1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
|
{-# LANGUAGE Rank2Types, GADTs #-}
{-# LANGUAGE ScopedTypeVariables #-}
module PrintVisitCode where
{-# LINE 2 "src-ag/DeclBlocks.ag" #-}
import Code (Decl,Expr)
{-# LINE 9 "src-generated/PrintVisitCode.hs" #-}
{-# LINE 2 "src-ag/Patterns.ag" #-}
-- Patterns.ag imports
import UU.Scanner.Position(Pos)
import CommonTypes (ConstructorIdent,Identifier)
{-# LINE 16 "src-generated/PrintVisitCode.hs" #-}
{-# LINE 2 "src-ag/CodeSyntax.ag" #-}
import Patterns
import CommonTypes
import Data.Map(Map)
import Data.Set(Set)
{-# LINE 24 "src-generated/PrintVisitCode.hs" #-}
{-# LINE 10 "src-ag/PrintVisitCode.ag" #-}
import CommonTypes
import SequentialTypes
import Options
import CodeSyntax
import ErrorMessages
import GrammarInfo
import DeclBlocks
import Pretty
import qualified Data.Map as Map
import Data.Map(Map)
import qualified Data.Set as Set
import Data.Set(Set)
import qualified Data.Sequence as Seq
import Data.Sequence(Seq)
import UU.Scanner.Position
import Data.List(partition,intersperse,intersect,(\\))
import Data.Maybe(fromJust,isJust)
{-# LINE 47 "src-generated/PrintVisitCode.hs" #-}
import Control.Monad.Identity (Identity)
import qualified Control.Monad.Identity
{-# LINE 32 "src-ag/PrintVisitCode.ag" #-}
type PP_Docs = [PP_Doc]
ppMultiSeqH :: [PP_Doc] -> PP_Doc -> PP_Doc
ppMultiSeqH = ppMultiSeq' (>#<)
ppMultiSeqV :: [PP_Doc] -> PP_Doc -> PP_Doc
ppMultiSeqV = ppMultiSeq' (>-<)
ppMultiSeq' :: (PP_Doc -> PP_Doc -> PP_Doc) -> [PP_Doc] -> PP_Doc -> PP_Doc
ppMultiSeq' next strictArgs expr
= foldr (\v r -> (v >#< "`seq`") `next` pp_parens r) expr strictArgs
{-# LINE 63 "src-generated/PrintVisitCode.hs" #-}
-- CGrammar ----------------------------------------------------
-- wrapper
data Inh_CGrammar = Inh_CGrammar { options_Inh_CGrammar :: (Options) }
data Syn_CGrammar = Syn_CGrammar { output_Syn_CGrammar :: (PP_Docs) }
{-# INLINABLE wrap_CGrammar #-}
wrap_CGrammar :: T_CGrammar -> Inh_CGrammar -> (Syn_CGrammar )
wrap_CGrammar (T_CGrammar act) (Inh_CGrammar _lhsIoptions) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg1 = T_CGrammar_vIn1 _lhsIoptions
(T_CGrammar_vOut1 _lhsOoutput) <- return (inv_CGrammar_s2 sem arg1)
return (Syn_CGrammar _lhsOoutput)
)
-- cata
{-# INLINE sem_CGrammar #-}
sem_CGrammar :: CGrammar -> T_CGrammar
sem_CGrammar ( CGrammar typeSyns_ derivings_ wrappers_ nonts_ pragmas_ paramMap_ contextMap_ quantMap_ aroundsMap_ mergeMap_ multivisit_ ) = sem_CGrammar_CGrammar typeSyns_ derivings_ wrappers_ ( sem_CNonterminals nonts_ ) pragmas_ paramMap_ contextMap_ quantMap_ aroundsMap_ mergeMap_ multivisit_
-- semantic domain
newtype T_CGrammar = T_CGrammar {
attach_T_CGrammar :: Identity (T_CGrammar_s2 )
}
newtype T_CGrammar_s2 = C_CGrammar_s2 {
inv_CGrammar_s2 :: (T_CGrammar_v1 )
}
data T_CGrammar_s3 = C_CGrammar_s3
type T_CGrammar_v1 = (T_CGrammar_vIn1 ) -> (T_CGrammar_vOut1 )
data T_CGrammar_vIn1 = T_CGrammar_vIn1 (Options)
data T_CGrammar_vOut1 = T_CGrammar_vOut1 (PP_Docs)
{-# NOINLINE sem_CGrammar_CGrammar #-}
sem_CGrammar_CGrammar :: (TypeSyns) -> (Derivings) -> (Set NontermIdent) -> T_CNonterminals -> (PragmaMap) -> (ParamMap) -> (ContextMap) -> (QuantMap) -> (Map NontermIdent (Map ConstructorIdent (Set Identifier))) -> (Map NontermIdent (Map ConstructorIdent (Map Identifier (Identifier,[Identifier])))) -> (Bool) -> T_CGrammar
sem_CGrammar_CGrammar _ _ _ arg_nonts_ _ _ _ _ _ _ _ = T_CGrammar (return st2) where
{-# NOINLINE st2 #-}
st2 = let
v1 :: T_CGrammar_v1
v1 = \ (T_CGrammar_vIn1 _lhsIoptions) -> ( let
_nontsX11 = Control.Monad.Identity.runIdentity (attach_T_CNonterminals (arg_nonts_))
(T_CNonterminals_vOut10 ) = inv_CNonterminals_s11 _nontsX11 (T_CNonterminals_vIn10 )
_lhsOoutput :: PP_Docs
_lhsOoutput = rule0 ()
__result_ = T_CGrammar_vOut1 _lhsOoutput
in __result_ )
in C_CGrammar_s2 v1
{-# INLINE rule0 #-}
{-# LINE 53 "src-ag/PrintVisitCode.ag" #-}
rule0 = \ (_ :: ()) ->
{-# LINE 53 "src-ag/PrintVisitCode.ag" #-}
[]
{-# LINE 113 "src-generated/PrintVisitCode.hs" #-}
-- CInterface --------------------------------------------------
-- wrapper
data Inh_CInterface = Inh_CInterface { }
data Syn_CInterface = Syn_CInterface { }
{-# INLINABLE wrap_CInterface #-}
wrap_CInterface :: T_CInterface -> Inh_CInterface -> (Syn_CInterface )
wrap_CInterface (T_CInterface act) (Inh_CInterface ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg4 = T_CInterface_vIn4
(T_CInterface_vOut4 ) <- return (inv_CInterface_s5 sem arg4)
return (Syn_CInterface )
)
-- cata
{-# INLINE sem_CInterface #-}
sem_CInterface :: CInterface -> T_CInterface
sem_CInterface ( CInterface seg_ ) = sem_CInterface_CInterface ( sem_CSegments seg_ )
-- semantic domain
newtype T_CInterface = T_CInterface {
attach_T_CInterface :: Identity (T_CInterface_s5 )
}
newtype T_CInterface_s5 = C_CInterface_s5 {
inv_CInterface_s5 :: (T_CInterface_v4 )
}
data T_CInterface_s6 = C_CInterface_s6
type T_CInterface_v4 = (T_CInterface_vIn4 ) -> (T_CInterface_vOut4 )
data T_CInterface_vIn4 = T_CInterface_vIn4
data T_CInterface_vOut4 = T_CInterface_vOut4
{-# NOINLINE sem_CInterface_CInterface #-}
sem_CInterface_CInterface :: T_CSegments -> T_CInterface
sem_CInterface_CInterface arg_seg_ = T_CInterface (return st5) where
{-# NOINLINE st5 #-}
st5 = let
v4 :: T_CInterface_v4
v4 = \ (T_CInterface_vIn4 ) -> ( let
_segX26 = Control.Monad.Identity.runIdentity (attach_T_CSegments (arg_seg_))
(T_CSegments_vOut25 ) = inv_CSegments_s26 _segX26 (T_CSegments_vIn25 )
__result_ = T_CInterface_vOut4
in __result_ )
in C_CInterface_s5 v4
-- CNonterminal ------------------------------------------------
-- wrapper
data Inh_CNonterminal = Inh_CNonterminal { }
data Syn_CNonterminal = Syn_CNonterminal { }
{-# INLINABLE wrap_CNonterminal #-}
wrap_CNonterminal :: T_CNonterminal -> Inh_CNonterminal -> (Syn_CNonterminal )
wrap_CNonterminal (T_CNonterminal act) (Inh_CNonterminal ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg7 = T_CNonterminal_vIn7
(T_CNonterminal_vOut7 ) <- return (inv_CNonterminal_s8 sem arg7)
return (Syn_CNonterminal )
)
-- cata
{-# INLINE sem_CNonterminal #-}
sem_CNonterminal :: CNonterminal -> T_CNonterminal
sem_CNonterminal ( CNonterminal nt_ params_ inh_ syn_ prods_ inter_ ) = sem_CNonterminal_CNonterminal nt_ params_ inh_ syn_ ( sem_CProductions prods_ ) ( sem_CInterface inter_ )
-- semantic domain
newtype T_CNonterminal = T_CNonterminal {
attach_T_CNonterminal :: Identity (T_CNonterminal_s8 )
}
newtype T_CNonterminal_s8 = C_CNonterminal_s8 {
inv_CNonterminal_s8 :: (T_CNonterminal_v7 )
}
data T_CNonterminal_s9 = C_CNonterminal_s9
type T_CNonterminal_v7 = (T_CNonterminal_vIn7 ) -> (T_CNonterminal_vOut7 )
data T_CNonterminal_vIn7 = T_CNonterminal_vIn7
data T_CNonterminal_vOut7 = T_CNonterminal_vOut7
{-# NOINLINE sem_CNonterminal_CNonterminal #-}
sem_CNonterminal_CNonterminal :: (NontermIdent) -> ([Identifier]) -> (Attributes) -> (Attributes) -> T_CProductions -> T_CInterface -> T_CNonterminal
sem_CNonterminal_CNonterminal _ _ _ _ arg_prods_ arg_inter_ = T_CNonterminal (return st8) where
{-# NOINLINE st8 #-}
st8 = let
v7 :: T_CNonterminal_v7
v7 = \ (T_CNonterminal_vIn7 ) -> ( let
_prodsX17 = Control.Monad.Identity.runIdentity (attach_T_CProductions (arg_prods_))
_interX5 = Control.Monad.Identity.runIdentity (attach_T_CInterface (arg_inter_))
(T_CProductions_vOut16 ) = inv_CProductions_s17 _prodsX17 (T_CProductions_vIn16 )
(T_CInterface_vOut4 ) = inv_CInterface_s5 _interX5 (T_CInterface_vIn4 )
__result_ = T_CNonterminal_vOut7
in __result_ )
in C_CNonterminal_s8 v7
-- CNonterminals -----------------------------------------------
-- wrapper
data Inh_CNonterminals = Inh_CNonterminals { }
data Syn_CNonterminals = Syn_CNonterminals { }
{-# INLINABLE wrap_CNonterminals #-}
wrap_CNonterminals :: T_CNonterminals -> Inh_CNonterminals -> (Syn_CNonterminals )
wrap_CNonterminals (T_CNonterminals act) (Inh_CNonterminals ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg10 = T_CNonterminals_vIn10
(T_CNonterminals_vOut10 ) <- return (inv_CNonterminals_s11 sem arg10)
return (Syn_CNonterminals )
)
-- cata
{-# NOINLINE sem_CNonterminals #-}
sem_CNonterminals :: CNonterminals -> T_CNonterminals
sem_CNonterminals list = Prelude.foldr sem_CNonterminals_Cons sem_CNonterminals_Nil (Prelude.map sem_CNonterminal list)
-- semantic domain
newtype T_CNonterminals = T_CNonterminals {
attach_T_CNonterminals :: Identity (T_CNonterminals_s11 )
}
newtype T_CNonterminals_s11 = C_CNonterminals_s11 {
inv_CNonterminals_s11 :: (T_CNonterminals_v10 )
}
data T_CNonterminals_s12 = C_CNonterminals_s12
type T_CNonterminals_v10 = (T_CNonterminals_vIn10 ) -> (T_CNonterminals_vOut10 )
data T_CNonterminals_vIn10 = T_CNonterminals_vIn10
data T_CNonterminals_vOut10 = T_CNonterminals_vOut10
{-# NOINLINE sem_CNonterminals_Cons #-}
sem_CNonterminals_Cons :: T_CNonterminal -> T_CNonterminals -> T_CNonterminals
sem_CNonterminals_Cons arg_hd_ arg_tl_ = T_CNonterminals (return st11) where
{-# NOINLINE st11 #-}
st11 = let
v10 :: T_CNonterminals_v10
v10 = \ (T_CNonterminals_vIn10 ) -> ( let
_hdX8 = Control.Monad.Identity.runIdentity (attach_T_CNonterminal (arg_hd_))
_tlX11 = Control.Monad.Identity.runIdentity (attach_T_CNonterminals (arg_tl_))
(T_CNonterminal_vOut7 ) = inv_CNonterminal_s8 _hdX8 (T_CNonterminal_vIn7 )
(T_CNonterminals_vOut10 ) = inv_CNonterminals_s11 _tlX11 (T_CNonterminals_vIn10 )
__result_ = T_CNonterminals_vOut10
in __result_ )
in C_CNonterminals_s11 v10
{-# NOINLINE sem_CNonterminals_Nil #-}
sem_CNonterminals_Nil :: T_CNonterminals
sem_CNonterminals_Nil = T_CNonterminals (return st11) where
{-# NOINLINE st11 #-}
st11 = let
v10 :: T_CNonterminals_v10
v10 = \ (T_CNonterminals_vIn10 ) -> ( let
__result_ = T_CNonterminals_vOut10
in __result_ )
in C_CNonterminals_s11 v10
-- CProduction -------------------------------------------------
-- wrapper
data Inh_CProduction = Inh_CProduction { }
data Syn_CProduction = Syn_CProduction { }
{-# INLINABLE wrap_CProduction #-}
wrap_CProduction :: T_CProduction -> Inh_CProduction -> (Syn_CProduction )
wrap_CProduction (T_CProduction act) (Inh_CProduction ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg13 = T_CProduction_vIn13
(T_CProduction_vOut13 ) <- return (inv_CProduction_s14 sem arg13)
return (Syn_CProduction )
)
-- cata
{-# INLINE sem_CProduction #-}
sem_CProduction :: CProduction -> T_CProduction
sem_CProduction ( CProduction con_ visits_ children_ terminals_ ) = sem_CProduction_CProduction con_ ( sem_CVisits visits_ ) children_ terminals_
-- semantic domain
newtype T_CProduction = T_CProduction {
attach_T_CProduction :: Identity (T_CProduction_s14 )
}
newtype T_CProduction_s14 = C_CProduction_s14 {
inv_CProduction_s14 :: (T_CProduction_v13 )
}
data T_CProduction_s15 = C_CProduction_s15
type T_CProduction_v13 = (T_CProduction_vIn13 ) -> (T_CProduction_vOut13 )
data T_CProduction_vIn13 = T_CProduction_vIn13
data T_CProduction_vOut13 = T_CProduction_vOut13
{-# NOINLINE sem_CProduction_CProduction #-}
sem_CProduction_CProduction :: (ConstructorIdent) -> T_CVisits -> ([(Identifier,Type,ChildKind)]) -> ([Identifier]) -> T_CProduction
sem_CProduction_CProduction _ arg_visits_ _ _ = T_CProduction (return st14) where
{-# NOINLINE st14 #-}
st14 = let
v13 :: T_CProduction_v13
v13 = \ (T_CProduction_vIn13 ) -> ( let
_visitsX32 = Control.Monad.Identity.runIdentity (attach_T_CVisits (arg_visits_))
(T_CVisits_vOut31 ) = inv_CVisits_s32 _visitsX32 (T_CVisits_vIn31 )
__result_ = T_CProduction_vOut13
in __result_ )
in C_CProduction_s14 v13
-- CProductions ------------------------------------------------
-- wrapper
data Inh_CProductions = Inh_CProductions { }
data Syn_CProductions = Syn_CProductions { }
{-# INLINABLE wrap_CProductions #-}
wrap_CProductions :: T_CProductions -> Inh_CProductions -> (Syn_CProductions )
wrap_CProductions (T_CProductions act) (Inh_CProductions ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg16 = T_CProductions_vIn16
(T_CProductions_vOut16 ) <- return (inv_CProductions_s17 sem arg16)
return (Syn_CProductions )
)
-- cata
{-# NOINLINE sem_CProductions #-}
sem_CProductions :: CProductions -> T_CProductions
sem_CProductions list = Prelude.foldr sem_CProductions_Cons sem_CProductions_Nil (Prelude.map sem_CProduction list)
-- semantic domain
newtype T_CProductions = T_CProductions {
attach_T_CProductions :: Identity (T_CProductions_s17 )
}
newtype T_CProductions_s17 = C_CProductions_s17 {
inv_CProductions_s17 :: (T_CProductions_v16 )
}
data T_CProductions_s18 = C_CProductions_s18
type T_CProductions_v16 = (T_CProductions_vIn16 ) -> (T_CProductions_vOut16 )
data T_CProductions_vIn16 = T_CProductions_vIn16
data T_CProductions_vOut16 = T_CProductions_vOut16
{-# NOINLINE sem_CProductions_Cons #-}
sem_CProductions_Cons :: T_CProduction -> T_CProductions -> T_CProductions
sem_CProductions_Cons arg_hd_ arg_tl_ = T_CProductions (return st17) where
{-# NOINLINE st17 #-}
st17 = let
v16 :: T_CProductions_v16
v16 = \ (T_CProductions_vIn16 ) -> ( let
_hdX14 = Control.Monad.Identity.runIdentity (attach_T_CProduction (arg_hd_))
_tlX17 = Control.Monad.Identity.runIdentity (attach_T_CProductions (arg_tl_))
(T_CProduction_vOut13 ) = inv_CProduction_s14 _hdX14 (T_CProduction_vIn13 )
(T_CProductions_vOut16 ) = inv_CProductions_s17 _tlX17 (T_CProductions_vIn16 )
__result_ = T_CProductions_vOut16
in __result_ )
in C_CProductions_s17 v16
{-# NOINLINE sem_CProductions_Nil #-}
sem_CProductions_Nil :: T_CProductions
sem_CProductions_Nil = T_CProductions (return st17) where
{-# NOINLINE st17 #-}
st17 = let
v16 :: T_CProductions_v16
v16 = \ (T_CProductions_vIn16 ) -> ( let
__result_ = T_CProductions_vOut16
in __result_ )
in C_CProductions_s17 v16
-- CRule -------------------------------------------------------
-- wrapper
data Inh_CRule = Inh_CRule { }
data Syn_CRule = Syn_CRule { }
{-# INLINABLE wrap_CRule #-}
wrap_CRule :: T_CRule -> Inh_CRule -> (Syn_CRule )
wrap_CRule (T_CRule act) (Inh_CRule ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg19 = T_CRule_vIn19
(T_CRule_vOut19 ) <- return (inv_CRule_s20 sem arg19)
return (Syn_CRule )
)
-- cata
{-# NOINLINE sem_CRule #-}
sem_CRule :: CRule -> T_CRule
sem_CRule ( CRule name_ isIn_ hasCode_ nt_ con_ field_ childnt_ tp_ pattern_ rhs_ defines_ owrt_ origin_ uses_ explicit_ mbNamed_ ) = sem_CRule_CRule name_ isIn_ hasCode_ nt_ con_ field_ childnt_ tp_ ( sem_Pattern pattern_ ) rhs_ defines_ owrt_ origin_ uses_ explicit_ mbNamed_
sem_CRule ( CChildVisit name_ nt_ nr_ inh_ syn_ isLast_ ) = sem_CRule_CChildVisit name_ nt_ nr_ inh_ syn_ isLast_
-- semantic domain
newtype T_CRule = T_CRule {
attach_T_CRule :: Identity (T_CRule_s20 )
}
newtype T_CRule_s20 = C_CRule_s20 {
inv_CRule_s20 :: (T_CRule_v19 )
}
data T_CRule_s21 = C_CRule_s21
type T_CRule_v19 = (T_CRule_vIn19 ) -> (T_CRule_vOut19 )
data T_CRule_vIn19 = T_CRule_vIn19
data T_CRule_vOut19 = T_CRule_vOut19
{-# NOINLINE sem_CRule_CRule #-}
sem_CRule_CRule :: (Identifier) -> (Bool) -> (Bool) -> (NontermIdent) -> (ConstructorIdent) -> (Identifier) -> (Maybe NontermIdent) -> (Maybe Type) -> T_Pattern -> ([String]) -> (Map Int (Identifier,Identifier,Maybe Type)) -> (Bool) -> (String) -> (Set (Identifier, Identifier)) -> (Bool) -> (Maybe Identifier) -> T_CRule
sem_CRule_CRule _ _ _ _ _ _ _ _ arg_pattern_ _ _ _ _ _ _ _ = T_CRule (return st20) where
{-# NOINLINE st20 #-}
st20 = let
v19 :: T_CRule_v19
v19 = \ (T_CRule_vIn19 ) -> ( let
_patternX41 = Control.Monad.Identity.runIdentity (attach_T_Pattern (arg_pattern_))
(T_Pattern_vOut40 _patternIcopy) = inv_Pattern_s41 _patternX41 (T_Pattern_vIn40 )
__result_ = T_CRule_vOut19
in __result_ )
in C_CRule_s20 v19
{-# NOINLINE sem_CRule_CChildVisit #-}
sem_CRule_CChildVisit :: (Identifier) -> (NontermIdent) -> (Int) -> (Attributes) -> (Attributes) -> (Bool) -> T_CRule
sem_CRule_CChildVisit _ _ _ _ _ _ = T_CRule (return st20) where
{-# NOINLINE st20 #-}
st20 = let
v19 :: T_CRule_v19
v19 = \ (T_CRule_vIn19 ) -> ( let
__result_ = T_CRule_vOut19
in __result_ )
in C_CRule_s20 v19
-- CSegment ----------------------------------------------------
-- wrapper
data Inh_CSegment = Inh_CSegment { }
data Syn_CSegment = Syn_CSegment { }
{-# INLINABLE wrap_CSegment #-}
wrap_CSegment :: T_CSegment -> Inh_CSegment -> (Syn_CSegment )
wrap_CSegment (T_CSegment act) (Inh_CSegment ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg22 = T_CSegment_vIn22
(T_CSegment_vOut22 ) <- return (inv_CSegment_s23 sem arg22)
return (Syn_CSegment )
)
-- cata
{-# INLINE sem_CSegment #-}
sem_CSegment :: CSegment -> T_CSegment
sem_CSegment ( CSegment inh_ syn_ ) = sem_CSegment_CSegment inh_ syn_
-- semantic domain
newtype T_CSegment = T_CSegment {
attach_T_CSegment :: Identity (T_CSegment_s23 )
}
newtype T_CSegment_s23 = C_CSegment_s23 {
inv_CSegment_s23 :: (T_CSegment_v22 )
}
data T_CSegment_s24 = C_CSegment_s24
type T_CSegment_v22 = (T_CSegment_vIn22 ) -> (T_CSegment_vOut22 )
data T_CSegment_vIn22 = T_CSegment_vIn22
data T_CSegment_vOut22 = T_CSegment_vOut22
{-# NOINLINE sem_CSegment_CSegment #-}
sem_CSegment_CSegment :: (Attributes) -> (Attributes) -> T_CSegment
sem_CSegment_CSegment _ _ = T_CSegment (return st23) where
{-# NOINLINE st23 #-}
st23 = let
v22 :: T_CSegment_v22
v22 = \ (T_CSegment_vIn22 ) -> ( let
__result_ = T_CSegment_vOut22
in __result_ )
in C_CSegment_s23 v22
-- CSegments ---------------------------------------------------
-- wrapper
data Inh_CSegments = Inh_CSegments { }
data Syn_CSegments = Syn_CSegments { }
{-# INLINABLE wrap_CSegments #-}
wrap_CSegments :: T_CSegments -> Inh_CSegments -> (Syn_CSegments )
wrap_CSegments (T_CSegments act) (Inh_CSegments ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg25 = T_CSegments_vIn25
(T_CSegments_vOut25 ) <- return (inv_CSegments_s26 sem arg25)
return (Syn_CSegments )
)
-- cata
{-# NOINLINE sem_CSegments #-}
sem_CSegments :: CSegments -> T_CSegments
sem_CSegments list = Prelude.foldr sem_CSegments_Cons sem_CSegments_Nil (Prelude.map sem_CSegment list)
-- semantic domain
newtype T_CSegments = T_CSegments {
attach_T_CSegments :: Identity (T_CSegments_s26 )
}
newtype T_CSegments_s26 = C_CSegments_s26 {
inv_CSegments_s26 :: (T_CSegments_v25 )
}
data T_CSegments_s27 = C_CSegments_s27
type T_CSegments_v25 = (T_CSegments_vIn25 ) -> (T_CSegments_vOut25 )
data T_CSegments_vIn25 = T_CSegments_vIn25
data T_CSegments_vOut25 = T_CSegments_vOut25
{-# NOINLINE sem_CSegments_Cons #-}
sem_CSegments_Cons :: T_CSegment -> T_CSegments -> T_CSegments
sem_CSegments_Cons arg_hd_ arg_tl_ = T_CSegments (return st26) where
{-# NOINLINE st26 #-}
st26 = let
v25 :: T_CSegments_v25
v25 = \ (T_CSegments_vIn25 ) -> ( let
_hdX23 = Control.Monad.Identity.runIdentity (attach_T_CSegment (arg_hd_))
_tlX26 = Control.Monad.Identity.runIdentity (attach_T_CSegments (arg_tl_))
(T_CSegment_vOut22 ) = inv_CSegment_s23 _hdX23 (T_CSegment_vIn22 )
(T_CSegments_vOut25 ) = inv_CSegments_s26 _tlX26 (T_CSegments_vIn25 )
__result_ = T_CSegments_vOut25
in __result_ )
in C_CSegments_s26 v25
{-# NOINLINE sem_CSegments_Nil #-}
sem_CSegments_Nil :: T_CSegments
sem_CSegments_Nil = T_CSegments (return st26) where
{-# NOINLINE st26 #-}
st26 = let
v25 :: T_CSegments_v25
v25 = \ (T_CSegments_vIn25 ) -> ( let
__result_ = T_CSegments_vOut25
in __result_ )
in C_CSegments_s26 v25
-- CVisit ------------------------------------------------------
-- wrapper
data Inh_CVisit = Inh_CVisit { }
data Syn_CVisit = Syn_CVisit { }
{-# INLINABLE wrap_CVisit #-}
wrap_CVisit :: T_CVisit -> Inh_CVisit -> (Syn_CVisit )
wrap_CVisit (T_CVisit act) (Inh_CVisit ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg28 = T_CVisit_vIn28
(T_CVisit_vOut28 ) <- return (inv_CVisit_s29 sem arg28)
return (Syn_CVisit )
)
-- cata
{-# INLINE sem_CVisit #-}
sem_CVisit :: CVisit -> T_CVisit
sem_CVisit ( CVisit inh_ syn_ vss_ intra_ ordered_ ) = sem_CVisit_CVisit inh_ syn_ ( sem_Sequence vss_ ) ( sem_Sequence intra_ ) ordered_
-- semantic domain
newtype T_CVisit = T_CVisit {
attach_T_CVisit :: Identity (T_CVisit_s29 )
}
newtype T_CVisit_s29 = C_CVisit_s29 {
inv_CVisit_s29 :: (T_CVisit_v28 )
}
data T_CVisit_s30 = C_CVisit_s30
type T_CVisit_v28 = (T_CVisit_vIn28 ) -> (T_CVisit_vOut28 )
data T_CVisit_vIn28 = T_CVisit_vIn28
data T_CVisit_vOut28 = T_CVisit_vOut28
{-# NOINLINE sem_CVisit_CVisit #-}
sem_CVisit_CVisit :: (Attributes) -> (Attributes) -> T_Sequence -> T_Sequence -> (Bool) -> T_CVisit
sem_CVisit_CVisit _ _ arg_vss_ arg_intra_ _ = T_CVisit (return st29) where
{-# NOINLINE st29 #-}
st29 = let
v28 :: T_CVisit_v28
v28 = \ (T_CVisit_vIn28 ) -> ( let
_vssX47 = Control.Monad.Identity.runIdentity (attach_T_Sequence (arg_vss_))
_intraX47 = Control.Monad.Identity.runIdentity (attach_T_Sequence (arg_intra_))
(T_Sequence_vOut46 ) = inv_Sequence_s47 _vssX47 (T_Sequence_vIn46 )
(T_Sequence_vOut46 ) = inv_Sequence_s47 _intraX47 (T_Sequence_vIn46 )
__result_ = T_CVisit_vOut28
in __result_ )
in C_CVisit_s29 v28
-- CVisits -----------------------------------------------------
-- wrapper
data Inh_CVisits = Inh_CVisits { }
data Syn_CVisits = Syn_CVisits { }
{-# INLINABLE wrap_CVisits #-}
wrap_CVisits :: T_CVisits -> Inh_CVisits -> (Syn_CVisits )
wrap_CVisits (T_CVisits act) (Inh_CVisits ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg31 = T_CVisits_vIn31
(T_CVisits_vOut31 ) <- return (inv_CVisits_s32 sem arg31)
return (Syn_CVisits )
)
-- cata
{-# NOINLINE sem_CVisits #-}
sem_CVisits :: CVisits -> T_CVisits
sem_CVisits list = Prelude.foldr sem_CVisits_Cons sem_CVisits_Nil (Prelude.map sem_CVisit list)
-- semantic domain
newtype T_CVisits = T_CVisits {
attach_T_CVisits :: Identity (T_CVisits_s32 )
}
newtype T_CVisits_s32 = C_CVisits_s32 {
inv_CVisits_s32 :: (T_CVisits_v31 )
}
data T_CVisits_s33 = C_CVisits_s33
type T_CVisits_v31 = (T_CVisits_vIn31 ) -> (T_CVisits_vOut31 )
data T_CVisits_vIn31 = T_CVisits_vIn31
data T_CVisits_vOut31 = T_CVisits_vOut31
{-# NOINLINE sem_CVisits_Cons #-}
sem_CVisits_Cons :: T_CVisit -> T_CVisits -> T_CVisits
sem_CVisits_Cons arg_hd_ arg_tl_ = T_CVisits (return st32) where
{-# NOINLINE st32 #-}
st32 = let
v31 :: T_CVisits_v31
v31 = \ (T_CVisits_vIn31 ) -> ( let
_hdX29 = Control.Monad.Identity.runIdentity (attach_T_CVisit (arg_hd_))
_tlX32 = Control.Monad.Identity.runIdentity (attach_T_CVisits (arg_tl_))
(T_CVisit_vOut28 ) = inv_CVisit_s29 _hdX29 (T_CVisit_vIn28 )
(T_CVisits_vOut31 ) = inv_CVisits_s32 _tlX32 (T_CVisits_vIn31 )
__result_ = T_CVisits_vOut31
in __result_ )
in C_CVisits_s32 v31
{-# NOINLINE sem_CVisits_Nil #-}
sem_CVisits_Nil :: T_CVisits
sem_CVisits_Nil = T_CVisits (return st32) where
{-# NOINLINE st32 #-}
st32 = let
v31 :: T_CVisits_v31
v31 = \ (T_CVisits_vIn31 ) -> ( let
__result_ = T_CVisits_vOut31
in __result_ )
in C_CVisits_s32 v31
-- DeclBlocks --------------------------------------------------
-- wrapper
data Inh_DeclBlocks = Inh_DeclBlocks { }
data Syn_DeclBlocks = Syn_DeclBlocks { }
{-# INLINABLE wrap_DeclBlocks #-}
wrap_DeclBlocks :: T_DeclBlocks -> Inh_DeclBlocks -> (Syn_DeclBlocks )
wrap_DeclBlocks (T_DeclBlocks act) (Inh_DeclBlocks ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg34 = T_DeclBlocks_vIn34
(T_DeclBlocks_vOut34 ) <- return (inv_DeclBlocks_s35 sem arg34)
return (Syn_DeclBlocks )
)
-- cata
{-# NOINLINE sem_DeclBlocks #-}
sem_DeclBlocks :: DeclBlocks -> T_DeclBlocks
sem_DeclBlocks ( DeclBlock defs_ visit_ next_ ) = sem_DeclBlocks_DeclBlock defs_ visit_ ( sem_DeclBlocks next_ )
sem_DeclBlocks ( DeclTerminator defs_ result_ ) = sem_DeclBlocks_DeclTerminator defs_ result_
-- semantic domain
newtype T_DeclBlocks = T_DeclBlocks {
attach_T_DeclBlocks :: Identity (T_DeclBlocks_s35 )
}
newtype T_DeclBlocks_s35 = C_DeclBlocks_s35 {
inv_DeclBlocks_s35 :: (T_DeclBlocks_v34 )
}
data T_DeclBlocks_s36 = C_DeclBlocks_s36
type T_DeclBlocks_v34 = (T_DeclBlocks_vIn34 ) -> (T_DeclBlocks_vOut34 )
data T_DeclBlocks_vIn34 = T_DeclBlocks_vIn34
data T_DeclBlocks_vOut34 = T_DeclBlocks_vOut34
{-# NOINLINE sem_DeclBlocks_DeclBlock #-}
sem_DeclBlocks_DeclBlock :: ([Decl]) -> (Decl) -> T_DeclBlocks -> T_DeclBlocks
sem_DeclBlocks_DeclBlock _ _ arg_next_ = T_DeclBlocks (return st35) where
{-# NOINLINE st35 #-}
st35 = let
v34 :: T_DeclBlocks_v34
v34 = \ (T_DeclBlocks_vIn34 ) -> ( let
_nextX35 = Control.Monad.Identity.runIdentity (attach_T_DeclBlocks (arg_next_))
(T_DeclBlocks_vOut34 ) = inv_DeclBlocks_s35 _nextX35 (T_DeclBlocks_vIn34 )
__result_ = T_DeclBlocks_vOut34
in __result_ )
in C_DeclBlocks_s35 v34
{-# NOINLINE sem_DeclBlocks_DeclTerminator #-}
sem_DeclBlocks_DeclTerminator :: ([Decl]) -> (Expr) -> T_DeclBlocks
sem_DeclBlocks_DeclTerminator _ _ = T_DeclBlocks (return st35) where
{-# NOINLINE st35 #-}
st35 = let
v34 :: T_DeclBlocks_v34
v34 = \ (T_DeclBlocks_vIn34 ) -> ( let
__result_ = T_DeclBlocks_vOut34
in __result_ )
in C_DeclBlocks_s35 v34
-- DeclBlocksRoot ----------------------------------------------
-- wrapper
data Inh_DeclBlocksRoot = Inh_DeclBlocksRoot { }
data Syn_DeclBlocksRoot = Syn_DeclBlocksRoot { }
{-# INLINABLE wrap_DeclBlocksRoot #-}
wrap_DeclBlocksRoot :: T_DeclBlocksRoot -> Inh_DeclBlocksRoot -> (Syn_DeclBlocksRoot )
wrap_DeclBlocksRoot (T_DeclBlocksRoot act) (Inh_DeclBlocksRoot ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg37 = T_DeclBlocksRoot_vIn37
(T_DeclBlocksRoot_vOut37 ) <- return (inv_DeclBlocksRoot_s38 sem arg37)
return (Syn_DeclBlocksRoot )
)
-- cata
{-# INLINE sem_DeclBlocksRoot #-}
sem_DeclBlocksRoot :: DeclBlocksRoot -> T_DeclBlocksRoot
sem_DeclBlocksRoot ( DeclBlocksRoot blocks_ ) = sem_DeclBlocksRoot_DeclBlocksRoot ( sem_DeclBlocks blocks_ )
-- semantic domain
newtype T_DeclBlocksRoot = T_DeclBlocksRoot {
attach_T_DeclBlocksRoot :: Identity (T_DeclBlocksRoot_s38 )
}
newtype T_DeclBlocksRoot_s38 = C_DeclBlocksRoot_s38 {
inv_DeclBlocksRoot_s38 :: (T_DeclBlocksRoot_v37 )
}
data T_DeclBlocksRoot_s39 = C_DeclBlocksRoot_s39
type T_DeclBlocksRoot_v37 = (T_DeclBlocksRoot_vIn37 ) -> (T_DeclBlocksRoot_vOut37 )
data T_DeclBlocksRoot_vIn37 = T_DeclBlocksRoot_vIn37
data T_DeclBlocksRoot_vOut37 = T_DeclBlocksRoot_vOut37
{-# NOINLINE sem_DeclBlocksRoot_DeclBlocksRoot #-}
sem_DeclBlocksRoot_DeclBlocksRoot :: T_DeclBlocks -> T_DeclBlocksRoot
sem_DeclBlocksRoot_DeclBlocksRoot arg_blocks_ = T_DeclBlocksRoot (return st38) where
{-# NOINLINE st38 #-}
st38 = let
v37 :: T_DeclBlocksRoot_v37
v37 = \ (T_DeclBlocksRoot_vIn37 ) -> ( let
_blocksX35 = Control.Monad.Identity.runIdentity (attach_T_DeclBlocks (arg_blocks_))
(T_DeclBlocks_vOut34 ) = inv_DeclBlocks_s35 _blocksX35 (T_DeclBlocks_vIn34 )
__result_ = T_DeclBlocksRoot_vOut37
in __result_ )
in C_DeclBlocksRoot_s38 v37
-- Pattern -----------------------------------------------------
-- wrapper
data Inh_Pattern = Inh_Pattern { }
data Syn_Pattern = Syn_Pattern { copy_Syn_Pattern :: (Pattern) }
{-# INLINABLE wrap_Pattern #-}
wrap_Pattern :: T_Pattern -> Inh_Pattern -> (Syn_Pattern )
wrap_Pattern (T_Pattern act) (Inh_Pattern ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg40 = T_Pattern_vIn40
(T_Pattern_vOut40 _lhsOcopy) <- return (inv_Pattern_s41 sem arg40)
return (Syn_Pattern _lhsOcopy)
)
-- cata
{-# NOINLINE sem_Pattern #-}
sem_Pattern :: Pattern -> T_Pattern
sem_Pattern ( Constr name_ pats_ ) = sem_Pattern_Constr name_ ( sem_Patterns pats_ )
sem_Pattern ( Product pos_ pats_ ) = sem_Pattern_Product pos_ ( sem_Patterns pats_ )
sem_Pattern ( Alias field_ attr_ pat_ ) = sem_Pattern_Alias field_ attr_ ( sem_Pattern pat_ )
sem_Pattern ( Irrefutable pat_ ) = sem_Pattern_Irrefutable ( sem_Pattern pat_ )
sem_Pattern ( Underscore pos_ ) = sem_Pattern_Underscore pos_
-- semantic domain
newtype T_Pattern = T_Pattern {
attach_T_Pattern :: Identity (T_Pattern_s41 )
}
newtype T_Pattern_s41 = C_Pattern_s41 {
inv_Pattern_s41 :: (T_Pattern_v40 )
}
data T_Pattern_s42 = C_Pattern_s42
type T_Pattern_v40 = (T_Pattern_vIn40 ) -> (T_Pattern_vOut40 )
data T_Pattern_vIn40 = T_Pattern_vIn40
data T_Pattern_vOut40 = T_Pattern_vOut40 (Pattern)
{-# NOINLINE sem_Pattern_Constr #-}
sem_Pattern_Constr :: (ConstructorIdent) -> T_Patterns -> T_Pattern
sem_Pattern_Constr arg_name_ arg_pats_ = T_Pattern (return st41) where
{-# NOINLINE st41 #-}
st41 = let
v40 :: T_Pattern_v40
v40 = \ (T_Pattern_vIn40 ) -> ( let
_patsX44 = Control.Monad.Identity.runIdentity (attach_T_Patterns (arg_pats_))
(T_Patterns_vOut43 _patsIcopy) = inv_Patterns_s44 _patsX44 (T_Patterns_vIn43 )
_copy = rule1 _patsIcopy arg_name_
_lhsOcopy :: Pattern
_lhsOcopy = rule2 _copy
__result_ = T_Pattern_vOut40 _lhsOcopy
in __result_ )
in C_Pattern_s41 v40
{-# INLINE rule1 #-}
rule1 = \ ((_patsIcopy) :: Patterns) name_ ->
Constr name_ _patsIcopy
{-# INLINE rule2 #-}
rule2 = \ _copy ->
_copy
{-# NOINLINE sem_Pattern_Product #-}
sem_Pattern_Product :: (Pos) -> T_Patterns -> T_Pattern
sem_Pattern_Product arg_pos_ arg_pats_ = T_Pattern (return st41) where
{-# NOINLINE st41 #-}
st41 = let
v40 :: T_Pattern_v40
v40 = \ (T_Pattern_vIn40 ) -> ( let
_patsX44 = Control.Monad.Identity.runIdentity (attach_T_Patterns (arg_pats_))
(T_Patterns_vOut43 _patsIcopy) = inv_Patterns_s44 _patsX44 (T_Patterns_vIn43 )
_copy = rule3 _patsIcopy arg_pos_
_lhsOcopy :: Pattern
_lhsOcopy = rule4 _copy
__result_ = T_Pattern_vOut40 _lhsOcopy
in __result_ )
in C_Pattern_s41 v40
{-# INLINE rule3 #-}
rule3 = \ ((_patsIcopy) :: Patterns) pos_ ->
Product pos_ _patsIcopy
{-# INLINE rule4 #-}
rule4 = \ _copy ->
_copy
{-# NOINLINE sem_Pattern_Alias #-}
sem_Pattern_Alias :: (Identifier) -> (Identifier) -> T_Pattern -> T_Pattern
sem_Pattern_Alias arg_field_ arg_attr_ arg_pat_ = T_Pattern (return st41) where
{-# NOINLINE st41 #-}
st41 = let
v40 :: T_Pattern_v40
v40 = \ (T_Pattern_vIn40 ) -> ( let
_patX41 = Control.Monad.Identity.runIdentity (attach_T_Pattern (arg_pat_))
(T_Pattern_vOut40 _patIcopy) = inv_Pattern_s41 _patX41 (T_Pattern_vIn40 )
_copy = rule5 _patIcopy arg_attr_ arg_field_
_lhsOcopy :: Pattern
_lhsOcopy = rule6 _copy
__result_ = T_Pattern_vOut40 _lhsOcopy
in __result_ )
in C_Pattern_s41 v40
{-# INLINE rule5 #-}
rule5 = \ ((_patIcopy) :: Pattern) attr_ field_ ->
Alias field_ attr_ _patIcopy
{-# INLINE rule6 #-}
rule6 = \ _copy ->
_copy
{-# NOINLINE sem_Pattern_Irrefutable #-}
sem_Pattern_Irrefutable :: T_Pattern -> T_Pattern
sem_Pattern_Irrefutable arg_pat_ = T_Pattern (return st41) where
{-# NOINLINE st41 #-}
st41 = let
v40 :: T_Pattern_v40
v40 = \ (T_Pattern_vIn40 ) -> ( let
_patX41 = Control.Monad.Identity.runIdentity (attach_T_Pattern (arg_pat_))
(T_Pattern_vOut40 _patIcopy) = inv_Pattern_s41 _patX41 (T_Pattern_vIn40 )
_copy = rule7 _patIcopy
_lhsOcopy :: Pattern
_lhsOcopy = rule8 _copy
__result_ = T_Pattern_vOut40 _lhsOcopy
in __result_ )
in C_Pattern_s41 v40
{-# INLINE rule7 #-}
rule7 = \ ((_patIcopy) :: Pattern) ->
Irrefutable _patIcopy
{-# INLINE rule8 #-}
rule8 = \ _copy ->
_copy
{-# NOINLINE sem_Pattern_Underscore #-}
sem_Pattern_Underscore :: (Pos) -> T_Pattern
sem_Pattern_Underscore arg_pos_ = T_Pattern (return st41) where
{-# NOINLINE st41 #-}
st41 = let
v40 :: T_Pattern_v40
v40 = \ (T_Pattern_vIn40 ) -> ( let
_copy = rule9 arg_pos_
_lhsOcopy :: Pattern
_lhsOcopy = rule10 _copy
__result_ = T_Pattern_vOut40 _lhsOcopy
in __result_ )
in C_Pattern_s41 v40
{-# INLINE rule9 #-}
rule9 = \ pos_ ->
Underscore pos_
{-# INLINE rule10 #-}
rule10 = \ _copy ->
_copy
-- Patterns ----------------------------------------------------
-- wrapper
data Inh_Patterns = Inh_Patterns { }
data Syn_Patterns = Syn_Patterns { copy_Syn_Patterns :: (Patterns) }
{-# INLINABLE wrap_Patterns #-}
wrap_Patterns :: T_Patterns -> Inh_Patterns -> (Syn_Patterns )
wrap_Patterns (T_Patterns act) (Inh_Patterns ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg43 = T_Patterns_vIn43
(T_Patterns_vOut43 _lhsOcopy) <- return (inv_Patterns_s44 sem arg43)
return (Syn_Patterns _lhsOcopy)
)
-- cata
{-# NOINLINE sem_Patterns #-}
sem_Patterns :: Patterns -> T_Patterns
sem_Patterns list = Prelude.foldr sem_Patterns_Cons sem_Patterns_Nil (Prelude.map sem_Pattern list)
-- semantic domain
newtype T_Patterns = T_Patterns {
attach_T_Patterns :: Identity (T_Patterns_s44 )
}
newtype T_Patterns_s44 = C_Patterns_s44 {
inv_Patterns_s44 :: (T_Patterns_v43 )
}
data T_Patterns_s45 = C_Patterns_s45
type T_Patterns_v43 = (T_Patterns_vIn43 ) -> (T_Patterns_vOut43 )
data T_Patterns_vIn43 = T_Patterns_vIn43
data T_Patterns_vOut43 = T_Patterns_vOut43 (Patterns)
{-# NOINLINE sem_Patterns_Cons #-}
sem_Patterns_Cons :: T_Pattern -> T_Patterns -> T_Patterns
sem_Patterns_Cons arg_hd_ arg_tl_ = T_Patterns (return st44) where
{-# NOINLINE st44 #-}
st44 = let
v43 :: T_Patterns_v43
v43 = \ (T_Patterns_vIn43 ) -> ( let
_hdX41 = Control.Monad.Identity.runIdentity (attach_T_Pattern (arg_hd_))
_tlX44 = Control.Monad.Identity.runIdentity (attach_T_Patterns (arg_tl_))
(T_Pattern_vOut40 _hdIcopy) = inv_Pattern_s41 _hdX41 (T_Pattern_vIn40 )
(T_Patterns_vOut43 _tlIcopy) = inv_Patterns_s44 _tlX44 (T_Patterns_vIn43 )
_copy = rule11 _hdIcopy _tlIcopy
_lhsOcopy :: Patterns
_lhsOcopy = rule12 _copy
__result_ = T_Patterns_vOut43 _lhsOcopy
in __result_ )
in C_Patterns_s44 v43
{-# INLINE rule11 #-}
rule11 = \ ((_hdIcopy) :: Pattern) ((_tlIcopy) :: Patterns) ->
(:) _hdIcopy _tlIcopy
{-# INLINE rule12 #-}
rule12 = \ _copy ->
_copy
{-# NOINLINE sem_Patterns_Nil #-}
sem_Patterns_Nil :: T_Patterns
sem_Patterns_Nil = T_Patterns (return st44) where
{-# NOINLINE st44 #-}
st44 = let
v43 :: T_Patterns_v43
v43 = \ (T_Patterns_vIn43 ) -> ( let
_copy = rule13 ()
_lhsOcopy :: Patterns
_lhsOcopy = rule14 _copy
__result_ = T_Patterns_vOut43 _lhsOcopy
in __result_ )
in C_Patterns_s44 v43
{-# INLINE rule13 #-}
rule13 = \ (_ :: ()) ->
[]
{-# INLINE rule14 #-}
rule14 = \ _copy ->
_copy
-- Sequence ----------------------------------------------------
-- wrapper
data Inh_Sequence = Inh_Sequence { }
data Syn_Sequence = Syn_Sequence { }
{-# INLINABLE wrap_Sequence #-}
wrap_Sequence :: T_Sequence -> Inh_Sequence -> (Syn_Sequence )
wrap_Sequence (T_Sequence act) (Inh_Sequence ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg46 = T_Sequence_vIn46
(T_Sequence_vOut46 ) <- return (inv_Sequence_s47 sem arg46)
return (Syn_Sequence )
)
-- cata
{-# NOINLINE sem_Sequence #-}
sem_Sequence :: Sequence -> T_Sequence
sem_Sequence list = Prelude.foldr sem_Sequence_Cons sem_Sequence_Nil (Prelude.map sem_CRule list)
-- semantic domain
newtype T_Sequence = T_Sequence {
attach_T_Sequence :: Identity (T_Sequence_s47 )
}
newtype T_Sequence_s47 = C_Sequence_s47 {
inv_Sequence_s47 :: (T_Sequence_v46 )
}
data T_Sequence_s48 = C_Sequence_s48
type T_Sequence_v46 = (T_Sequence_vIn46 ) -> (T_Sequence_vOut46 )
data T_Sequence_vIn46 = T_Sequence_vIn46
data T_Sequence_vOut46 = T_Sequence_vOut46
{-# NOINLINE sem_Sequence_Cons #-}
sem_Sequence_Cons :: T_CRule -> T_Sequence -> T_Sequence
sem_Sequence_Cons arg_hd_ arg_tl_ = T_Sequence (return st47) where
{-# NOINLINE st47 #-}
st47 = let
v46 :: T_Sequence_v46
v46 = \ (T_Sequence_vIn46 ) -> ( let
_hdX20 = Control.Monad.Identity.runIdentity (attach_T_CRule (arg_hd_))
_tlX47 = Control.Monad.Identity.runIdentity (attach_T_Sequence (arg_tl_))
(T_CRule_vOut19 ) = inv_CRule_s20 _hdX20 (T_CRule_vIn19 )
(T_Sequence_vOut46 ) = inv_Sequence_s47 _tlX47 (T_Sequence_vIn46 )
__result_ = T_Sequence_vOut46
in __result_ )
in C_Sequence_s47 v46
{-# NOINLINE sem_Sequence_Nil #-}
sem_Sequence_Nil :: T_Sequence
sem_Sequence_Nil = T_Sequence (return st47) where
{-# NOINLINE st47 #-}
st47 = let
v46 :: T_Sequence_v46
v46 = \ (T_Sequence_vIn46 ) -> ( let
__result_ = T_Sequence_vOut46
in __result_ )
in C_Sequence_s47 v46
|