },
{ "ul-debug", required_argument, NULL, 'd' },
{ "verbose", no_argument, NULL, 'v' },
{ "set", no_argument, NULL, OPT_SET },
#if defined(__linux__) && defined(__alpha__)
{ "getepoch", no_argument, NULL, OPT_GETEPOCH },
{ "setepoch", no_argument, NULL, OPT_SETEPOCH },
{ "epoch", required_argument, NULL, OPT_EPOCH },
#endif
{ "noadjfile", no_argument, NULL, OPT_NOADJFILE },
{ "directisa", no_argument, NULL, OPT_DIRECTISA },
{ "test", no_argument, NULL, OPT_TEST },
{ "date", required_argument, NULL, OPT_DATE },
{ "delay", required_argument, NULL, OPT_DELAY },
#ifdef __linux__
{ "rtc", required_argument, NULL, 'f' },
#endif
{ "adjfile", required_argument, NULL, OPT_ADJFILE },
{ "systz", no_argument, NULL, OPT_SYSTZ },
{ "predict", no_argument, NULL, OPT_PREDICT },
{ "get", no_argument, NULL, OPT_GET },
{ "update-drift", no_argument, NULL, OPT_UPDATE },
{ NULL, 0, NULL, 0 }
};
static const ul_excl_t excl[] = { /* rows and cols in ASCII order */
{ 'a','r','s','w',
OPT_GET, OPT_GETEPOCH, OPT_PREDICT,
OPT_SET, OPT_SETEPOCH, OPT_SYSTZ },
{ 'l', 'u' },
{ OPT_ADJFILE, OPT_NOADJFILE },
{ OPT_NOADJFILE, OPT_UPDATE },
{ 0 }
};
int excl_st[ARRAY_SIZE(excl)] = UL_EXCL_STATUS_INIT;
/* Remember what time we were invoked */
gettimeofday(&startup_time, NULL);
#ifdef HAVE_LIBAUDIT
hwaudit_fd = audit_open();
if (hwaudit_fd < 0 && !(errno == EINVAL || errno == EPROTONOSUPPORT ||
errno == EAFNOSUPPORT)) {
/*
* You get these error codes only when the kernel doesn't
* have audit compiled in.
*/
warnx(_("Unable to connect to audit system"));
return EXIT_FAILURE;
}
#endif
setlocale(LC_ALL, "");
#ifdef LC_NUMERIC
/*
* We need LC_CTYPE and LC_TIME and LC_MESSAGES, but must avoid
* LC_NUMERIC since it gives problems when we write to /etc/adjtime.
* - gqueri@mail.dotcom.fr
*/
setlocale(LC_NUMERIC, "C");
#endif
bindtextdomain(PACKAGE, LOCALEDIR);
textdomain(PACKAGE);
close_stdout_atexit();
while ((c = getopt_long(argc, argv,
"hvVDd:alrsuwf:", longopts, NULL)) != -1) {
err_exclusive_options(c, longopts, excl, excl_st);
switch (c) {
case 'D':
warnx(_("use --verbose, --debug has been deprecated."));
break;
case 'v':
ctl.verbose = 1;
break;
case 'd':
hwclock_init_debug(optarg);
break;
case 'a':
ctl.adjust = 1;
ctl.show = 0;
ctl.hwaudit_on = 1;
break;
case 'l':
ctl.local_opt = 1; /* --localtime */
break;
case 'r':
ctl.show = 1;
break;
case 's':
ctl.hctosys = 1;
ctl.show = 0;
ctl.hwaudit_on = 1;
break;
case 'u':
ctl.utc = 1;
break;
case 'w':
ctl.systohc = 1;
ctl.show = 0;
ctl.hwaudit_on = 1;
break;
case OPT_SET:
ctl.set = 1;
ctl.show = 0;
ctl.hwaudit_on = 1;
break;
#if defined(__linux__) && defined(__alpha__)
case OPT_GETEPOCH:
ctl.getepoch = 1;
ctl.show = 0;
break;
case OPT_SETEPOCH:
ctl.setepoch = 1;
ctl.show = 0;
ctl.hwaudit_on = 1;
break;
case OPT_EPOCH:
ctl.epoch_option = optarg; /* --epoch */
break;
#endif
case OPT_NOADJFILE:
ctl.noadjfile = 1;
break;
case OPT_DIRECTISA:
ctl.directisa = 1;
break;
case OPT_TEST:
ctl.testing = 1; /* --test */
ctl.verbose = 1;
break;
case OPT_DATE:
ctl.date_opt = optarg; /* --date */
break;
case OPT_DELAY:
ctl.rtc_delay = strtod_or_err(optarg, "invalid --delay argument");
break;
case OPT_ADJFILE:
ctl.adj_file_name = optarg; /* --adjfile */
break;
case OPT_SYSTZ:
ctl.systz = 1; /* --systz */
ctl.show = 0;
ctl.hwaudit_on = 1;
break;
case OPT_PREDICT:
ctl.predict = 1; /* --predict */
ctl.show = 0;
break;
case OPT_GET:
ctl.get = 1; /* --get */
ctl.show = 0;
break;
case OPT_UPDATE:
ctl.update = 1; /* --update-drift */
break;
#ifdef __linux__
case 'f':
ctl.rtc_dev_name = optarg; /* --rtc */
break;
#endif
case 'V': /* --version */
print_version(EXIT_SUCCESS);
case 'h': /* --help */
usage();
default:
errtryhelp(EXIT_FAILURE);
}
}
if (argc -= optind) {
warnx(_("%d too many arguments given"), argc);
errtryhelp(EXIT_FAILURE);
}
if (!ctl.adj_file_name)
ctl.adj_file_name = _PATH_ADJTIME;
if (ctl.update && !ctl.set && !ctl.systohc) {
warnx(_("--update-drift requires --set or --systohc"));
exit(EXIT_FAILURE);
}
if (ctl.noadjfile && !ctl.utc && !ctl.local_opt) {
warnx(_("With --noadjfile, you must specify "
"either --utc or --localtime"));
exit(EXIT_FAILURE);
}
if (ctl.set || ctl.predict) {
if (!ctl.date_opt) {
warnx(_("--date is required for --set or --predict"));
exit(EXIT_FAILURE);
}
#ifdef USE_HWCLOCK_GPLv3_DATETIME
/* date(1) compatible GPLv3 parser */
struct timespec when = { 0 };
if (parse_date(&when, ctl.date_opt, NULL))
set_time = when.tv_sec;
#else
/* minimalistic GPLv2 based parser */
usec_t usec;
if (parse_timestamp(ctl.date_opt, &usec) == 0)
set_time = (time_t) (usec / 1000000);
#endif
else {
warnx(_("invalid date '%s'"), ctl.date_opt);
exit(EXIT_FAILURE);
}
}
#if defined(__linux__) && defined(__alpha__)
if (ctl.getepoch || ctl.setepoch) {
manipulate_epoch(&ctl);
hwclock_exit(&ctl, EXIT_SUCCESS);
}
#endif
if (ctl.verbose) {
out_version();
printf(_("System Time: %ld.%06ld\n"),
startup_time.tv_sec, startup_time.tv_usec);
}
if (!ctl.systz && !ctl.predict)
determine_clock_access_method(&ctl);
if (!ctl.noadjfile && !(ctl.systz && (ctl.utc || ctl.local_opt))) {
if ((rc = read_adjtime(&ctl, &adjtime)) != 0)
hwclock_exit(&ctl, rc);
} else
/* Avoid writing adjtime file if we don't have to. */
adjtime.dirty = 0;
ctl.universal = hw_clock_is_utc(&ctl, adjtime);
rc = manipulate_clock(&ctl, set_time, startup_time, &adjtime);
if (ctl.testing)
puts(_("Test mode: nothing was changed."));
hwclock_exit(&ctl, rc);
return rc; /* Not reached */
}
void
hwclock_exit(const struct hwclock_control *ctl
#ifndef HAVE_LIBAUDIT
__attribute__((__unused__))
#endif
, int status)
{
#ifdef HAVE_LIBAUDIT
if (ctl->hwaudit_on && !ctl->testing) {
audit_log_user_message(hwaudit_fd, AUDIT_USYS_CONFIG,
"op=change-system-time", NULL, NULL, NULL,
status == EXIT_SUCCESS ? 1 : 0);
}
close(hwaudit_fd);
#endif
exit(status);
}
/*
* History of this program:
*
* 98.08.12 BJH Version 2.4
*
* Don't use century byte from Hardware Clock. Add comments telling why.
*
* 98.06.20 BJH Version 2.3.
*
* Make --hctosys set the kernel timezone from TZ environment variable
* and/or /usr/lib/zoneinfo. From Klaus Ripke (klaus@ripke.com).
*
* 98.03.05 BJH. Version 2.2.
*
* Add --getepoch and --setepoch.
*
* Fix some word length things so it works on Alpha.
*
* Make it work when /dev/rtc doesn't have the interrupt functions. In this
* case, busywait for the top of a second instead of blocking and waiting
* for the update complete interrupt.
*
* Fix a bunch of bugs too numerous to mention.
*
* 97.06.01: BJH. Version 2.1. Read and write the century byte (Byte 50) of
* the ISA Hardware Clock when using direct ISA I/O. Problem discovered by
* job (jei@iclnl.icl.nl).
*
* Use the rtc clock access method in preference to the KDGHWCLK method.
* Problem discovered by Andreas Schwab <schwab@LS5.informatik.uni-dortmund.de>.
*
* November 1996: Version 2.0.1. Modifications by Nicolai Langfeldt
* (janl@math.uio.no) to make it compile on linux 1.2 machines as well as
* more recent versions of the kernel. Introduced the NO_CLOCK access method
* and wrote feature test code to detect absence of rtc headers.
*
***************************************************************************
* Maintenance notes
*
* To compile this, you must use GNU compiler optimization (-O option) in
* order to make the "extern inline" functions from asm/io.h (inb(), etc.)
* compile. If you don't optimize, which means the compiler will generate no
* inline functions, the references to these functions in this program will
* be compiled as external references. Since you probably won't be linking
* with any functions by these names, you will have unresolved external
* references when you link.
*
* Here's some info on how we must deal with the time that elapses while
* this program runs: There are two major delays as we run:
*
* 1) Waiting up to 1 second for a transition of the Hardware Clock so
* we are synchronized to the Hardware Clock.
* 2) Running the "date" program to interpret the value of our --date
* option.
*
* Reading the /etc/adjtime file is the next biggest source of delay and
* uncertainty.
*
* The user wants to know what time it was at the moment he invoked us, not
* some arbitrary time later. And in setting the clock, he is giving us the
* time at the moment we are invoked, so if we set the clock some time
* later, we have to add some time to that.
*
* So we check the system time as soon as we start up, then run "date" and
* do file I/O if necessary, then wait to synchronize with a Hardware Clock
* edge, then check the system time again to see how much time we spent. We
* immediately read the clock then and (if appropriate) report that time,
* and additionally, the delay we measured.
*
* If we're setting the clock to a time given by the user, we wait some more
* so that the total delay is an integral number of seconds, then set the
* Hardware Clock to the time the user requested plus that integral number
* of seconds. N.B. The Hardware Clock can only be set in integral seconds.
*
* If we're setting the clock to the system clock value, we wait for the
* system clock to reach the top of a second, and then set the Hardware
* Clock to the system clock's value.
*
* Here's an interesting point about setting the Hardware Clock: On my
* machine, when you set it, it sets to that precise time. But one can
* imagine another clock whose update oscillator marches on a steady one
* second period, so updating the clock between any two oscillator ticks is
* the same as updating it right at the earlier tick. To avoid any
* complications that might cause, we set the clock as soon as possible
* after an oscillator tick.
*
* About synchronizing to the Hardware Clock when reading the time: The
* precision of the Hardware Clock counters themselves is one second. You
* can't read the counters and find out that is 12:01:02.5. But if you
* consider the location in time of the counter's ticks as part of its
* value, then its precision is as infinite as time is continuous! What I'm
* saying is this: To find out the _exact_ time in the hardware clock, we
* wait until the next clock tick (the next time the second counter changes)
* and measure how long we had to wait. We then read the value of the clock
* counters and subtract the wait time and we know precisely what time it
* was when we set out to query the time.
*
* hwclock uses this method, and considers the Hardware Clock to have
* infinite precision.
*/
|