File: Transform.ag

package info (click to toggle)
uuagc 0.9.56-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,764 kB
  • sloc: haskell: 84,340; makefile: 11
file content (1371 lines) | stat: -rw-r--r-- 70,265 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
PRAGMA strictdata
PRAGMA strictwrap

INCLUDE "ConcreteSyntax.ag"
INCLUDE "Patterns.ag"

imports
{
import Control.Monad(mplus,mzero)
import Data.List (partition, nub,intersperse, union)
import Data.Maybe
import qualified Data.Map as Map
import Data.Map (Map)
import Data.Set as Set (Set, member, union, toList, fromList, empty, singleton, member, unions, size, fold, intersection, difference, insert, elems)
import qualified Data.Sequence as Seq
import Data.Sequence(Seq, (><))
import UU.Scanner.Position(noPos)

import ConcreteSyntax
import AbstractSyntax
import ErrorMessages
import Patterns (Patterns,Pattern(..))
import Expression (Expression(..))
import HsToken

import RhsCheck
import Debug.Trace
}


-------------------------------------------------------------------------------
--  Main goal
-------------------------------------------------------------------------------

-- Given some options, we want to construct a Grammar, that is, a structure that conforms to AbstractSyntax
ATTR AG [ | | output : Grammar ]
ATTR AG Elems Elem SemAlts SemAlt SemDefs SemDef Attrs [ options : Options | | ]

-- as a side effect, we generate error messages and Haskell code blocks that need to be embedded in the final code
ATTR AG Elems Elem SemAlts SemAlt Attrs NontSet ConstructorSet SemDefs SemDef
     [ | | errors USE {Seq.><}{Seq.empty}:{Seq Error} ]
ATTR AG Elems Elem
     [ | | blocks USE {`mapUnionWithPlusPlus`} {Map.empty}: {Blocks} ]


-- The output is produced by calling a function that constructs the Grammar,
-- given various datastructures that are collected from the concrete AG.

SEM AG
  | AG lhs.output = constructGrammar @loc.allNonterminals
                                     @elems.paramsCollect
                                     @loc.allConParams
                                     @loc.allFields
                                     @loc.prodOrder
                                     @loc.allConstraints
                                     @loc.allAttrDecls
                                     @elems.useMap
                                     @elems.derivings
                                     (if wrappers @lhs.options then @loc.allNonterminals else @elems.wrappers)
                                     @loc.checkedRules
                                     @loc.checkedSigs
                                     @loc.checkedInsts
                                     @elems.typeSyns
                                     @elems.semPragmasCollect
                                     @elems.attrOrderCollect
                                     @elems.ctxCollect
                                     @elems.quantCollect
                                     @loc.checkedUniques
                                     @loc.checkedAugments
                                     @loc.checkedArounds
                                     @loc.checkedMerges
                                     @loc.allMacros


-------------------------------------------------------------------------------
--  Main data flow
-------------------------------------------------------------------------------

{- Information is collected bottom-up (in multiple phases)
   After checking for consistency, datastructures are createad from it,
   which are passed down for the other phases.
-}


-- Names that are in use

  -- bottom-up collection
ATTR Elem Elems          [ | | collectedSetNames USE {`Set.union`} {Set.empty} : {Set Identifier} ]
ATTR Elem Elems NontSet  [ | | collectedNames    USE {`Set.union`} {Set.empty} : {Set Identifier} ]
  -- top-down distribution
ATTR Elem Elems Attrs Alts Alt Fields Field NontSet [ allNonterminals : {Set NontermIdent} | | ]


-- Constructors that are in use
  -- bottom-up collection
ATTR Alt Alts ConstructorSet [ | | collectedConstructorNames USE {`Set.union`} {Set.empty} : {Set ConstructorIdent} ]
ATTR Elem Elems [ | | collectedConstructorsMap USE {`mapUnionWithSetUnion`} {Map.empty} : {Map NontermIdent (Set ConstructorIdent)} ]
  -- top-down distribution
ATTR Elem Elems Alts Alt [ allConstructors : {Map NontermIdent (Set ConstructorIdent)} | | ]



-- Nonterminal sets that are defined
{type DefinedSets = Map Identifier (Set NontermIdent) }
  -- bottom-up collection
ATTR Elem Elems
     [ | defSets:{Map Identifier (Set NontermIdent,Set Identifier)} | ]
  -- top-down distribution
ATTR Elem Elems NontSet
     [ definedSets:{DefinedSets} | | ]



-- Interpreting nonterminal sets
ATTR NontSet [ | | nontSet   : {Set NontermIdent} ]


-- Interpreting constructor sets
ATTR ConstructorSet  [ | | constructors : {(Set ConstructorIdent->Set ConstructorIdent)} ]



-- Contextfree structure
{type FieldMap  = [(Identifier, Type)] }
{type DataTypes = Map.Map NontermIdent (Map.Map ConstructorIdent FieldMap) }
  -- bottom-up collection
ATTR Alt Alts Elem Elems
     [ | | collectedFields USE {++} {[]} : {[(NontermIdent, ConstructorIdent, FieldMap)]}
           collectedConstraints USE {++} {[]} : {[(NontermIdent, ConstructorIdent, [Type])]}
           collectedConParams USE {++} {[]} : {[(NontermIdent, ConstructorIdent, Set Identifier)]}
     ]
  -- top-down distribution
ATTR Elem Elems Attrs SemAlt SemAlts NontSet
     [  allFields : {DataTypes} | | ]



-- Attribute declarations
  -- bottom-up collection
ATTR Elems Elem Attrs
     [
     | attrDecls:{Map NontermIdent (Attributes, Attributes)}
     | useMap USE {`merge`} {Map.empty}:{Map NontermIdent (Map Identifier (String,String,String))}
     ]


-- Attribute definitions
{type AttrName   = (Identifier,Identifier) }
{type RuleInfo   = (Maybe Identifier, [AttrName]->Pattern, Expression, [AttrName], Bool, String, Bool, Bool) }
{type SigInfo    = (Identifier,Type) }
{type UniqueInfo = (Identifier,Identifier) }
{type AugmentInfo = (Identifier,Expression)}
{type AroundInfo  = (Identifier,Expression)}
{type MergeInfo   = (Identifier, Identifier, [Identifier], Expression)}
  -- bottom-up collection
ATTR Elem Elems SemAlt SemAlts
     [ | |   collectedRules    USE {++} {[]} : {[ (NontermIdent, ConstructorIdent, RuleInfo)]}
             collectedSigs     USE {++} {[]} : {[ (NontermIdent, ConstructorIdent, SigInfo) ]}
             collectedInsts    USE {++} {[]} : {[ (NontermIdent, ConstructorIdent, [Identifier]) ]}
             collectedUniques  USE {++} {[]} : {[ (NontermIdent, ConstructorIdent, [UniqueInfo]) ]}
             collectedAugments USE {++} {[]} : {[ (NontermIdent, ConstructorIdent, [AugmentInfo]) ]}
             collectedArounds  USE {++} {[]} : {[ (NontermIdent, ConstructorIdent, [AroundInfo])  ]}
             collectedMerges   USE {++} {[]} : {[ (NontermIdent, ConstructorIdent, [MergeInfo])   ]}
     ]



-------------------------------------------------------------------------------
--         Passing nonterminals
-------------------------------------------------------------------------------

-- Pass the name of the associated nonterminal to everyone
ATTR Alt Alts SemAlt SemAlts [ nts:{Set NontermIdent} | | ]

SEM Elem
  | Data alts.nts = @names.nontSet
  | Sem  alts.nts = @names.nontSet



-------------------------------------------------------------------------------
--         Calculation of code blocks                                        --
-------------------------------------------------------------------------------

SEM Elem
  | Txt  loc.blockInfo  = ( @kind
                          , @mbNt
                          )
         loc.blockValue = [(@lines, @pos)]
         lhs.blocks     = Map.singleton @loc.blockInfo @loc.blockValue
         lhs.errors     = if checkParseBlock @lhs.options
                          then let ex  = Expression @pos tks
                                   tks = [tk]
                                   tk  = HsToken (unlines @lines) @pos
                               in Seq.fromList $ checkBlock $ ex
                          else Seq.empty


-------------------------------------------------------------------------------
--         Check for duplicates and report error
-------------------------------------------------------------------------------

{

checkDuplicate :: (Identifier -> Identifier -> Error)
               -> Identifier -> val -> Map Identifier val -> (Map Identifier val,Seq Error)
checkDuplicate dupError key val m
  = case Map.lookupIndex key m of
     Just ix -> let (key',_) = Map.elemAt ix m
                in  (m,Seq.singleton (dupError key key'))
     Nothing -> (Map.insert key val m,Seq.empty)

checkDuplicates :: (Identifier -> Identifier -> Error)
                -> [(Identifier, val)] -> Map Identifier val -> (Map Identifier val,Seq Error)
checkDuplicates dupError new m = foldErrors check m new
 where  check = uncurry (checkDuplicate dupError)

foldErrors :: (b -> t -> (t, Seq Error)) -> t -> [b] -> (t, Seq Error)
foldErrors f n xs = foldl g (n,Seq.empty) xs
  where g ~(e,es) x = let (e',es') = f x e
                      in (e', es >< es')


checkForDuplicates :: (Identifier -> Identifier -> Error)  ->  [Identifier]  ->  [Error]
checkForDuplicates _ [] = []
checkForDuplicates err (x:xs) = let (same,other) = partition (equalId x) xs
                                in  map (err x) same ++ checkForDuplicates err other

equalId :: Identifier -> Identifier -> Bool
equalId x y = getName x == getName y

}

-------------------------------------------------------------------------------
--         Collecting DATA's and type synonyms
-------------------------------------------------------------------------------


SEM Alt
  | Alt  lhs.collectedFields  =       [ (nt, con, @fields.collectedFields)
                                      | nt  <- Set.toList @lhs.nts
                                      , con <- Set.toList (@names.constructors (Map.findWithDefault Set.empty nt @lhs.allConstructors))
                                      ]
         lhs.collectedConstraints =   [ (nt, con, @fields.collectedConstraints)
                                      | nt  <- Set.toList @lhs.nts
                                      , con <- Set.toList (@names.constructors (Map.findWithDefault Set.empty nt @lhs.allConstructors))
                                      ]
         lhs.collectedConParams   =   [ (nt, con, Set.fromList @tyvars)
                                      | nt  <- Set.toList @lhs.nts
                                      , con <- Set.toList (@names.constructors (Map.findWithDefault Set.empty nt @lhs.allConstructors))
                                      ]

SEM Elem
  | Type lhs.collectedFields = map (\(x,y)->(@name, x, y)) @loc.expanded

SEM AG
  | AG
         loc.prodOrder   = let f (nt,con,_) = Map.insertWith g nt [con]
                               g [con] lst | con `elem` lst = lst
                                           | otherwise      = con : lst
                               g _ _ = error "This is not possible"
                           in  foldr f Map.empty @elems.collectedFields
         loc.allFields   = let f (nt,con,fm) = Map.insertWith (Map.unionWith (++)) nt (Map.singleton con fm)
                           in  foldr f (Map.empty) @elems.collectedFields

         loc.allConstraints = let f (nt,con,fm) = Map.insertWith (Map.unionWith (++)) nt (Map.singleton con fm)
                              in  foldr f (Map.empty) @elems.collectedConstraints

         loc.allConParams   = let f (nt,con,fm) = Map.insertWith (Map.unionWith Set.union) nt (Map.singleton con fm)
                              in  foldr f (Map.empty) @elems.collectedConParams

         loc.allConstrs  = let f (nt,con,_) = Map.insertWith (++) nt [con]
                           in  foldr f (Map.empty) @elems.collectedFields

         loc.allRules    = let f (nt,con,r) = Map.insertWith (Map.unionWith (++)) nt (Map.singleton con [r])
                           in  foldr f (Map.empty) @elems.collectedRules

         loc.allSigs     = let f (nt,con,t) = Map.insertWith (Map.unionWith (++)) nt (Map.singleton con [t])
                               typeof nt r = Map.findWithDefault (Haskell "<unknown>") r $ fst $ Map.findWithDefault (Map.empty,Map.empty) nt @loc.allAttrDecls
                           in  foldr f (Map.empty) ( @elems.collectedSigs
                                                   ++ [ (nt, con, (ident,typeof nt ref))  | (nt, con, us) <- @elems.collectedUniques, (ident,ref) <- us ]
                                                   )

         loc.allInsts    = let f (nt,con,is) = Map.insertWith (Map.unionWith (++)) nt (Map.singleton con is)
                           in  foldr f (Map.empty) @elems.collectedInsts

         loc.allUniques  = let f (nt,con,us) = Map.insertWith (Map.unionWith (++)) nt (Map.singleton con us)
                           in foldr f (Map.empty) @elems.collectedUniques
         loc.allAugments = let f (nt,con,as) = Map.insertWith (Map.unionWith (++)) nt (Map.singleton con as)
                           in foldr f Map.empty @elems.collectedAugments
         loc.allArounds  =  let f (nt,con,as) = Map.insertWith (Map.unionWith (++)) nt (Map.singleton con as)
                            in foldr f Map.empty @elems.collectedArounds
         loc.allMerges   =  let f (nt,con,as) = Map.insertWith (Map.unionWith (++)) nt (Map.singleton con as)
                             in foldr f Map.empty @elems.collectedMerges

         loc.augmentSigs    = let gen _ = []  -- TODO: generate type signatures here for the augments
                              in Map.map (Map.map gen) @loc.allAugments

         loc.allRulesErrs   = Map.mapWithKey (Map.mapWithKey . (checkRules @allAttrDecls @allFields @allInsts @loc.allSigs @loc.allMerges)) @loc.allRules
         loc.allNamesErrs   = Map.mapWithKey (Map.mapWithKey . checkRuleNames) @loc.allRules
         loc.allSigsErrs    = Map.mapWithKey (Map.mapWithKey . (checkSigs                                                 )) @loc.allSigs
         loc.allInstsErrs   = Map.mapWithKey (Map.mapWithKey . (checkInsts @loc.allNonterminals @loc.allSigs @allFields   )) @loc.allInsts
         loc.allUniquesErrs = Map.mapWithKey (Map.mapWithKey . (checkUniques @allAttrDecls                                )) @loc.allUniques
         loc.allAugmentErrs = Map.mapWithKey (Map.mapWithKey . (checkAugments @allAttrDecls                               )) @loc.allAugments
         loc.allAroundsErrs = Map.mapWithKey (Map.mapWithKey . (checkArounds @loc.allFields)) @loc.allArounds
         loc.allMergesErrs  = Map.mapWithKey (Map.mapWithKey . (checkMerges @loc.allNonterminals @loc.allInsts @loc.allFields)) @loc.allMerges

         loc.checkedRulesPre = Map.map (Map.map fst) @loc.allRulesErrs
         loc.checkedSigs     = Map.map (Map.map fst) @loc.allSigsErrs `unionunionplusplus` @loc.augmentSigs
         loc.checkedInsts    = Map.map (Map.map fst) @loc.allInstsErrs
         loc.checkedUniques  = Map.map (Map.map fst) @loc.allUniquesErrs
         loc.checkedAugments = Map.map (Map.map fst) @loc.allAugmentErrs
         loc.checkedArounds  = Map.map (Map.map fst) @loc.allAroundsErrs
         loc.checkedRules    = Map.unionWith (Map.unionWith (++)) @loc.checkedRulesPre (Map.mapWithKey (Map.mapWithKey . (mkUniqueRules @lhs.options @loc.allRules @loc.allFields @loc.checkedInsts @loc.allAttrDecls)) @loc.checkedUniques)
         loc.checkedMerges   = Map.map (Map.map fst) @loc.allMergesErrs

         loc.errs1       = let f = checkForDuplicates (DupSynonym)
                           in  Seq.fromList . f . map fst $ @elems.typeSyns  -- forbid duplicate type synonyms

         loc.errs2       = let g nt (con,fm) = checkForDuplicates (DupChild nt con) (map fst fm)
                               f (nt,cfm)    = concat . map (g nt) . Map.toList $ cfm
                           in  Seq.fromList . concat . map f . Map.toList $ @allFields    -- forbid duplicate fields

         loc.errs3       = let -- f (nt,cons) = checkForDuplicates (DupAlt nt) cons
                           in   Seq.empty                                                 -- allow duplicate constructors, merging their fields
                             -- Seq.fromList . concat . map f . Map.toList $ @allConstrs  -- forbid duplicate constructors

         loc.errs4       = let  f m s = Map.foldr ((><) . snd) s m
                           in Map.foldr f Seq.empty @loc.allRulesErrs

         loc.errs5       = let  f m s = Map.foldr ((><) . snd) s m
                           in Map.foldr f Seq.empty @loc.allSigsErrs

         loc.errs6       = let  f m s = Map.foldr ((><) . snd) s m
                           in Map.foldr f Seq.empty @loc.allInstsErrs

         loc.errs7       = let  f m s = Map.foldr ((><) . snd) s m
                           in Map.foldr f Seq.empty @loc.allUniquesErrs

         loc.errs8       = let  f m s = Map.foldr ((><) . snd) s m
                           in Map.foldr f Seq.empty @loc.allAugmentErrs

         loc.errs9       = let  f m s = Map.foldr ((><) . snd) s m
                           in Map.foldr f Seq.empty @loc.allAroundsErrs

         loc.errs10      =  let  f m s = Map.foldr ((><)) s m
                            in Map.foldr f Seq.empty @loc.allNamesErrs

         loc.errs11      =  let f m s = Map.foldr ((><) . snd) s m
                            in Map.foldr f Seq.empty @loc.allMergesErrs

         lhs.errors      = @elems.errors >< @errs1 >< @errs2 >< @errs3 >< @errs4 >< @errs5 >< @errs6 >< @errs7 >< @errs8 >< @errs9 >< @errs10 >< @errs11

{
type RulesAndErrors = ([Rule], Seq Error)
type SigsAndErrors  = ([TypeSig], Seq Error)
type InstsAndErrors = ([(Identifier, Type)], Seq Error)
type UniquesAndErrors = (Map Identifier Identifier, Seq Error)
type AugmentsAndErrors = (Map Identifier [Expression], Seq Error)
type AroundsAndErrors = (Map Identifier [Expression], Seq Error)
type MergesAndErrors  = (Map Identifier (Identifier, [Identifier], Expression), Seq Error)
type AttrOverwrite  = Map AttrName Bool
type AccumRuleCheck = (RulesAndErrors, AttrOverwrite)
type AccumDefiCheck = (Seq Error, AttrOverwrite, [AttrName], [AttrName])

checkRules :: Map NontermIdent (Attributes, Attributes) -> DataTypes ->
              Map NontermIdent (Map ConstructorIdent [Identifier]) -> Map NontermIdent (Map ConstructorIdent [SigInfo]) ->
              Map NontermIdent (Map ConstructorIdent [MergeInfo]) ->
              NontermIdent -> ConstructorIdent -> [RuleInfo] -> RulesAndErrors
checkRules attributes fields allinsts allsigs _ nt con rs
  = let fieldmap :: FieldMap
        fieldmap = (_LHS, NT nt [] False) : (_LOC, NT nullIdent [] False) : (_INST, NT nullIdent [] False) : (_FIRST, NT nullIdent [] False) : (_LAST, NT nullIdent [] False)
                 : Map.findWithDefault [] con (Map.findWithDefault Map.empty nt fields)
                 ++ mapMaybe (\instNm -> lookup instNm sigs >>= \tp -> return (instNm, tp)) (Map.findWithDefault [] con (Map.findWithDefault Map.empty nt allinsts))
                 --   merged children are not allowed to have any inherited attrs defined: do not include

        sigs = Map.findWithDefault [] con (Map.findWithDefault Map.empty nt allsigs)

        hasAttrib f tp attr  = Map.member attr (f (Map.findWithDefault (Map.empty,Map.empty) tp attributes))

        checkRule :: RuleInfo -> AccumRuleCheck -> AccumRuleCheck
        checkRule (mbNm, pat,ex,as,owrt,str, pur, eager) ((r1,e1),m1)
          = let (e2,m2,u2,_) = foldr (checkDefi owrt) (e1,m1,[],[]) as
            in  ( (Rule mbNm (pat u2) ex owrt str True pur False Nothing eager : r1, e2), m2)

        checkDefi :: Bool -> AttrName -> AccumDefiCheck -> AccumDefiCheck
        checkDefi owrt fa@(field,attr) (e,m,u,bs)
         = case lookup field fieldmap
            of  Just (NT tp _ _) ->
                  let tp' = maybe tp id (deforestedNt tp)
                  in              if field == _LOC || field == _INST || field == _FIRST || field == _LAST
                                     || hasAttrib (if getName field==getName _LHS then snd else fst) tp' attr
                                  then case Map.lookupIndex fa m of
                                           Just ix -> let ((_,attr2),b) = Map.elemAt ix m
                                                       in  if b && not (fa `elem` bs)
                                                           then (                                             e, Map.insert fa owrt m, fa:u, fa:bs)
                                                           else (((Seq.<|)) (DupRule nt con field attr2 attr)   e,                    m, fa:u,    bs)
                                           Nothing ->           (                                             e, Map.insert fa owrt m,    u, fa:bs)
                                  else                          (((Seq.<|)) (SuperfluousRule nt con field attr) e,                    m, fa:u,    bs)
                _              ->                               (((Seq.<|)) (UndefChild nt con field)           e,                    m, fa:u,    bs )

    in  fst (foldr checkRule (([],Seq.empty),Map.empty) rs)

checkRuleNames :: NontermIdent -> ConstructorIdent -> [RuleInfo] -> Seq Error
checkRuleNames nt con
  = fst . foldr checkRule (Seq.empty, Set.empty)
  where
    checkRule (Just nm,_,_,_,_,_,_,_) (errs, nms)
      | nm `Set.member` nms = (DupRuleName nt con nm Seq.<| errs, nms)
      | otherwise           = (errs, Set.insert nm nms)
    checkRule (Nothing,_,_,_,_,_,_,_) inp = inp

checkSigs :: NontermIdent -> ConstructorIdent -> [SigInfo] -> SigsAndErrors
checkSigs nt con sis
  = let checkSig (ide,typ) (sigs,errs)
         = if   ide `elem` map (\(TypeSig n _)-> n) sigs
           then (sigs, ((Seq.<|)) (DupSig nt con ide) errs)
           -- else if not (ide `elem` locattrdefs)
           -- then (sigs, ((Seq.<|)) (SupSig nt con ide) errs)
           else (TypeSig ide typ:sigs, errs)
    in  foldr checkSig ([],Seq.empty) sis

checkInsts :: Set NontermIdent -> Map NontermIdent (Map ConstructorIdent [SigInfo]) -> DataTypes -> NontermIdent -> ConstructorIdent -> [Identifier] -> InstsAndErrors
checkInsts allNts sigMap _ nt con
  = foldr (\inst (insts, errs) ->
              maybe (insts, Seq.singleton (MissingInstSig nt con inst) >< errs)
                    (\info@(k, NT nm args _) ->
                      case findInst k insts of
                        Just k' -> (insts, Seq.singleton (DupChild nt con k k') >< errs)
                        Nothing -> case nm `Set.member` allNts of
                                             True  -> (info : insts, errs)
                                             False | take 2 (getName nm) == "T_" -> let nm'   = Ident (drop 2 (getName nm)) (getPos nm)
                                                                                        info' = (k, NT nm' args True)   -- this should be the only place at which 'for' with value True can be generated
                                                                                    in case nm' `Set.member` allNts of
                                                                                         True  -> (info' : insts, errs)
                                                                                         False -> (insts, Seq.singleton (UndefNont nm') >< errs)
                                                   | otherwise                   -> (insts, Seq.singleton (UndefNont nm) >< errs)
                    )
                  $ findSig inst
          ) ([], Seq.empty)
  where
    sigs = Map.findWithDefault [] con (Map.findWithDefault Map.empty nt sigMap)

    findSig name
      = do tp@(NT _ _ _) <- lookup name sigs
           return (name, tp)

    findInst _ [] = Nothing
    findInst k ((k', _): r)
      | k == k'   = Just k'
      | otherwise = findInst k r

checkUniques :: Map NontermIdent (Attributes, Attributes) -> NontermIdent -> ConstructorIdent -> [UniqueInfo] -> UniquesAndErrors
checkUniques allAttrs nt con uniques
  = let checkUnique (ident,ref) (us,errs)
          = if ident `Map.member` us
            then (us, ((Seq.<|)) (DupUnique nt con ident) errs)
            else if Map.member ref inhs && Map.member ref syns
                 then (Map.insert ident ref us, errs)
                 else (us, ((Seq.<|)) (MissingUnique nt ref) errs)

        (inhs,syns) = Map.findWithDefault (Map.empty,Map.empty) nt allAttrs
    in foldr checkUnique (Map.empty, Seq.empty) uniques

checkAugments :: Map NontermIdent (Attributes, Attributes) -> NontermIdent -> ConstructorIdent -> [AugmentInfo] -> AugmentsAndErrors
checkAugments allAttrs nt _ augments
  = let checkAugment (ident,expr) (as,errs)
          = if ident `Map.member` as
            then (Map.update (\vs -> Just (vs ++ [expr])) ident as, errs)
            else if Map.member ident syns
                 then (Map.insert ident [expr] as, errs)
                 else (as, ((Seq.<|)) (MissingSyn nt ident) errs)

        (_,syns) = Map.findWithDefault (Map.empty,Map.empty) nt allAttrs
    in foldr checkAugment (Map.empty, Seq.empty) augments

checkArounds :: DataTypes -> NontermIdent -> ConstructorIdent -> [AroundInfo] -> AroundsAndErrors
checkArounds fieldMap nt con arounds
  = let checkAround (ident,expr) (as,errs)
          = if ident `Map.member` as
            then (Map.update (\vs -> Just (vs ++ [expr])) ident as, errs)
            else case lookup ident fields of
                   Just (NT _ _ _) -> (Map.insert ident [expr] as, errs)
                   _               -> (as, ((Seq.<|)) (UndefChild nt con ident) errs)
        fields = Map.findWithDefault [] con (Map.findWithDefault Map.empty nt fieldMap)
    in foldr checkAround (Map.empty, Seq.empty) arounds

checkMerges :: Set NontermIdent -> Map NontermIdent (Map ConstructorIdent [Identifier]) -> DataTypes -> NontermIdent -> ConstructorIdent -> [MergeInfo] -> MergesAndErrors
checkMerges allNts allInsts fieldMap _ con merges
  = let checkMerge (target,nt,sources,expr) (m,errs)
          = let fields = Map.findWithDefault [] con (Map.findWithDefault Map.empty nt fieldMap)
                insts  = Map.findWithDefault [] con (Map.findWithDefault Map.empty nt allInsts)
                allFields = insts ++ map fst fields   -- note: sources of merge may not contain a target (for simplicity)
            in if target `Map.member` m   -- check for duplicate with self
               then (m, DupChild nt con target (fst $ Map.elemAt (Map.findIndex target m) m) Seq.<| errs)
               else if target `elem` allFields
                     then (m, DupChild nt con target (head $ filter (== target) allFields) Seq.<| errs)
                     else let missing = filter (\s -> not (s `elem` allFields)) sources
                          in if null missing
                             then if nt `Set.member` allNts   -- check if the nonterm is defined
                                  then (Map.insert target (nt, sources, expr) m, errs) -- all ok..
                                  else (m, UndefNont nt Seq.<| errs)
                             else (m, (Seq.fromList $ map (UndefChild nt con) missing) Seq.>< errs)
    in foldr checkMerge (Map.empty, Seq.empty) merges

unionunionplusplus :: Map NontermIdent (Map ConstructorIdent [a]) -> Map NontermIdent (Map ConstructorIdent [a]) -> Map NontermIdent (Map ConstructorIdent [a])
unionunionplusplus = Map.unionWith (Map.unionWith (++))
}


{
mkUniqueRules :: Options -> Map NontermIdent (Map ConstructorIdent [RuleInfo]) -> DataTypes -> Map NontermIdent (Map ConstructorIdent [(Identifier, Type)]) -> Map NontermIdent (Attributes,Attributes) -> NontermIdent -> ConstructorIdent -> Map Identifier Identifier -> [Rule]
mkUniqueRules opts allRules allFields allInsts allAttrDecls nt con usMap
  = map apply groups
  where
    fields = Map.findWithDefault [] con (Map.findWithDefault Map.empty nt allFields)
             ++ Map.findWithDefault [] con (Map.findWithDefault Map.empty nt allInsts)
             -- may have duplicates

    attrDefs = let projectDefs (_,_,_,defs,_,_,_,_) = defs
               in concatMap projectDefs $ Map.findWithDefault [] con $ Map.findWithDefault Map.empty nt allRules

    groups = Map.assocs $ Map.foldrWithKey (\i r m -> Map.insertWith (++) r [i] m) Map.empty usMap
    apply (ref,us) = mkRule ref (findOutField ref) us
    findOutField ref = case [ chld | (chld, NT tp _ _) <- fields, tp `hasSyn` ref] of
                         []    -> _LHS
                         (x:_) -> x
    hasSyn tp ref = Map.member ref $ snd $ Map.findWithDefault (Map.empty,Map.empty) tp allAttrDecls
    mkRule ref outFld locAttrs
      = let locs = filter (not . existsLoc) locAttrs
            outAttr = attr outFld ref
            defs = (if hasOut then [] else [outAttr]) ++ [attr _LOC u | u <- locs ]
            pat = Product noPos defs
            rhs = Expression noPos $ wrap ref $ foldr gencase (finalout hasOut locs) locs
                     -- [HsToken ("mkUniques" ++ show (length locAttrs) ++ " ") noPos, AGField _LHS ref noPos Nothing]
            rul = Rule Nothing pat rhs False "-- generated by the unique rule mechanism." False True False Nothing False
            hasOut = exists outAttr
            exists (Alias fld a _) = (fld,a) `elem` attrDefs
            exists _ = False
            existsLoc nm = exists (attr _LOC nm)
        in rul
    attr fld a = Alias fld a (Underscore noPos)
    gencase nm outp
      = h ("case " ++ uniqueDispenser opts ++ " __cont of { (__cont, " ++ getName nm ++ ") -> ") ++ outp ++ h "}"
    h s = [HsToken s noPos]
    finalout noGenCont us = h ("(" ++ concat (intersperse "," ( (if noGenCont then [] else ["__cont"]) ++ map getName us)) ++ ")")
    wrap ref inp = h "let __cont = " ++ [AGField _LHS ref noPos Nothing] ++ h " in seq __cont ( " ++ inp ++ h " )"
}


-------------------------------------------------------------------------------
--         Checking RHSs of rules (optional)
-------------------------------------------------------------------------------

SEM SemDef | Def MergeDef
  lhs.errors = if checkParseRhs @lhs.options
               then Seq.fromList $ checkRhs @rhs
               else Seq.empty

-- type of a type signature

SEM SemDef | TypeDef
  lhs.errors = if checkParseTy @lhs.options
               then case @tp of
                      Haskell s -> let ex  = Expression @pos tks
                                       tks = [tk]
                                       tk  = HsToken s @pos
                                   in Seq.fromList $ checkTy ex
                      _ -> Seq.empty
               else Seq.empty

-------------------------------------------------------------------------------
--         Collecting fields
-------------------------------------------------------------------------------

ATTR Fields Field [ | | collectedFields USE {++} {[]} : {[(Identifier, Type)]} ]

SEM Field | FChild
  lhs.collectedFields = [(@name, makeType @lhs.allNonterminals @tp)]

-------------------------------------------------------------------------------
--         Collecting constraints
-------------------------------------------------------------------------------

ATTR Fields Field [ | | collectedConstraints USE {++} {[]} : {[Type]} ]

SEM Field | FCtx
  lhs.collectedConstraints = @tps

-------------------------------------------------------------------------------
--         Collecting Set names and Nonterminal names
-------------------------------------------------------------------------------



SEM Elem
  | Set  lhs.collectedSetNames = Set.singleton @name

SEM Elem
  | Type  lhs.collectedNames = Set.singleton @name

SEM NontSet
  | NamedSet lhs.collectedNames = Set.singleton @name

SEM AG
  | AG   loc.allNonterminals = @elems.collectedNames `Set.difference` @elems.collectedSetNames






SEM ConstructorSet
  | CName lhs.collectedConstructorNames = Set.singleton @name

--SEM Alt
--  | Alt lhs.collectedConstructorNames = Set.singleton @name

SEM Elem
  | Data  lhs.collectedConstructorsMap = Map.fromList
                                         [ (n, @alts.collectedConstructorNames)
                                         | n <- Set.toList @names.nontSet
                                         ]

SEM AG
  | AG elems.allConstructors = @elems.collectedConstructorsMap



-------------------------------------------------------------------------------
--          Type synonyms
-------------------------------------------------------------------------------

{- At the moment type synonyms are only supported for list types
   This means that only synonyms of the form:
      TYPE <NT> = [ <TP> ]
   are allowed
-}


ATTR Elem Elems [ | | typeSyns USE {++} {[]} : {TypeSyns} ]

{- Put this synonym in the typeSyns list and
   add the implicit Cons and Nil productions for the type synonym

   A synonym of the form:
        TYPE <NT> = [ <TP> ]
   is translated into:
       DATA <NT> | Cons hd:<TP> tl:<NT>
                 | Nil
-}

SEM Elem
  | Type  loc.expanded       = case @argType of
                                       List tp -> [(Ident "Cons" @pos, [(Ident "hd" @pos, tp)
                                                                       ,(Ident "tl" @pos, NT @name (map getName @params) False)
                                                                       ]
                                                   )
                                                  ,(Ident "Nil" @pos,  [])
                                                  ]
                                       Maybe tp -> [(Ident "Just" @pos, [(Ident "just" @pos, tp)
                                                                       ]
                                                   )
                                                  ,(Ident "Nothing" @pos,  [])
                                                  ]
                                       Either tp1 tp2 -> [
                                                    (Ident "Left"    @pos,  [(Ident "left"  @pos, tp1) ])
                                                  , (Ident "Right"   @pos,  [(Ident "right" @pos, tp2) ])
                                                  ]
                                       Map tp1 tp2 -> [ (Ident "Entry" @pos, [ (Ident "key" @pos, tp1)
                                                                             , (Ident "val" @pos, tp2)
                                                                             , (Ident "tl" @pos, NT @name (map getName @params) False)
                                                                             ])
                                                      , (Ident "Nil" @pos, [])
                                                      ]
                                       IntMap tp   -> [ (Ident "Entry" @pos, [ (Ident "key" @pos, Haskell "Int")
                                                                             , (Ident "val" @pos, tp)
                                                                             , (Ident "tl" @pos, NT @name (map getName @params) False)
                                                                             ])
                                                      , (Ident "Nil" @pos, [])
                                                      ]
                                       OrdSet tp   -> [ (Ident "Entry" @pos, [ (Ident "val" @pos, tp)
                                                                             , (Ident "tl" @pos, NT @name (map getName @params) False) ])
                                                      , (Ident "Nil" @pos, [])
                                                      ]
                                       IntSet      -> [ (Ident "Entry" @pos, [ (Ident "val" @pos, Haskell "Int")
                                                                             , (Ident "tl" @pos, NT @name (map getName @params) False) ])
                                                      , (Ident "Nil" @pos, [])
                                                      ]
                                       Tuple xs -> [(Ident "Tuple" @pos, xs)]
          loc.argType        = case @type of
                                Maybe tp       -> Maybe  (  makeType @lhs.allNonterminals tp)
                                Either tp1 tp2 -> Either (  makeType @lhs.allNonterminals tp1) (makeType @lhs.allNonterminals tp2)
                                List tp        -> List   (  makeType @lhs.allNonterminals tp)
                                Tuple xs       -> Tuple [(f,makeType @lhs.allNonterminals tp) | (f,tp) <- xs]
                                Map tp1 tp2    -> Map    (  makeType @lhs.allNonterminals tp1) (makeType @lhs.allNonterminals tp2)
                                IntMap tp      -> IntMap (  makeType @lhs.allNonterminals tp)
                                OrdSet tp      -> OrdSet (  makeType @lhs.allNonterminals tp)
                                IntSet         -> IntSet
          lhs.typeSyns       = [(@name,@argType)]

-------------------------------------------------------------------------------
--         Interpreting Nonterminal sets
-------------------------------------------------------------------------------


SEM AG
  | AG
       elems.defSets     = Map.fromList (map (\x->(x,(Set.singleton x, Set.empty))) (Set.toList @loc.allNonterminals))
       elems.definedSets = Map.map fst @elems.defSets


SEM Elem
  | Set loc.(defSets2,errs) = let allUsedNames = Set.unions [ maybe (Set.singleton n)
                                                                    snd
                                                                    (Map.lookup n @lhs.defSets)
                                                            | n <- Set.toList @set.collectedNames
                                                            ]
                                  (nontSet,e1) | Set.member @name allUsedNames
                                                           = (Set.empty, Seq.singleton(CyclicSet @name))
                                               | otherwise = (@set.nontSet, Seq.empty)
                                  (res, e2) = let toAdd = (nontSet,Set.insert @name allUsedNames)
                                                  un (a,b) (c,d) = (a `Set.union` c, b `Set.union` d)
                                              in if Set.member @name @lhs.allNonterminals || not @merge
                                                 then checkDuplicate DupSet @name toAdd @lhs.defSets
                                                 else (Map.insertWith un @name toAdd @lhs.defSets, Seq.empty)
                              in (res, e1 Seq.>< e2)
        lhs.defSets         = @defSets2
           .errors          = @errs >< @set.errors

SEM NontSet
  | All        lhs.nontSet = @lhs.allNonterminals
  | NamedSet   loc.(nontSet,errors) = case Map.lookup @name @lhs.definedSets of
                                                   Nothing  -> (Set.empty, Seq.singleton (UndefNont @name))
                                                   Just set -> (set, Seq.empty)
  | Union      lhs.nontSet = Set.union         @set1.nontSet @set2.nontSet
  | Intersect  lhs.nontSet = Set.intersection  @set1.nontSet @set2.nontSet
  | Difference lhs.nontSet = Set.difference    @set1.nontSet @set2.nontSet
  | Path       lhs.nontSet = let table = flattenDatas @lhs.allFields
                             in path table @from @to
               lhs.errors = let check name | Set.member name @lhs.allNonterminals
                                                       = Seq.empty
                                           | otherwise = Seq.singleton (UndefNont name)
                            in check @from >< check @to


{
flattenDatas :: DataTypes -> Map NontermIdent (Set NontermIdent)
flattenDatas ds = Map.map flatten ds
  where flatten cs =  Set.fromList [ nt | (_, NT nt _ _) <- concatMap snd (Map.toList cs)]

reachableFrom :: Map NontermIdent (Set NontermIdent) -> Set NontermIdent -> Set NontermIdent
reachableFrom table = reach
  where reach nts = let nts' = Set.unions (nts : [ ns  | nt <- Set.toList nts
                                                 , let ns = Map.findWithDefault Set.empty nt table ])
                    in if Set.size nts' > Set.size nts
                          then reach nts'
                          else nts
invert :: Map NontermIdent (Set NontermIdent) -> Map NontermIdent (Set NontermIdent)
invert = foldr inv Map.empty . Map.toList
  where inv (x,ns) m = fold (\n m' -> Map.insertWith Set.union n (Set.singleton x) m') m ns

path :: Map NontermIdent (Set NontermIdent) -> NontermIdent -> NontermIdent -> Set NontermIdent
path table from to = let children = Map.findWithDefault Set.empty from table
                         forward  = reachableFrom table children
                         backward = reachableFrom (invert table)
                                                  (Set.singleton to)
                     in  Set.intersection forward backward
}

-------------------------------------------------------------------------------
--   Interpreting Constructor Sets
-------------------------------------------------------------------------------


SEM ConstructorSet
  | CName       lhs.constructors = \_  -> Set.singleton @name
  | CUnion      lhs.constructors = \ds -> @set1.constructors ds `Set.union`      @set2.constructors ds
  | CDifference lhs.constructors = \ds -> @set1.constructors ds `Set.difference` @set2.constructors ds
  | CAll        lhs.constructors = \ds -> ds

-------------------------------------------------------------------------------
--         Collecting wrappers
-------------------------------------------------------------------------------

ATTR Elem Elems [ | | wrappers USE {`Set.union`} {Set.empty} :{Set NontermIdent}]

SEM Elem
  | Wrapper lhs.wrappers = @set.nontSet

-------------------------------------------------------------------------------
--         Collecting nocatas
-------------------------------------------------------------------------------

SEM Elem
  | Nocatas  lhs.pragmas = \o -> o { nocatas = @set.nontSet `Set.union` nocatas o }

-------------------------------------------------------------------------------
--         Collecting pragmas
-------------------------------------------------------------------------------

ATTR AG Elem Elems [ | | pragmas USE {.} {id} :{Options -> Options}]

SEM Elem
  | Pragma  lhs.pragmas = let mk n o = case getName n of
                                         "gencatas"     -> o { folds       = True  }
                                         "nogencatas"   -> o { folds       = False }
                                         "gendatas"     -> o { dataTypes   = True  }
                                         "datarecords"  -> o { dataRecords = True  }
                                         "nogendatas"   -> o { dataTypes   = False }
                                         "gensems"      -> o { semfuns     = True  }
                                         "nogensems"    -> o { semfuns     = False }
                                         "gentypesigs"  -> o { typeSigs    = True  }
                                         "nogentypesigs"-> o { typeSigs    = False }
                                         "nocycle"      -> o { withCycle   = False, loag = False }
                                         "cycle"        -> o { withCycle   = True  }
                                         "nostrictdata" -> o { strictData  = False }
                                         "strictdata"   -> o { strictData  = True  }
                                         "nostrictcase" -> o { strictCases = False }
                                         "strictcase"   -> o { strictCases = True  }
                                         "strictercase" -> o { strictCases = True, stricterCases = True }
                                         "nostrictwrap" -> o { strictWrap  = False }
                                         "strictwrap"   -> o { strictWrap  = True  }
                                         "novisit"      -> o { visit       = False, loag = False }
                                         "visit"        -> o { visit       = True  }
                                         "nocase"       -> o { cases       = False }
                                         "case"         -> o { cases       = True  }
                                         "noseq"        -> o { withSeq     = False }
                                         "seq"          -> o { withSeq     = True  }
                                         "nounbox"      -> o { unbox       = False }
                                         "unbox"        -> o { unbox       = True  }
                                         "bangpats"     -> o { bangpats    = True  }
                                         "breadthfirst" -> o { breadthFirst = True }
                                         "breadthfirstStrict" -> o { breadthFirstStrict = True }
                                         "nooptimize"   -> o { cases = False , visit = False }
                                         "optimize"     -> o { cases = True  , visit = True  }
                                         "strictsem"    -> o { strictSems = True }
                                         "gentraces"    -> o { genTraces = True }
                                         "genusetraces" -> o { genUseTraces = True }
                                         "splitsems"    -> o { splitSems = True }
                                         "gencostcentres" -> o { genCostCentres = True }
                                         "sepsemmods"   -> sepSemModsOpt o
                                         "genlinepragmas" -> o { genLinePragmas = True }
                                         "newtypes"       -> o { newtypes = True }
                                         "nonewtypes"     -> o { newtypes = False }
                                         "nooptimizations" -> o { noOptimizations = True }
                                         "kennedywarren"   -> o { kennedyWarren = True }
                                         "aspectag"        -> o { genAspectAG = True }
                                         'n':'o':'g':'r':'o':'u':'p':'_':atts
                                                           -> o { noGroup =  extract atts  ++ noGroup o }
                                         "rename"          -> o { rename = True }
                                         "parallel"        -> o { parallelInvoke = True }
                                         "monadicwrappers" -> o { monadicWrappers = True }

                                         "dummytokenvisit" -> o { dummyTokenVisit = True }
                                         "tupleasdummytoken" -> o { tupleAsDummyToken = True }
                                         "stateasdummytoken" -> o { tupleAsDummyToken = False }
                                         "strictdummytoken" -> o { strictDummyToken = True }
                                         "noperruletypesigs" -> o { noPerRuleTypeSigs = True }
                                         "noperstatetypesigs" -> o { noPerStateTypeSigs = True }
                                         "noeagerblackholing" -> o { noEagerBlackholing = True }
                                         "noperrulecostcentres" -> o { noPerRuleCostCentres = True }
                                         "nopervisitcostcentres" -> o { noPerVisitCostCentres = True }
                                         "helpinlining" -> o { helpInlining = True }
                                         "noinlinepragmas" -> o { noInlinePragmas = True }
                                         "aggressiveinlinepragmas" -> o { aggressiveInlinePragmas = True }
                                         "latehigherorderbindings" -> o { lateHigherOrderBinding = True }
                                         "ocaml"                   -> ocamlOpt o
                                         "cleanlang"               -> cleanOpt o

                                         s              -> trace ("uuagc: ignoring unknown pragma: " ++ s) o
                          in \o -> foldr mk o @names

{
extract :: String -> [String]
extract s = case dropWhile isSeparator s of
                                "" -> []
                                s' -> w : extract s''
                                      where (w, s'') = break isSeparator  s'
isSeparator :: Char -> Bool
isSeparator x = x == '_'
}

ATTR Elem Elems SemAlts SemAlt [ | | semPragmasCollect USE {`pragmaMapUnion`} {Map.empty} : {PragmaMap} ]

SEM SemAlt
  | SemAlt
      loc.pragmaNames       = Set.fromList @rules.pragmaNamesCollect
      lhs.semPragmasCollect = foldr pragmaMapUnion Map.empty [ pragmaMapSingle nt con @loc.pragmaNames
                                                             | (nt, conset, _) <- @loc.coninfo
                                                             , con <- Set.toList conset
                                                             ]

ATTR SemDefs SemDef [ | | pragmaNamesCollect USE {++} {[]} : {[Identifier]} ]

SEM SemDef
  | SemPragma
      lhs.pragmaNamesCollect = @names

{
pragmaMapUnion :: PragmaMap -> PragmaMap -> PragmaMap
pragmaMapUnion = Map.unionWith (Map.unionWith Set.union)

pragmaMapSingle :: NontermIdent -> ConstructorIdent -> Set Identifier -> PragmaMap
pragmaMapSingle nt con nms = Map.singleton nt (Map.singleton con nms)
}

-------------------------------------------------------------------------------
--         Collecting attribute orders
-------------------------------------------------------------------------------

ATTR Elem Elems SemAlts SemAlt [ | | attrOrderCollect USE {`orderMapUnion`} {Map.empty} : {AttrOrderMap} ]
ATTR Elem Elems SemAlts SemAlt [ allAttrDecls : {Map NontermIdent (Attributes, Attributes)} | | ]

SEM SemAlt
  | SemAlt
      loc.attrOrders
        = [ orderMapSingle nt con @rules.orderDepsCollect
          | (nt, conset, _) <- @loc.coninfo
          , con <- Set.toList conset
          ]

      lhs.attrOrderCollect = foldr orderMapUnion Map.empty @loc.attrOrders

ATTR SemDefs SemDef [ | | orderDepsCollect USE {`Set.union`} {Set.empty} : {Set Dependency} ]

SEM SemDef
  | AttrOrderBefore
      loc.dependency       = [ Dependency b a | b <- @before, a <- @after ]
      lhs.orderDepsCollect = Set.fromList @loc.dependency

{
orderMapUnion :: AttrOrderMap -> AttrOrderMap -> AttrOrderMap
orderMapUnion = Map.unionWith (Map.unionWith Set.union)

orderMapSingle :: NontermIdent -> ConstructorIdent -> Set Dependency -> AttrOrderMap
orderMapSingle nt con deps = Map.singleton nt (Map.singleton con deps)
}

-------------------------------------------------------------------------------
--         Collecting nonterminal type parameters
-------------------------------------------------------------------------------

ATTR Elem Elems [ | | paramsCollect USE {`mergeParams`} {Map.empty} : {ParamMap}]

SEM Elem
  | Data
      lhs.paramsCollect = if null @params
                          then Map.empty
                          else Map.fromList [(nt, @params) | nt <- Set.toList @names.nontSet]

SEM Elem
  | Type
      lhs.paramsCollect = if null @params
                          then Map.empty
                          else Map.singleton @name @params

{
mergeParams :: ParamMap -> ParamMap -> ParamMap
mergeParams = Map.unionWith (++)
}

-------------------------------------------------------------------------------
--         Collecting class contexts of semantic functions
-------------------------------------------------------------------------------

ATTR Elem Elems [ | | ctxCollect USE {`mergeCtx`} {Map.empty} : {ContextMap}]

SEM Elem
  | Sem Data Attr
      lhs.ctxCollect = if null @ctx
                       then Map.empty
                       else Map.fromList [(nt, @ctx) | nt <- Set.toList @names.nontSet]

SEM Elem
  | Type
      lhs.ctxCollect = if null @ctx
                       then Map.empty
                       else Map.singleton @name @ctx

{
mergeCtx :: ContextMap -> ContextMap -> ContextMap
mergeCtx
  = Map.unionWith nubconcat
  where nubconcat a b = nub (a ++ b)
}

-------------------------------------------------------------------------------
--         Collecting quantifiers of semantic functions
-------------------------------------------------------------------------------

ATTR Elem Elems [ | | quantCollect USE {`mergeQuant`} {Map.empty} : {QuantMap}]

SEM Elem
  | Sem Attr
      lhs.quantCollect = if null @quants
                         then Map.empty
                         else Map.fromList [(nt, @quants) | nt <- Set.toList @names.nontSet]

{
mergeQuant :: QuantMap -> QuantMap -> QuantMap
mergeQuant = Map.unionWith (++)
}

-------------------------------------------------------------------------------
--         Collecting derivings
-------------------------------------------------------------------------------

ATTR Elem Elems [ | | derivings USE {`mergeDerivings`} {Map.empty} :{Derivings}]

{
mergeDerivings :: Derivings -> Derivings -> Derivings
mergeDerivings m1 m2 = foldr (\(n,cs) m -> Map.insertWith Set.union n cs m) m2 (Map.toList m1)
}

SEM Elem
  | Deriving lhs.derivings = Map.fromList [(nt,Set.fromList @classes) | nt <- Set.toList @set.nontSet]

-------------------------------------------------------------------------------
--         Collecting ATTR declarations
-------------------------------------------------------------------------------

{
merge ::(Ord k, Ord k1) => Map k (Map k1 a) -> Map k (Map k1 a) -> Map k (Map k1 a)
merge x y = foldr f y (Map.toList x)
 where f ~(k,v) m = Map.insertWith (Map.union) k v m
}

SEM AG
  | AG elems.attrDecls = Map.empty

SEM Elem
  | Data attrs.nts = @names.nontSet
  | Attr attrs.nts = @names.nontSet
  | Sem  attrs.nts = @names.nontSet


SEM Attrs [ nts:{Set NontermIdent} | | ]
  | Attrs loc.(attrDecls,errors) = checkAttrs @lhs.allFields (Set.toList @lhs.nts) @inherited @synthesized @lhs.attrDecls

             .(inherited,synthesized,useMap) = let splitAttrs xs = unzip [ ((n,makeType @lhs.allNonterminals t),(n,ud))
                                                                         | (n,t,ud) <- xs
                                                                         ]
                                                   (inh,_)     = splitAttrs @inh
                                                   (chn,uses1) = splitAttrs @chn
                                                   (syn,uses2) = splitAttrs @syn
                                                   isUse (_,(e1,e2,_)) = not (null e1 || null e2)
                                               in (inh++chn,chn++syn, Map.fromList (Prelude.filter isUse (uses1++uses2)))
          lhs.useMap = Map.fromList (zip (Set.toList @lhs.nts) (repeat @useMap))

          loc.errors1 = if checkParseTy @lhs.options
                        then let attrs  = @inh ++ @syn ++ @chn
                                 items = map (\(ident,tp,_) -> (getPos ident, tp)) attrs
                                 errs  = map check items
                                 check (pos,Haskell s) =
                                   let ex  = Expression pos tks
                                       tks = [tk]
                                       tk  = HsToken s pos
                                   in Seq.fromList $ checkTy ex
                                 check _ = Seq.empty
                             in foldr (Seq.><) Seq.empty errs
                        else Seq.empty
          lhs.errors = @loc.errors Seq.>< @loc.errors1


{
checkAttrs :: DataTypes -> [NontermIdent] -> [(Identifier, a)] -> [(Identifier, b)] -> Map NontermIdent (Map Identifier a, Map Identifier b) -> (Map NontermIdent (Map Identifier a, Map Identifier b), Seq Error)
checkAttrs allFields nts inherited synthesized decls' = foldErrors check decls' nts where
  check nt decls | not (nt `Map.member` allFields) = (decls,Seq.singleton(UndefNont nt))
                 | otherwise = let (inh,syn) = Map.findWithDefault (Map.empty,Map.empty) nt decls
                                   (inh',einh) = checkDuplicates (DupInhAttr nt) inherited   inh
                                   (syn',esyn) = checkDuplicates (DupSynAttr nt) synthesized syn
                               in (Map.insert nt (inh',syn') decls,einh >< esyn)
}


-- Add declaration of self-attribute for each nonterminal: ATTR <nt> [ | | self:SELF]
{
addSelf :: Ord k1 => k1 -> Map k1 (Map k a, Attributes) -> Map k1 (Map k a, Attributes)
addSelf name atMap = let (eInh,eSyn) = Map.findWithDefault(Map.empty,Map.empty) name atMap
                     in  Map.insert name (eInh, Map.insert (Ident "self" noPos) Self eSyn)atMap
}


SEM AG
  | AG  loc.allAttrDecls = if withSelf @lhs.options
                            then foldr addSelf @elems.attrDecls (Set.toList @loc.allNonterminals)
                            else               @elems.attrDecls

-------------------------------------------------------------------------------
--         Collecting rules
-------------------------------------------------------------------------------


ATTR SemDef SemDefs [ | | ruleInfos    USE {++} {[]} : {[RuleInfo]}
                          sigInfos     USE {++} {[]} : {[SigInfo]}
                          uniqueInfos  USE {++} {[]} : {[UniqueInfo]}
                          augmentInfos USE {++} {[]} : {[AugmentInfo]}
                          aroundInfos  USE {++} {[]} : {[AroundInfo]}
                          mergeInfos   USE {++} {[]} : {[MergeInfo]}
                    ]


SEM SemAlt
  | SemAlt loc.coninfo = [ (nt, conset, conkeys)
                         | nt  <- Set.toList @lhs.nts
                         , let conmap = Map.findWithDefault Map.empty nt @lhs.allFields
                         , let conkeys = Set.fromList (Map.keys conmap)
                         , let conset  = @constructorSet.constructors conkeys
                         ]

           lhs.errors = Seq.fromList
                           [ UndefAlt nt con
                           | (nt, conset, conkeys) <- @loc.coninfo
                           , con <- Set.toList (Set.difference conset conkeys)
                           ]
                        Seq.>< @rules.errors
           lhs.collectedRules
               =       [ (nt,con,r)
                       | (nt, conset, _) <- @loc.coninfo
                       , con <- Set.toList conset
                       , r <- @rules.ruleInfos
                       ]
           lhs.collectedSigs
               =       [ (nt,con,ts)
                       | (nt, conset, _) <- @loc.coninfo
                       , con <- Set.toList conset
                       , ts <- @rules.sigInfos
                       ]

           lhs.collectedInsts
               =       [ (nt,con,@rules.definedInsts)
                       | (nt, conset, _) <- @loc.coninfo
                       , con <- Set.toList conset
                       ]

           lhs.collectedUniques
               =       [ (nt,con,@rules.uniqueInfos)
                       | (nt, conset, _) <- @loc.coninfo
                       , con <- Set.toList conset
                       ]

           lhs.collectedAugments
              =        [ (nt, con, @rules.augmentInfos)
                       | (nt, conset, _) <- @loc.coninfo
                       , con <- Set.toList conset
                       ]

           lhs.collectedArounds
              =        [ (nt, con, @rules.aroundInfos)
                       | (nt, conset, _) <- @loc.coninfo
                       , con <- Set.toList conset
                       ]

           lhs.collectedMerges
             =         [ (nt, con, @rules.mergeInfos)
                       | (nt, conset, _) <- @loc.coninfo
                       , con <- Set.toList conset
                       ]

SEM SemDef
  | Def  lhs.ruleInfos = [ (@mbName, @pattern.patunder, @rhs, @pattern.definedAttrs, @owrt, show @pattern.stpos, @pure, @eager) ]

SEM SemDef
  | TypeDef  lhs.sigInfos = [ (@ident, @tp) ]

SEM SemDef
  | UniqueDef  lhs.uniqueInfos = [ (@ident, @ref) ]

SEM SemDef
  | AugmentDef  lhs.augmentInfos = [ (@ident, @rhs) ]

SEM SemDef
  | AroundDef   lhs.aroundInfos = [ (@ident, @rhs) ]

SEM SemDef
  | MergeDef    lhs.mergeInfos = [ (@target, @nt, @sources, @rhs) ]


ATTR SemDef SemDefs Pattern Patterns [|| definedInsts USE {++} {[]} : {[Identifier]} ]
ATTR Pattern Patterns [ | | definedAttrs USE {++} {[]} : {[AttrName]} ]
ATTR Pattern [ | | patunder : {[AttrName]->Pattern} ]
ATTR Patterns [ | | patunder : {[AttrName]->Patterns} ]

SEM Pattern
  | Alias lhs.definedAttrs = (@field, @attr) : @pat.definedAttrs
          lhs.patunder     = \us -> if ((@field,@attr) `elem` us) then Underscore noPos else @copy
          lhs.definedInsts = (if @field == _INST then [@attr] else []) ++ @pat.definedInsts
  | Underscore lhs.patunder = \_ -> @copy
  | Constr lhs.patunder    = \us -> Constr @name (@pats.patunder us)
  | Product lhs.patunder    = \us -> Product @pos (@pats.patunder us)
  | Irrefutable lhs.patunder = \us -> Irrefutable (@pat.patunder us)

SEM Patterns
  | Nil lhs.patunder = \_ ->  []
  | Cons lhs.patunder = \us -> (@hd.patunder us) : (@tl.patunder us)

ATTR Pattern [ | | stpos : Pos ]

SEM Pattern
  | Constr     lhs.stpos = getPos @name
  | Product    lhs.stpos = @pos
  | Alias      lhs.stpos = getPos @field
  | Underscore lhs.stpos = @pos

-------------------------------------------------------------------------------
--         Collect module declaration
-------------------------------------------------------------------------------

ATTR AG Elems Elem [ | | moduleDecl USE {`flipmplus`} {mzero} : {Maybe (String,String,String)} ]

SEM Elem
  | Module
      lhs.moduleDecl = Just (@name, @exports, @imports)

{
-- We want the last Just in the list
flipmplus = flip mplus
}

-------------------------------------------------------------------------------
--         Constructing transformed syntax tree
-------------------------------------------------------------------------------
{
makeType :: Set NontermIdent -> Type -> Type
makeType nts tp@(NT x _ _)   | Set.member x nts = tp
                             | otherwise        = Haskell (typeToHaskellString Nothing [] tp)
makeType _   tp                                 = tp
}
{
constructGrammar ::    Set NontermIdent
                    -> ParamMap
                    -> Map NontermIdent (Map ConstructorIdent (Set Identifier))
                    -> DataTypes
                    -> Map NontermIdent [ConstructorIdent]
                    -> Map NontermIdent (Map ConstructorIdent [Type])
                    -> Map NontermIdent (Attributes, Attributes)
                    -> Map NontermIdent (Map Identifier (String, String, String))
                    -> Derivings
                    -> Set NontermIdent
                    -> Map NontermIdent (Map ConstructorIdent [Rule])
                    -> Map NontermIdent (Map ConstructorIdent [TypeSig])
                    -> Map NontermIdent (Map ConstructorIdent [(Identifier, Type)])
                    -> TypeSyns
                    -> PragmaMap
                    -> AttrOrderMap
                    -> ContextMap
                    -> QuantMap
                    -> UniqueMap
                    -> Map NontermIdent (Map ConstructorIdent (Map Identifier [Expression]))
                    -> Map NontermIdent (Map ConstructorIdent (Map Identifier [Expression]))
                    -> Map NontermIdent (Map ConstructorIdent (Map Identifier (Identifier, [Identifier], Expression)))
                    -> Map NontermIdent (Map ConstructorIdent MaybeMacro)
                    -> Grammar

constructGrammar _ ntParams prodParams gram prodOrder constraints attrs uses derivings wrap allrules tsigs allinsts tsyns pragmaMap orderMap contextMap quantMap uniqueMap augmentsMap aroundsMap mergeMap macros =
   let gr = [ (nt,alts) | (nt,alts) <- Map.toList gram]
       nonts = map nont gr
       nont (nt,alts) =  let (inh,syn) = Map.findWithDefault (Map.empty,Map.empty) nt attrs
                             rmap      = Map.findWithDefault Map.empty             nt allrules
                             tsmap     = Map.findWithDefault Map.empty             nt tsigs
                             instsmap  = Map.findWithDefault Map.empty             nt allinsts
                             params    = Map.findWithDefault []                    nt ntParams
                             mergemap  = Map.findWithDefault Map.empty             nt mergeMap
                             macromap  = Map.findWithDefault Map.empty             nt macros
                             csmap     = Map.findWithDefault Map.empty             nt constraints
                             psmap     = Map.findWithDefault Map.empty             nt prodParams
                             prs       = Map.findWithDefault []                    nt prodOrder
                             alt con   =
                                   let flds    = Map.findWithDefault [] con alts
                                       rules   = Map.findWithDefault [] con rmap
                                       tsigs'  = Map.findWithDefault [] con tsmap
                                       insts   = Map.findWithDefault [] con instsmap
                                       merges  = [ (n, NT t [] False) | (n, (t, _, _)) <- Map.assocs $ maybe Map.empty id (Map.lookup con mergemap) ]
                                       cs      = Map.findWithDefault [] con csmap
                                       ps      = Set.elems $ Map.findWithDefault Set.empty con psmap
                                       mbMacro = Map.findWithDefault Nothing con macromap

                                       -- important: keep order of children
                                       cldrn = map child (flds ++ filter (not . existsAsField) insts ++ merges)
                                       child (nm, tp) =
                                          let tpI = if existsAsInst nm
                                                    then fromJust $ lookup nm insts
                                                    else tp
                                              virt = if existsAsInst nm
                                                     then case lookup nm flds of
                                                            Just tp' -> ChildReplace tp'
                                                            Nothing  -> ChildAttr
                                                     else if existsAsMerge nm
                                                          then ChildAttr
                                                          else ChildSyntax
                                          in Child nm tpI virt
                                       existsAsInst nm = maybe False (const True) (lookup nm insts)
                                       existsAsField (nm,_) = maybe False (const True) (lookup nm flds)
                                       existsAsMerge nm = maybe False (const True) (lookup nm merges)
                                   in Production con ps cs cldrn rules tsigs' mbMacro
                            in Nonterminal nt params inh syn (map alt prs)
   in Grammar tsyns uses derivings wrap nonts pragmaMap orderMap ntParams contextMap quantMap uniqueMap augmentsMap aroundsMap mergeMap
}

{
mapUnionWithSetUnion :: Map NontermIdent (Set ConstructorIdent) -> Map NontermIdent (Set ConstructorIdent) -> Map NontermIdent (Set ConstructorIdent)
mapUnionWithSetUnion = Map.unionWith Set.union
mapUnionWithPlusPlus :: Map BlockInfo [a] -> Map BlockInfo [a] -> Map BlockInfo [a]
mapUnionWithPlusPlus = Map.unionWith (++)
}


--marcos
-------------------------------------------------------------------------------
--         Collecting Macro information
-------------------------------------------------------------------------------

ATTR Alt Alts Elem Elems
     [ | | collectedMacros USE {++} {[]} : {[(NontermIdent, ConstructorIdent, MaybeMacro)]}]


SEM Alt
  | Alt  lhs.collectedMacros  =       [ (nt, con, @macro)
                                      | nt  <- Set.toList @lhs.nts
                                      , con <- Set.toList (@names.constructors (Map.findWithDefault Set.empty nt @lhs.allConstructors))
                                      ]


SEM AG
  | AG

         loc.allMacros   = let f (nt,con,m) = Map.insertWith (Map.union) nt (Map.singleton con m)
                           in  foldr f (Map.empty) @elems.collectedMacros


-------------------------------------------------------------------------------
--         Collecting the AGI information
-------------------------------------------------------------------------------

ATTR AG [ | | agi : {(Set NontermIdent, DataTypes, Map NontermIdent (Attributes, Attributes))} ]

ATTR Elem Elems SemAlts SemAlt [ allAttrs : {Map NontermIdent (Attributes, Attributes)} | | ]

SEM AG
  | AG lhs.agi      = (@loc.allNonterminals,@loc.allFields,@loc.allAttrs)

       loc.allAttrs =  if withSelf @lhs.options
                            then foldr addSelf @elems.attrs (Set.toList @loc.allNonterminals)
                            else               @elems.attrs

ATTR Elems Elem Attrs
     [ | attrs : {Map NontermIdent (Attributes, Attributes)} | ]

SEM AG
  | AG  elems.attrs = Map.empty


SEM Attrs
  | Attrs lhs.attrs =   let ins decls nt = if Map.member nt decls
                                           then  Map.update (\(inh,syn) -> Just ( Map.union inh $ Map.fromList @inherited
                                                                                     , Map.union syn $ Map.fromList @synthesized)) nt decls
                                           else  Map.insert nt (Map.fromList @inherited, Map.fromList @synthesized) decls

                        in  foldl ins @lhs.attrs (Set.toList @lhs.nts)


-------------------------------------------------------------------------------
--         Collecting the data type information
-------------------------------------------------------------------------------

ATTR AG Elems Elem
  [ | | constructorTypeMap USE {`Map.union`} {Map.empty} : {Map NontermIdent ConstructorType} ]
  
SEM Elem
  | Data lhs.constructorTypeMap = Set.fold (\nm mp -> Map.insert nm @contype mp) Map.empty @names.collectedNames