File: libv4l2rds.c

package info (click to toggle)
v4l-utils 1.32.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,276 kB
  • sloc: ansic: 85,528; cpp: 69,473; perl: 11,915; sh: 1,333; python: 883; php: 119; makefile: 39
file content (1600 lines) | stat: -rw-r--r-- 54,363 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
// SPDX-License-Identifier: LGPL-2.1-or-later
/*
 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
 * Author: Konke Radlow <koradlow@gmail.com>
 */

#include <errno.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <sys/types.h>
#include <sys/mman.h>

#if defined(__OpenBSD__)
#include <sys/videoio.h>
#else
#include <linux/videodev2.h>
#endif

#include "../include/libv4l2rds.h"

/* struct to encapsulate the private state information of the decoding process */
/* the fields (except for handle) are for internal use only - new information
 * is decoded and stored in them until it can be verified and copied to the
 * public part of the  rds structure (handle) */
/* for meaning of abbreviations check the library header libv4l2rds.h */
struct rds_private_state {
	/* v4l2_rds has to be in first position, to allow typecasting between
	 * v4l2_rds and rds_private_state pointers */
	struct v4l2_rds handle;

	/* current state of rds group decoding */
	uint8_t decode_state;

	/* temporal storage locations for rds fields */
	uint16_t new_pi;
	uint8_t new_ps[8];
	uint8_t new_ps_valid[8];
	uint8_t new_pty;
	uint8_t new_ptyn[2][4];
	bool new_ptyn_valid[2];
	uint8_t new_rt[64];
	uint8_t next_rt_segment;
	uint8_t new_di;
	uint8_t next_di_segment;
	uint8_t new_ecc;
	uint8_t new_lc;
	/* RDS date / time representation */
	uint32_t new_mjd;	/* modified Julian Day code */
	uint8_t utc_hour;
	uint8_t utc_minute;
	uint8_t utc_offset;

	/* TMC decoding buffers, to store data before it can be verified,
	 * and before all parts of a multi-group message have been received */
	uint8_t continuity_id;	/* continuity index of current TMC multigroup */
	uint8_t grp_seq_id; 	/* group sequence identifier */
	bool optional_tmc[112];	/* buffer for up to 112 bits of optional
				 * additional data in multi-group
				 * messages (112 is the maximal possible length
				 * specified by the standard) */

	/* TMC groups are only accepted if the same data was received twice,
	 * these structs are used as receive buffers to validate TMC groups */
	struct v4l2_rds_group prev_tmc_group;
	struct v4l2_rds_group prev_tmc_sys_group;
	struct v4l2_rds_tmc_msg new_tmc_msg;

	/* buffers for rds data, before group type specific decoding can
	 * be done */
	struct v4l2_rds_group rds_group;
	struct v4l2_rds_data rds_data_raw[4];
};

/* states of the RDS block into group decoding state machine */
enum rds_state {
	RDS_EMPTY,
	RDS_A_RECEIVED,
	RDS_B_RECEIVED,
	RDS_C_RECEIVED,
};

static inline uint8_t set_bit(uint8_t input, uint8_t bitmask, bool bitvalue)
{
	return bitvalue ? input | bitmask : input & ~bitmask;
}

/* rds_decode_a-d(..): group of functions to decode different RDS blocks
 * into the RDS group that's currently being received
 *
 * block A of RDS group always contains PI code of program */
static uint32_t rds_decode_a(struct rds_private_state *priv_state, struct v4l2_rds_data *rds_data)
{
	struct v4l2_rds *handle = &priv_state->handle;
	uint32_t updated_fields = 0;
	uint16_t pi = (rds_data->msb << 8) | rds_data->lsb;

	/* data in RDS group is uninterpreted */
	priv_state->rds_group.pi = pi;

	/* compare PI values to detect PI update (Channel Switch)
	 * --> new PI is only accepted, if the same PI is received
	 * at least 2 times in a row */
	if (pi != handle->pi && pi == priv_state->new_pi) {
		handle->pi = pi;
		handle->valid_fields |= V4L2_RDS_PI;
		updated_fields |= V4L2_RDS_PI;
	} else if (pi != handle->pi && pi != priv_state->new_pi) {
		priv_state->new_pi = pi;
	}

	return updated_fields;
}

/* block B of RDS group always contains Group Type Code, Group Type information
 * Traffic Program Code and Program Type Code as well as 5 bits of Group Type
 * depending information */
static uint32_t rds_decode_b(struct rds_private_state *priv_state, struct v4l2_rds_data *rds_data)
{
	struct v4l2_rds *handle = &priv_state->handle;
	struct v4l2_rds_group *grp = &priv_state->rds_group;
	bool traffic_prog;
	uint8_t pty;
	uint32_t updated_fields = 0;

	/* bits 12-15 (4-7 of msb) contain the Group Type Code */
	grp->group_id = rds_data->msb >> 4 ;

	/* bit 11 (3 of msb) defines Group Type info: 0 = A, 1 = B */
	grp->group_version = (rds_data->msb & 0x08) ? 'B' : 'A';

	/* bit 10 (2 of msb) defines Traffic program Code */
	traffic_prog = rds_data->msb & 0x04;
	if (handle->tp != traffic_prog) {
		handle->tp = traffic_prog;
		updated_fields |= V4L2_RDS_TP;
	}
	handle->valid_fields |= V4L2_RDS_TP;

	/* bits 0-4 contains Group Type depending information */
	grp->data_b_lsb = rds_data->lsb & 0x1f;

	/* bits 5-9 contain the PTY code */
	pty = (rds_data->msb << 3) | (rds_data->lsb >> 5);
	pty &= 0x1f; /* mask out 3 irrelevant bits */
	/* only accept new PTY if same PTY is received twice in a row
	 * and filter out cases where the PTY is already known */
	if (handle->pty == pty) {
		priv_state->new_pty = pty;
		return updated_fields;
	}

	if (priv_state->new_pty == pty) {
		handle->pty = priv_state->new_pty;
		updated_fields |= V4L2_RDS_PTY;
		handle->valid_fields |= V4L2_RDS_PTY;
	} else {
		priv_state->new_pty = pty;
	}

	return updated_fields;
}

/* block C of RDS group contains either data or the PI code, depending
 * on the Group Type - store the raw data for later decoding */
static void rds_decode_c(struct rds_private_state *priv_state, struct v4l2_rds_data *rds_data)
{
	struct v4l2_rds_group *grp = &priv_state->rds_group;

	grp->data_c_msb = rds_data->msb;
	grp->data_c_lsb = rds_data->lsb;
	/* we could decode the PI code here, because we already know if the
	 * group is of type A or B, but it doesn't give any advantage because
	 * we only get here after the PI code has been decoded in the first
	 * state of the state machine */
}

/* block D of RDS group contains data - store the raw data for later decoding */
static void rds_decode_d(struct rds_private_state *priv_state, struct v4l2_rds_data *rds_data)
{
	struct v4l2_rds_group *grp = &priv_state->rds_group;

	grp->data_d_msb = rds_data->msb;
	grp->data_d_lsb = rds_data->lsb;
}

/* decodes the RDS radio frequency representation into Hz
 * @af: 8-bit AF value as transmitted in RDS groups
 * @is_vhf: boolean value defining  which conversion table to use
 * @return: frequency in Hz, 0 in case of wrong input values */
static uint32_t rds_decode_af(uint8_t af, bool is_vhf)
{
	uint32_t freq = 0;

	/* AF = 0 => "not to be used"
	 * AF >= 205 => special meanings */
	if (af == 0 || af >= 205)
		return 0;

	/* calculate the AF values in HZ */
	if (is_vhf)
		freq = 87500000 + af * 100000;
	else if (af <= 15)
		freq = 152000 + af * 9000;
	else
		freq = 531000 + af * 9000;

	return freq;
}

/* compare two rds-groups for equality */
/* used for decoding RDS-TMC, which has the requirement that the same group
 * is at least received twice before it is accepted */
static bool rds_compare_group(const struct v4l2_rds_group *a,
				const struct v4l2_rds_group *b)
{
	if (a->pi != b->pi)
		return false;
	if (a->group_version != b->group_version)
		return false;
	if (a->group_id != b->group_id)
		return false;

	if (a->data_b_lsb != b->data_b_lsb)
		return false;
	if (a->data_c_lsb != b->data_c_lsb || a->data_c_msb != b->data_c_msb)
		return false;
	if (a->data_d_lsb != b->data_d_lsb || a->data_d_msb != b->data_d_msb)
		return false;
	/* all values are equal */
	return true;
}

/* checks if an entry for the given PI already exists and returns the index
 * of that entry if so. Else it adds a new entry to the TMC-Tuning table and returns
 * the index of the new field */
static int rds_add_tmc_station(struct rds_private_state *priv_state, uint16_t pi)
{
	struct v4l2_tmc_tuning *tuning = &priv_state->handle.tmc.tuning;
	uint8_t index = tuning->index;
	uint8_t size = tuning->station_cnt;

	/* check if there's an entry for the given PI key */
	for (int i = 0; i < tuning->station_cnt; i++) {
		if (tuning->station[i].pi == pi) {
			return i;
		}
	}
	/* if the the maximum table size is reached, overwrite old
	 * entries, starting at the oldest one = 0 */
	tuning->station[index].pi = pi;
	tuning->index = (index+1 < MAX_TMC_ALT_STATIONS) ? (index+1) : 0;
	tuning->station_cnt = (size+1 <= MAX_TMC_ALT_STATIONS) ? (size+1) : MAX_TMC_ALT_STATIONS;
	return index;
}

/* tries to add new AFs to the relevant entry in the list of RDS-TMC providers */
static bool rds_add_tmc_af(struct rds_private_state *priv_state)
{
	struct v4l2_rds_group *grp = &priv_state->rds_group;
	struct v4l2_tmc_alt_freq *afi;
	uint16_t pi_on = grp->data_d_msb << 8 | grp->data_d_lsb;
	uint8_t variant = grp->data_b_lsb & 0x0f;
	uint8_t station_index = rds_add_tmc_station(priv_state, pi_on);
	uint8_t af_index;
	uint8_t mapped_af_index;
	uint32_t freq_a = rds_decode_af(grp->data_c_msb, true);
	uint32_t freq_b = rds_decode_af(grp->data_c_lsb, true);

	afi = &priv_state->handle.tmc.tuning.station[station_index].afi;
	af_index = afi->af_index;
	mapped_af_index = afi->mapped_af_index;

	/* specific frequencies */
	if (variant == 6) {
		/* compare the new AFs to the stored ones, reset them to 0 if the AFs are
		 * already known */
		for (int i = 0; i < afi->af_size; i++) {
			freq_a = (freq_a == afi->af[i]) ? 0 : freq_a;
			freq_b = (freq_b == afi->af[i]) ? 0 : freq_b;
		}
		/* return early if there is nothing to do */
		if (freq_a == 0 && freq_b == 0)
			return false;

		/* add the new AFs if they were previously unknown */
		if (freq_a != 0) {
			afi->af[af_index] = freq_a;
			af_index = (af_index+1 < MAX_TMC_AF_CNT) ? af_index+1 : 0;
			afi->af_size++;
		}
		if (freq_b != 0) {
			afi->af[af_index] = freq_b;
			af_index = (af_index+1 < MAX_TMC_AF_CNT) ? af_index+1 : 0;
			afi->af_size++;
		}
		/* update the information in the handle */
		afi->af_index = af_index;
		if (afi->af_size >= MAX_TMC_AF_CNT)
			afi->af_size = MAX_TMC_AF_CNT;

		return true;
	}

	/* mapped frequency pair */
	if (variant == 7) {
		/* check if there's already a frequency mapped to the new tuning
		 * frequency, update the mapped frequency in this case */
		for (int i = 0; i < afi->mapped_af_size; i++) {
			if (freq_a == afi->mapped_af_tuning[i]) {
				afi->mapped_af[i] = freq_b;
				return true;
			}
		}
		/* new pair is unknown, add it to the list */
		if (freq_a != 0 && freq_b != 0) {
			mapped_af_index = (mapped_af_index+1 >= MAX_TMC_AF_CNT) ? 0 : mapped_af_index + 1;
			afi->mapped_af[mapped_af_index] = freq_b;
			afi->mapped_af_tuning[mapped_af_index] = freq_a;
			afi->mapped_af_size++;
		}
		/* update the information in the handle */
		afi->mapped_af_index = mapped_af_index;
		if (afi->mapped_af_size >= MAX_TMC_AF_CNT)
			afi->mapped_af_size = MAX_TMC_AF_CNT;

		return true;
	}
	return false;
}

/* decode additional information of a TMC message into handy representation */
/* the additional information of TMC messages is submitted in (up to) 4 blocks of
 * 28 bits each, which are to be treated as a consecutive bit-array. This data
 * is represented by the optional_tmc array in the private handle, where each
 * value represents 1 bit. Each additional information set is defined by a 4-bit
 * label, and an associated data field for which the length is known */ 
void rds_tmc_decode_additional(struct rds_private_state *priv_state)
{
	struct v4l2_rds_tmc_msg *msg = &priv_state->handle.tmc.tmc_msg;
	struct v4l2_tmc_additional *fields = &msg->additional.fields[0];
	const uint8_t label_len = 4;	/* fixed length of a label */
	uint8_t len; 		/* length of next data field to be extracted */
	uint8_t label;		/* buffer for extracted label */
	uint16_t data;		/* buffer for extracted data */
	uint8_t array_idx = 0;	/* index for optional_tmc array */
	uint8_t *field_idx = &msg->additional.size;	/* index for
				 * additional field array */
	/* LUT for the length of additional data blocks as defined in
	 * ISO 14819-1 sect. 5.5.1 */
	static const uint8_t additional_lut[16] = {
		3, 3, 5, 5, 5, 8, 8, 8, 8, 11, 16, 16, 16, 16, 0, 0
	};

	/* reset the additional information from previous messages */
	*field_idx = 0;
	memset(fields, 0, sizeof(*fields));

	/* decode the optional TMC data */
	while (array_idx < (msg->length * 28)) {
		/* extract the next label */
		label = 0;
		for (int i = 0; i < label_len; i++) {
			if (priv_state->optional_tmc[array_idx++])
				label |= 1 << (label_len - 1 - i); 
		}

		/* extract the associated data block */
		data = 0;
		len = additional_lut[label];	/* length of data block */
		for (int i = 0; i < len; i++) {
			if (priv_state->optional_tmc[array_idx++])
				data |= 1 << (len - 1 - i);
		}

		/* if  the label is not "reserved for future use", or both
		 * fields are 0, store the extracted additional information */
		if (label == 15)
			continue;
		if (label == 0 && data == 0)
			continue;
		fields[*field_idx].label = label;
		fields[*field_idx].data = data;
		*field_idx += 1;
	}
}

/* decode the TMC system information that is contained in type 3A groups
 * that announce the presence of TMC */
static uint32_t rds_decode_tmc_system(struct rds_private_state *priv_state)
{
	struct v4l2_rds_group *group = &priv_state->rds_group;
	struct v4l2_rds_tmc *tmc = &priv_state->handle.tmc;
	uint8_t variant_code;

	/* check if the same group was received twice. If not, store new
	 * group and return early */
	if (!rds_compare_group(&priv_state->prev_tmc_sys_group, &priv_state->rds_group)) {
		priv_state->prev_tmc_sys_group = priv_state->rds_group;
		return 0;
	}
	/* bits 14-15 of block 3 contain the variant code */
	variant_code = priv_state->rds_group.data_c_msb >> 6;
	switch (variant_code) {
	case 0x00:
		/* bits 11-16 of block 3 contain the LTN */
		tmc->ltn = (((group->data_c_msb & 0x0f) << 2)) |
			(group->data_c_lsb >> 6);
		/* bit 5 of block 3 contains the AFI */
		tmc->afi = group->data_c_lsb & 0x20;
		/* bit 4 of block 3 contains the Mode */
		tmc->enhanced_mode = group->data_c_lsb & 0x10;
		/* bits 0-3 of block 3 contain the MGS */
		tmc->mgs = group->data_c_lsb & 0x0f;
		break;
	case 0x01:
		/* bits 12-13 of block 3 contain the Gap parameters */
		tmc->gap = (group->data_c_msb & 0x30) >> 4;
		/* bits 11-16 of block 3 contain the SID */
		tmc->sid = (((group->data_c_msb & 0x0f) << 2)) |
			(group->data_c_lsb >> 6);
		/* timing information is only valid in enhanced mode */
		if (!tmc->enhanced_mode)
			break;
		/* bits 4-5 of block 3 contain the activity time */
		tmc->t_a = (group->data_c_lsb & 0x30) >> 4;
		/* bits 2-3 of block 3 contain the window time */
		tmc->t_w = (group->data_c_lsb & 0x0c) >> 2;
		/* bits 0-1 of block 3 contain the delay time */
		tmc->t_d = group->data_c_lsb & 0x03;
		break;
	}
	return V4L2_RDS_TMC_SYS;
}

/* decode a single group TMC message */
static uint32_t rds_decode_tmc_single_group(struct rds_private_state *priv_state)
{
	struct v4l2_rds_group *grp = &priv_state->rds_group;
	struct v4l2_rds_tmc_msg msg;

	/* bits 0-2 of group 2 contain the duration value */
	msg.dp = grp->data_b_lsb & 0x07;
	/* bit 15 of block 3 indicates follow diversion advice */
	msg.follow_diversion = grp->data_c_msb & 0x80;
	/* bit 14 of block 3 indicates the direction */
	msg.neg_direction = grp->data_c_msb & 0x40;
	/* bits 11-13 of block 3 contain the extend of the event */
	msg.extent = (grp->data_c_msb & 0x38) >> 3;
	/* bits 0-10 of block 3 contain the event */
	msg.event = ((grp->data_c_msb & 0x07) << 8) | grp->data_c_lsb;
	/* bits 0-15 of block 4 contain the location */
	msg.location = (grp->data_d_msb << 8) | grp->data_d_lsb;
	/* there is no service ID in a single group TMC message, so
	 * just set it to 0. */
	msg.sid = 0;

	/* decoding done, store the new message */
	priv_state->handle.tmc.tmc_msg = msg;
	priv_state->handle.valid_fields |= V4L2_RDS_TMC_SG;
	priv_state->handle.valid_fields &= ~V4L2_RDS_TMC_MG;

	return V4L2_RDS_TMC_SG;
}

/* decode a multi group TMC message and decode the additional fields once
 * a complete group was decoded */
static uint32_t rds_decode_tmc_multi_group(struct rds_private_state *priv_state)
{
	struct v4l2_rds_group *grp = &priv_state->rds_group;
	struct v4l2_rds_tmc_msg *msg = &priv_state->new_tmc_msg;
	bool message_completed = false;
	uint8_t grp_seq_id;
	uint64_t buffer;

	/* bits 12-13 of block 3 contain the group sequence id, for all
	 * multi groups except the first group */
	grp_seq_id = (grp->data_c_msb & 0x30) >> 4;

	/* beginning of a new multigroup ? */
	/* bit 15 of block 3 is the first group indicator */
	if (grp->data_c_msb & 0x80) {
		/* begine decoding of new message */
		memset(msg, 0, sizeof(*msg));
		memset(priv_state->optional_tmc, 0, 112*sizeof(bool)); 
		/* bits 0-3 of block 2 contain continuity index */
		priv_state->continuity_id = grp->data_b_lsb & 0x07;
		/* bit 15 of block 3 indicates follow diversion advice */
		msg->follow_diversion = grp->data_c_msb & 0x80;
		/* bit 14 of block 3 indicates the direction */
		msg->neg_direction = grp->data_c_msb & 0x40;
		/* bits 11-13 of block 3 contain the extend of the event */
		msg->extent = (grp->data_c_msb & 0x38) >> 3;
		/* bits 0-10 of block 3 contain the event */
		msg->event = ((grp->data_c_msb & 0x07) << 8) | grp->data_c_lsb;
		/* bits 0-15 of block 4 contain the location */
		msg->location = (grp->data_d_msb << 8) | grp->data_d_lsb;
	}
	/* second group of multigroup ? */
	/* bit 14 of block 3 ist the second group indicator, and the
	 * group continuity id has to match */
	else if (grp->data_c_msb & 0x40 &&
		(grp->data_b_lsb & 0x07) == priv_state->continuity_id) {
		priv_state->grp_seq_id = grp_seq_id;
		/* store group for later decoding by transforming the bit values
		 * into boolean values and storing them in an array, to ease
		 * further handling */
		msg->length = 1;
		buffer = grp->data_c_msb << 24 | grp->data_c_lsb << 16 |
			grp->data_d_msb << 8 | grp->data_d_lsb;
		/* the buffer contains 28 bits of additional information */
		for (int i = 27; i >= 0; i--) {
			if (buffer & (1 << i))
				priv_state->optional_tmc[27-i] = true;
		}
		if (grp_seq_id == 0)
			message_completed = true;
	}
	/* subsequent groups of multigroup ? */
	/* group continuity id has to match, and group sequence number has
	 * to be smaller by one than the group sequence id */
	else if ((grp->data_b_lsb & 0x07) == priv_state->continuity_id &&
		(grp_seq_id == priv_state->grp_seq_id-1)) {
		priv_state->grp_seq_id = grp_seq_id;
		/* store group for later decoding */
		msg->length += 1;
		buffer = grp->data_c_msb << 24 | grp->data_c_lsb << 16|
			grp->data_d_msb << 8 | grp->data_d_lsb;
		/* the buffer contains 28 bits of additional information */
		for (int i = 27; i >= 0; i--) {
			if (buffer & (1 << i))
				priv_state->optional_tmc[msg->length*28 + 27 - i] = true;
		}
		if (grp_seq_id == 0)
			message_completed = true;
	}

	/* complete message received -> decode additional fields and store
	 * the new message */
	if (message_completed) {
		priv_state->handle.tmc.tmc_msg = *msg;
		rds_tmc_decode_additional(priv_state);
		priv_state->handle.valid_fields |= V4L2_RDS_TMC_MG;
		priv_state->handle.valid_fields &= ~V4L2_RDS_TMC_SG;
	}

	return V4L2_RDS_TMC_MG;
}

/* decode the RDS-TMC tuning information that is contained in type 8A groups
 * (variants 4 to 9) that announce the presence alternative transmitters 
 * providing the same RDS-TMC service */
static uint32_t rds_decode_tmc_tuning(struct rds_private_state *priv_state)
{
	struct v4l2_rds_group *group = &priv_state->rds_group;
	struct v4l2_rds_tmc *tmc = &priv_state->handle.tmc;
	uint8_t variant_code = group->data_b_lsb & 0x0f;
	uint16_t pi_on = (group->data_d_msb << 8) | group->data_d_lsb;
	uint8_t index;

	/* variants 4 and 5 carry the service provider name */
	if (variant_code >= 4 && variant_code <= 5) {
		int offset = 4 * (variant_code - 4);
		tmc->spn[0 + offset] = group->data_c_msb;
		tmc->spn[1 + offset] = group->data_c_lsb;
		tmc->spn[2 + offset] = group->data_d_msb;
		tmc->spn[3 + offset] = group->data_d_lsb;

	/* variant 6 provides specific frequencies for the same RDS-TMC service
	 * on a network with a different PI code */
	/* variant 7 provides mapped frequency pair information which should only
	 * be used if the terminal is tuned to the tuning frequency */
	} else if (variant_code == 6 || variant_code == 7) {
		rds_add_tmc_af(priv_state);

	/* variant 8 indicates up to 2 PI codes of adjacent networks carrying 
	 * the same RDS-TMC service on all transmitters of the network */ 
	} else if (variant_code == 8) {
		uint16_t pi_on_2 = (group->data_c_msb << 8) | group->data_c_lsb;

		/* try to add both transmitted PI codes to the table */
		rds_add_tmc_station(priv_state, pi_on);
		/* PI = 0 is used as a filler code */
		if (pi_on_2 != 0)
			rds_add_tmc_station(priv_state, pi_on_2);

	/* variant 9 provides PI codes of other networks with different system 
	 * parameters */
	} else if (variant_code == 9) {
		index = rds_add_tmc_station(priv_state, pi_on);

		/* bits 0 - 5 contain the service-ID of the ON */
		tmc->tuning.station[index].sid = group->data_c_lsb & 0x3F;
		/* bits 6-10 contain the msg parameters of the ON */
		tmc->tuning.station[index].msg = (group->data_c_msb & 0x03) << 2;
		tmc->tuning.station[index].msg |= (group->data_c_lsb >> 6) & 0x03;
		/* bits 11-15 contain the database-ID of the ON */
		tmc->tuning.station[index].ltn = group->data_c_msb >> 2;
	}

	return V4L2_RDS_TMC_TUNING;
}

static bool rds_add_oda(struct rds_private_state *priv_state, struct v4l2_rds_oda oda)
{
	struct v4l2_rds *handle = &priv_state->handle;

	/* check if there was already an ODA announced for this group type */
	for (int i = 0; i < handle->rds_oda.size; i++) {
		if (handle->rds_oda.oda[i].group_id == oda.group_id) {
			/* update the AID for this ODA */
			handle->rds_oda.oda[i].aid = oda.aid;
			return false;
		}
	}
	/* add the new ODA */
	if (handle->rds_oda.size >= MAX_ODA_CNT)
		return false;
	handle->rds_oda.oda[handle->rds_oda.size++] = oda;
	return true;
}

/* add a new AF to the list, if it doesn't exist yet */
static bool rds_add_af_to_list(struct v4l2_rds_af_set *af_set, uint8_t af, bool is_vhf)
{
	/* convert the frequency to Hz, skip on errors */
	uint32_t freq = rds_decode_af(af, is_vhf);

	if (freq == 0) 
		return false;

	/* prevent buffer overflows */
	if (af_set->size >= MAX_AF_CNT || af_set->size >= af_set->announced_af)
		return false;
	/* check if AF already exists */
	for (int i = 0; i < af_set->size; i++) {
		if (af_set->af[i] == freq)
			return false;
	}
	/* it's a new AF, add it to the list */
	af_set->af[af_set->size++] = freq;
	return true;
}

/* extracts the AF information from Block 3 of type 0A groups, and tries
 * to add them to the AF list with a helper function */
static bool rds_add_af(struct rds_private_state *priv_state)
{
	struct v4l2_rds *handle = &priv_state->handle;

	/* AFs are submitted in Block 3 of type 0A groups */
	uint8_t c_msb = priv_state->rds_group.data_c_msb;
	uint8_t c_lsb = priv_state->rds_group.data_c_lsb;
	bool updated_af = false;
	struct v4l2_rds_af_set *af_set = &handle->rds_af;

	/* the 4 8-bit values in the block's data fields (c_msb/c_lsb,
	 * d_msb/d_lsb) represent either a carrier frequency (1..204)
	 * or a special meaning (205..255).
	 * Translation tables can be found in IEC 62106 section 6.2.1.6 */

	/* 250: LF / MF frequency follows */
	if (c_msb == 250) {
		if (rds_add_af_to_list(af_set, c_lsb, false))
			updated_af = true;
		c_lsb = 0; /* invalidate */
	}
	/* 224..249: announcement of AF count (224=0, 249=25) */
	if (c_msb >= 224 && c_msb <= 249) {
		if (af_set->announced_af != c_msb - 224) {
			updated_af = true;
			af_set->size = 0;
		}
		af_set->announced_af = c_msb - 224;
	}
	/* check if the data represents an AF (for 1 <= val <= 204 the
	 * value represents an AF) */
	if (c_msb < 205)
		if (rds_add_af_to_list(af_set, c_msb, true))
			updated_af = true;
	if (c_lsb < 205)
		if (rds_add_af_to_list(af_set, c_lsb, true))
			updated_af = true;
	/* did we receive all announced AFs? */
	if (af_set->size >= af_set->announced_af && af_set->announced_af != 0)
		handle->valid_fields |= V4L2_RDS_AF;
	return updated_af;
}



/* adds one char of the ps name to temporal storage, the value is validated
 * if it is received twice in a row
 * @pos:	position of the char within the PS name (0..7)
 * @ps_char:	the new character to be added
 * @return:	true, if all 8 temporal ps chars have been validated */
static bool rds_add_ps(struct rds_private_state *priv_state, uint8_t pos, uint8_t ps_char)
{
	if (ps_char == priv_state->new_ps[pos]) {
		priv_state->new_ps_valid[pos] = 1;
	} else {
		priv_state->new_ps[pos] = ps_char;
		memset(priv_state->new_ps_valid, 0, 8);
	}

	/* check if all ps positions have been validated */
	for (int i = 0; i < 8; i++)
		if (priv_state->new_ps_valid[i] != 1)
			return false;
	return true;
}

/* checks if an entry for the given PI already exists and returns the index
 * of that entry if so. Else it adds a new entry to the EON table and returns
 * the index of the new field */
static uint8_t rds_add_eon_entry(struct rds_private_state *priv_state, uint16_t pi)
{
	struct v4l2_rds *handle = &priv_state->handle;
	uint8_t index = handle->rds_eon.index;
	uint8_t size = handle->rds_eon.size;

	/* check if there's an entry for the given PI key */
	for (int i = 0; i < handle->rds_eon.size; i++) {
		if (handle->rds_eon.eon[i].pi == pi) {
			return i;
		}
	}
	/* if the the maximum table size is reached, overwrite old
	 * entries, starting at the oldest one = 0 */
	handle->rds_eon.eon[index].pi = pi;
	handle->rds_eon.eon[index].valid_fields |= V4L2_RDS_PI;
	handle->rds_eon.index = (index+1 < MAX_EON_CNT) ? (index+1) : 0;
	handle->rds_eon.size = (size+1 <= MAX_EON_CNT) ? (size+1) : MAX_EON_CNT;
	return index;
}

/* checks if an entry for the given PI already exists */
static bool rds_check_eon_entry(struct rds_private_state *priv_state, uint16_t pi)
{
	struct v4l2_rds *handle = &priv_state->handle;

	/* check if there's an entry for the given PI key */
	for (int i = 0; i <= handle->rds_eon.size; i++) {
		if (handle->rds_eon.eon[i].pi == pi) {
			return true;
		}
	}
	return false;
}

/* group of functions to decode successfully received RDS groups into
 * easily accessible data fields
 *
 * group 0: basic tuning and switching */
static uint32_t rds_decode_group0(struct rds_private_state *priv_state)
{
	struct v4l2_rds *handle = &priv_state->handle;
	struct v4l2_rds_group *grp = &priv_state->rds_group;
	bool new_ps = false;
	bool tmp;
	uint32_t updated_fields = 0;

	/* bit 4 of block B contains the TA flag */
	tmp = grp->data_b_lsb & 0x10;
	if (handle->ta != tmp) {
		handle->ta = tmp;
		updated_fields |= V4L2_RDS_TA;
	}
	handle->valid_fields |= V4L2_RDS_TA;

	/* bit 3 of block B contains the Music/Speech flag */
	tmp = grp->data_b_lsb & 0x08;
	if (handle->ms != tmp) {
		handle->ms = tmp;
		updated_fields |= V4L2_RDS_MS;
	}
	handle->valid_fields |= V4L2_RDS_MS;

	/* bit 0-1 of block b contain program service name and decoder
	 * control segment address */
	uint8_t segment = grp->data_b_lsb & 0x03;

	/* put the received station-name characters into the correct position
	 * of the station name, and check if the new PS is validated */
	rds_add_ps(priv_state, segment * 2, grp->data_d_msb);
	new_ps = rds_add_ps(priv_state, segment * 2 + 1, grp->data_d_lsb);
	if (new_ps) {
		/* check if new PS is the same as the old one */
		if (memcmp(priv_state->new_ps, handle->ps, 8) != 0) {
			memcpy(handle->ps, priv_state->new_ps, 8);
			updated_fields |= V4L2_RDS_PS;
		}
		handle->valid_fields |= V4L2_RDS_PS;
	}

	/* bit 2 of block B contains 1 bit of the Decoder Control Information (DI)
	 * the segment number defines the bit position
	 * New bits are only accepted if the segments arrive in the correct order */
	bool bit2 = grp->data_b_lsb & 0x04;
	if (segment == 0 || segment == priv_state->next_di_segment) {
		switch (segment) {
		case 0:
			priv_state->new_di = set_bit(priv_state->new_di,
				V4L2_RDS_FLAG_DYNAMIC_PTY, bit2);
			priv_state->next_di_segment = 1;
			break;
		case 1:
			priv_state->new_di = set_bit(priv_state->new_di,
				V4L2_RDS_FLAG_COMPRESSED, bit2);
			priv_state->next_di_segment = 2;
			break;
		case 2:
			priv_state->new_di = set_bit(priv_state->new_di,
				V4L2_RDS_FLAG_ARTIFICIAL_HEAD, bit2);
			priv_state->next_di_segment = 3;
			break;
		case 3:
			priv_state->new_di = set_bit(priv_state->new_di,
				V4L2_RDS_FLAG_STEREO, bit2);
			/* check if the value of DI has changed, and store
			 * and signal DI update in case */
			if (handle->di != priv_state->new_di) {
				handle->di = priv_state->new_di;
				updated_fields |= V4L2_RDS_DI;
			}
			priv_state->next_di_segment = 0;
			handle->valid_fields |= V4L2_RDS_DI;
			break;
		}
	} else {
		/* wrong order of DI segments -> restart */
		priv_state->next_di_segment = 0;
		priv_state->new_di = 0;
	}

	/* version A groups contain AFs in block C */
	if (grp->group_version == 'A')
		if (rds_add_af(priv_state))
			updated_fields |= V4L2_RDS_AF;

	return updated_fields;
}

/* group 1: slow labeling codes & program item number */
static uint32_t rds_decode_group1(struct rds_private_state *priv_state)
{
	struct v4l2_rds *handle = &priv_state->handle;
	struct v4l2_rds_group *grp = &priv_state->rds_group;
	uint32_t updated_fields = 0;
	uint8_t variant_code = 0;

	/* version A groups contain slow labeling codes,
	 * version B groups only contain program item number which is a
	 * very uncommonly used feature */
	if (grp->group_version != 'A')
		return 0;

	/* bit 14-12 of block c contain the variant code */
	variant_code = (grp->data_c_msb >> 4) & 0x07;
	if (variant_code == 0) {
		/* var 0 -> ECC, only accept if same lc is
		 * received twice */
		if (grp->data_c_lsb == priv_state->new_ecc) {
			handle->valid_fields |= V4L2_RDS_ECC;
			if (handle->ecc != grp->data_c_lsb)
				updated_fields |= V4L2_RDS_ECC;
			handle->ecc = grp->data_c_lsb;
		} else {
			priv_state->new_ecc = grp->data_c_lsb;
		}
	} else if (variant_code == 0x03) {
		/* var 0x03 -> Language Code, only accept if same lc is
		 * received twice */
		if (grp->data_c_lsb == priv_state->new_lc) {
			handle->valid_fields |= V4L2_RDS_LC;
			updated_fields |= V4L2_RDS_LC;
			handle->lc = grp->data_c_lsb;
		} else {
			priv_state->new_lc = grp->data_c_lsb;
		}
	}
	return updated_fields;
}

/* group 2: radio text */
static uint32_t rds_decode_group2(struct rds_private_state *priv_state)
{
	struct v4l2_rds *handle = &priv_state->handle;
	struct v4l2_rds_group *grp = &priv_state->rds_group;
	uint32_t updated_fields = 0;

	/* bit 0-3 of block B contain the segment code */
	uint8_t segment = grp->data_b_lsb & 0x0f;
	/* bit 4 of block b contains the A/B text flag (new radio text
	 * will be transmitted) */
	bool rt_ab_flag_n = grp->data_b_lsb & 0x10;

	/* new Radio Text will be transmitted */
	if (rt_ab_flag_n != handle->rt_ab_flag) {
		handle->rt_ab_flag = rt_ab_flag_n;
		memset(handle->rt, 0, 64);
		handle->valid_fields &= ~V4L2_RDS_RT;
		updated_fields |= V4L2_RDS_RT;
		priv_state->next_rt_segment = 0;
	}

	/* further decoding of data depends on type of message (A or B)
	 * Type A allows RTs with a max length of 64 chars
	 * Type B allows RTs with a max length of 32 chars */
	if (grp->group_version == 'A') {
		if (segment == 0 || segment == priv_state->next_rt_segment) {
			priv_state->new_rt[segment * 4] = grp->data_c_msb;
			priv_state->new_rt[segment * 4 + 1] = grp->data_c_lsb;
			priv_state->new_rt[segment * 4 + 2] = grp->data_d_msb;
			priv_state->new_rt[segment * 4 + 3] = grp->data_d_lsb;
			priv_state->next_rt_segment = segment + 1;
			if (segment == 0x0f) {
				handle->rt_length = 64;
				handle->valid_fields |= V4L2_RDS_RT;
				if (memcmp(handle->rt, priv_state->new_rt, 64)) {
					memcpy(handle->rt, priv_state->new_rt, 64);
					updated_fields |= V4L2_RDS_RT;
				}
				priv_state->next_rt_segment = 0;
			}
		}
	} else {
		if (segment == 0 || segment == priv_state->next_rt_segment) {
			priv_state->new_rt[segment * 2] = grp->data_d_msb;
			priv_state->new_rt[segment * 2 + 1] = grp->data_d_lsb;
			/* PI code in block C will be ignored */
			priv_state->next_rt_segment = segment + 1;
			if (segment == 0x0f) {
				handle->rt_length = 32;
				handle->valid_fields |= V4L2_RDS_RT;
				updated_fields |= V4L2_RDS_RT;
				if (memcmp(handle->rt, priv_state->new_rt, 32)) {
					memcpy(handle->rt, priv_state->new_rt, 32);
					updated_fields |= V4L2_RDS_RT;
				}
				priv_state->next_rt_segment = 0;
			}
		}
	}

	/* determine if complete rt was received
	 * a carriage return (0x0d) can end a message early */
	for (int i = 0; i < 64; i++) {
		if (priv_state->new_rt[i] == 0x0d) {
			/* replace CR with terminating character */
			priv_state->new_rt[i] = '\0';
			handle->rt_length = i;
			handle->valid_fields |= V4L2_RDS_RT;
			if (memcmp(handle->rt, priv_state->new_rt, handle->rt_length)) {
					memcpy(handle->rt, priv_state->new_rt,
						handle->rt_length);
					updated_fields |= V4L2_RDS_RT;
				}
			priv_state->next_rt_segment = 0;
		}
	}
	return updated_fields;
}

/* group 3: Open Data Announcements */
static uint32_t rds_decode_group3(struct rds_private_state *priv_state)
{
	struct v4l2_rds *handle = &priv_state->handle;
	struct v4l2_rds_group *grp = &priv_state->rds_group;
	struct v4l2_rds_oda new_oda;
	uint32_t updated_fields = 0;

	if (grp->group_version != 'A')
		return 0;

	/* 0th bit of block b contains Group Type Info version of announced ODA
	 * Group Type info: 0 = A, 1 = B */
	new_oda.group_version = (grp->data_b_lsb & 0x01) ? 'B' : 'A';
	/* 1st to 4th bit contain Group ID of announced ODA */
	new_oda.group_id = (grp->data_b_lsb & 0x1e) >> 1;
	/* block D contains the 16bit Application Identification Code */
	new_oda.aid = (grp->data_d_msb << 8) | grp->data_d_lsb;

	/* try to add the new ODA to the set of defined ODAs */
	if (rds_add_oda(priv_state, new_oda)) {
		handle->decode_information |= V4L2_RDS_ODA;
		updated_fields |= V4L2_RDS_ODA;
	}

	/* if it's a TMC announcement decode the contained information */
	if (new_oda.aid == 0xcd46 || new_oda.aid == 0xcd47) {
		rds_decode_tmc_system(priv_state);
	}

	return updated_fields;
}

/* decodes the RDS date/time representation into a standard c representation
 * that can be used with c-library functions */
static time_t rds_decode_mjd(const struct rds_private_state *priv_state)
{
	struct tm new_time;
	int y, m, d, k = 0;
	/* offset is given in multiples of half hrs */
	uint32_t offset = priv_state->utc_offset & 0x1f;
	uint32_t local_mjd = priv_state->new_mjd;
	uint8_t local_hour = priv_state->utc_hour;
	uint8_t local_minute = priv_state->utc_minute;

	/* add / subtract the local offset to get the local time.
	 * The offset is expressed in multiples of half hours */
	if (priv_state->utc_offset & 0x20) { /* bit 5 indicates -/+ */
		local_hour -= offset / 2;
		local_minute -= (offset % 2) * 30;
	} else {
		local_hour += offset / 2;
		local_minute += (offset % 2) * 30;
	}

	/* the formulas for the conversion are taken from Annex G of the
	 * IEC 62106 RDS standard */
	y = (int)((local_mjd - 15078.2) / 365.25);
	m = (int)((local_mjd - 14956.1 - (int)(y * 365.25)) / 30.6001);
	d = (int)(local_mjd - 14956 - (int)(y * 365.25) - (int)(m * 30.6001));
	if (m == 14 || m == 15)
		k = 1;
	y = y + k;
	m = m - 1 - k*12;

	/* put the values into a tm struct for conversion into time_t value */
	new_time.tm_sec = 0;
	new_time.tm_min = local_minute;
	new_time.tm_hour = local_hour;
	new_time.tm_mday = d;
	new_time.tm_mon = m - 1;
	new_time.tm_year = y;
	/* offset (submitted by RDS) that was used to compute the local time,
	 * expressed in multiples of half hours, bit 5 indicates -/+ */
	if (priv_state->utc_offset & 0x20)
		new_time.tm_gmtoff = -offset * 1800;
	else
		new_time.tm_gmtoff = offset * 1800;

	/* convert tm struct to time_t value and return it */
	return mktime(&new_time);
}

/* group 4: Date and Time */
static uint32_t rds_decode_group4(struct rds_private_state *priv_state)
{
	struct v4l2_rds *handle = &priv_state->handle;
	struct v4l2_rds_group *grp = &priv_state->rds_group;
	uint32_t mjd;
	uint32_t updated_fields = 0;

	if (grp->group_version != 'A')
		return 0;

	/* bits 0-1 of block b lsb contain bits 15 and 16 of Julian day code
	 * bits 0-7 of block c msb contain bits 7 to 14 of Julian day code
	 * bits 1-7 of block c lsb contain bits 0 to 6 of Julian day code */
	mjd = ((grp->data_b_lsb & 0x03) << 15) |
		(grp->data_c_msb << 7) | (grp->data_c_lsb >> 1);
	/* the same mjd has to be received twice in order to accept the data */
	if (priv_state->new_mjd != mjd) {
		priv_state->new_mjd = mjd;
		return 0;
	}
	/* same mjd received at least twice --> decode time & date */

	/* bit 0 of block c lsb contains bit 4 of utc_hour
	 * bits 4-7 of block d contains bits 0 to 3 of utc_hour */
	priv_state->utc_hour = ((grp->data_c_lsb & 0x01) << 4) |
		(grp->data_d_msb >> 4);

	/* bits 0-3 of block d msb contain bits 2 to 5 of utc_minute
	 * bits 6-7 of block d lsb contain bits 0 and 1 utc_minute */
	priv_state->utc_minute = ((grp->data_d_msb & 0x0f) << 2) |
		(grp->data_d_lsb >> 6);

	/* bits 0-5 of block d lsb contain bits 0 to 5 of local time offset */
	priv_state->utc_offset = grp->data_d_lsb & 0x3f;

	/* decode RDS time representation into commonly used c representation */
	handle->time = rds_decode_mjd(priv_state);
	updated_fields |= V4L2_RDS_TIME;
	handle->valid_fields |= V4L2_RDS_TIME;
	return updated_fields;
}

/* group 8A: TMC */
static uint32_t rds_decode_group8(struct rds_private_state *priv_state)
{
	struct v4l2_rds_group *grp = &priv_state->rds_group;
	uint8_t tuning_variant;

	/* TMC uses version A exclusively */
	if (grp->group_version != 'A')
		return 0;

	/* check if the same group was received twice, store new rds group
	 * and return early if the old group doesn't match the new one */
	if (!rds_compare_group(&priv_state->prev_tmc_group, &priv_state->rds_group)) {
		priv_state->prev_tmc_group = priv_state->rds_group;
		return 0;
	}
	/* modify the old group, to prevent that the same TMC message is decoded
	 * again in the next iteration (the default number of repetitions for
	 * RDS-TMC groups is 3) */
	priv_state->prev_tmc_group.group_version = 0;

	/* handle the new TMC data depending on the message type */
	/* -> single group message */
	if ((grp->data_b_lsb & V4L2_TMC_SINGLE_GROUP) &&
		!(grp->data_b_lsb & V4L2_TMC_TUNING_INFO)) {
		return rds_decode_tmc_single_group(priv_state);
	}
	/* -> multi group message */
	if (!(grp->data_b_lsb & V4L2_TMC_SINGLE_GROUP) &&
		!(grp->data_b_lsb & V4L2_TMC_TUNING_INFO)) {
		return rds_decode_tmc_multi_group(priv_state);
	}
	/* -> tuning information message, defined for variants 4..9,
	 * submitted in bits 0-3 of block 2 */
	tuning_variant = grp->data_b_lsb & 0x0f;
	if ((grp->data_b_lsb & V4L2_TMC_TUNING_INFO) && tuning_variant >= 4 &&
		tuning_variant <= 9) {
		priv_state->handle.valid_fields |= V4L2_RDS_TMC_TUNING;
		return rds_decode_tmc_tuning(priv_state);
	}

	return 0;
}

/* group 10: Program Type Name */
static uint32_t rds_decode_group10(struct rds_private_state *priv_state)
{
	struct v4l2_rds *handle = &priv_state->handle;
	struct v4l2_rds_group *grp = &priv_state->rds_group;
	uint32_t updated_fields = 0;
	uint8_t ptyn_tmp[4];

	/* bit 0 of block B contain the segment code */
	uint8_t segment_code = grp->data_b_lsb & 0x01;
	/* bit 4 of block b contains the A/B text flag (new ptyn
	 * will be transmitted) */
	bool ptyn_ab_flag_n = grp->data_b_lsb & 0x10;

	if (grp->group_version != 'A')
		return 0;

	/* new Program Type Text will be transmitted */
	if (ptyn_ab_flag_n != handle->ptyn_ab_flag) {
		handle->ptyn_ab_flag = ptyn_ab_flag_n;
		memset(handle->ptyn, 0, 8 * sizeof(char));
		memset(priv_state->new_ptyn, 0, 8 * sizeof(char));
		memset(priv_state->new_ptyn_valid, 0, 2 * sizeof(bool));
		handle->valid_fields &= ~V4L2_RDS_PTYN;
		updated_fields |= V4L2_RDS_PTYN;
	}
	/* copy chars to designated position within temp text field */
	ptyn_tmp[0] = grp->data_c_msb;
	ptyn_tmp[1] = grp->data_c_lsb;
	ptyn_tmp[2] = grp->data_d_msb;
	ptyn_tmp[3] = grp->data_d_lsb;

	/* only validate ptyn segment if the same data is received twice */
	if (memcmp(ptyn_tmp, priv_state->new_ptyn[segment_code], 4) == 0) {
		priv_state->new_ptyn_valid[segment_code] = true;
	} else {
		for (int i = 0; i < 4; i++)
			priv_state->new_ptyn[segment_code][i] = ptyn_tmp[i];
		priv_state->new_ptyn_valid[segment_code] = false;
	}

	/* if both ptyn segments have been validated, accept the new ptyn */
	if (priv_state->new_ptyn_valid[0] && priv_state->new_ptyn_valid[1]) {
		for (int i = 0; i < 4; i++) {
			handle->ptyn[i] = priv_state->new_ptyn[0][i];
			handle->ptyn[4 + i] = priv_state->new_ptyn[1][i];
		}
		handle->valid_fields |= V4L2_RDS_PTYN;
		updated_fields |= V4L2_RDS_PTYN;
	}
	return updated_fields;
}

/* group 14: EON (Enhanced Other Network) information */
static uint32_t rds_decode_group14(struct rds_private_state* priv_state)
{
	struct v4l2_rds *handle = &priv_state->handle;
	struct v4l2_rds_group *grp = &priv_state->rds_group;
	struct v4l2_rds_eon *eon_entry;
	uint32_t updated_fields = 0;
	uint16_t pi_on;
	uint16_t lsf_on;
	uint8_t variant_code;
	uint8_t eon_index;
	uint8_t pty_on;
	bool tp_on, ta_on;
	bool new_a = false, new_b = false;

	if (grp->group_version != 'A')
		return 0;

	/* bits 0-3 of group b contain the variant code */
	variant_code = grp->data_b_lsb & 0x0f;

	/* group d contains the PI code of the ON (Other Network) */
	pi_on = (grp->data_d_msb << 8) | grp->data_d_lsb;

	/* bit 4 of group b contains the TP status of the ON*/
	tp_on = grp->data_b_lsb & 0x10;
	if (rds_check_eon_entry(priv_state, pi_on)) {
		/* if there's an entry for this PI(ON) update the TP field */
		eon_index = rds_add_eon_entry(priv_state, pi_on);
		eon_entry = &handle->rds_eon.eon[eon_index];
		eon_entry->tp = tp_on;
		eon_entry->valid_fields |= V4L2_RDS_TP;
		updated_fields |= V4L2_RDS_EON;
	}

	/* perform group variant dependent decoding */
	if ((variant_code >=5 && variant_code <= 11) || variant_code >= 14) {
		/* 5-9 = mapped FM frequencies -> unsupported
		 * 10-11 = unallocated
		 * 14 = PIN(ON) -> unsupported (unused RDS feature)
		 * 15 = reserved for broadcasters use */
		return updated_fields;
	}
	
	/* retrieve the EON entry corresponding to the PI(ON) code or add a new
	 * entry to the table if no entry exists */
	eon_index = rds_add_eon_entry(priv_state, pi_on);
	eon_entry = &handle->rds_eon.eon[eon_index];

	/* PS Name */
	if (variant_code < 4) {
		eon_entry->ps[variant_code*2] = grp->data_c_msb;
		eon_entry->ps[variant_code*2+1] = grp->data_c_lsb;
		eon_entry->valid_fields |= V4L2_RDS_PS;
		updated_fields |= V4L2_RDS_EON;
	}
	/* Alternative frequencies */
	else if (variant_code == 4) {
		uint8_t c_msb = grp->data_c_msb;
		uint8_t c_lsb = grp->data_c_lsb;

		/* 224..249: announcement of AF count (224=0, 249=25) */
		if (c_msb >= 224 && c_msb <= 249)
			eon_entry->af.announced_af = c_msb - 224;
		/* check if the data represents an AF (for 1 =< val <= 204 the
		 * value represents an AF) */
		if (c_msb < 205)
			new_a = rds_add_af_to_list(&eon_entry->af,
					grp->data_c_msb, true);
		if (c_lsb < 205)
			new_b = rds_add_af_to_list(&eon_entry->af,
					grp->data_c_lsb, true);
		/* check if one of the frequencies was previously unknown */
		if (new_a || new_b) {
			eon_entry->valid_fields |= V4L2_RDS_AF;
			updated_fields |= V4L2_RDS_EON;
		}
	}
	/* Linkage information */
	else if (variant_code == 12) {
		/* group c contains the lsf code */
		lsf_on = (grp->data_c_msb << 8) | grp->data_c_lsb;
		/* check if the lsf code is already known */
		new_a = (eon_entry->lsf == lsf_on);
		if (new_a) {
			eon_entry->lsf = lsf_on;
			eon_entry->valid_fields |= V4L2_RDS_LSF;
			updated_fields |= V4L2_RDS_EON;
		}
	}
	/* PTY(ON) and TA(ON) */
	else if (variant_code == 13) {
		/* bits 15-10 of group c contain the PTY(ON) */
		pty_on = grp->data_c_msb >> 3;
		/* bit 0 of group c contains the TA code */
		ta_on = grp->data_c_lsb & 0x01;
		/* check if the data is new */
		new_a = (eon_entry->pty == pty_on);
		if (new_a) {
			eon_entry->pty = pty_on;
			eon_entry->valid_fields |= V4L2_RDS_PTY;
		}
		new_b = (eon_entry->ta == ta_on);
		eon_entry->ta = ta_on;
		eon_entry->valid_fields |= V4L2_RDS_TA;
		if (new_a || new_b)
			updated_fields |= V4L2_RDS_EON;
	}
	/* set valid field for EON data, if EON table contains entries */
	if (handle->rds_eon.size > 0)
		handle->valid_fields |= V4L2_RDS_EON;

	return updated_fields;
}

typedef uint32_t (*decode_group_func)(struct rds_private_state *);

/* array of function pointers to contain all group specific decoding functions */
static const decode_group_func decode_group[16] = {
	[0] = rds_decode_group0,
	[1] = rds_decode_group1,
	[2] = rds_decode_group2,
	[3] = rds_decode_group3,
	[4] = rds_decode_group4,
	[8] = rds_decode_group8,
	[10] = rds_decode_group10,
	[14] = rds_decode_group14
};

static uint32_t rds_decode_group(struct rds_private_state *priv_state)
{
	struct v4l2_rds *handle = &priv_state->handle;
	uint8_t group_id = priv_state->rds_group.group_id;

	/* count the group type, and decode it if it is supported */
	handle->rds_statistics.group_type_cnt[group_id]++;
	if (decode_group[group_id])
		return (*decode_group[group_id])(priv_state);
	return 0;
}

struct v4l2_rds *v4l2_rds_create(bool is_rbds)
{
	struct rds_private_state *internal_handle =
		calloc(1, sizeof(struct rds_private_state));
	internal_handle->handle.is_rbds = is_rbds;

	return (struct v4l2_rds *)internal_handle;
}

void v4l2_rds_destroy(struct v4l2_rds *handle)
{
	if (handle)
		free(handle);
}

void v4l2_rds_reset(struct v4l2_rds *handle, bool reset_statistics)
{
	/* treat the private & the public part of the handle */
	struct rds_private_state *priv_state = (struct rds_private_state *) handle;

	/* store members of handle that shouldn't be affected by reset */
	bool is_rbds = handle->is_rbds;
	struct v4l2_rds_statistics rds_statistics = handle->rds_statistics;

	/* reset the handle */
	memset(priv_state, 0, sizeof(*priv_state));
	/* re-initialize members */
	handle->is_rbds = is_rbds;
	if (!reset_statistics)
		handle->rds_statistics = rds_statistics;
}

/* function decodes raw RDS data blocks into complete groups. Once a full group is
 * successfully received, the group is decoded into the fields of the RDS handle.
 * Decoding is only done once a complete group was received. This is slower compared
 * to decoding the group type independent information up front, but adds a barrier
 * against corrupted data (happens regularly when reception is weak) */
uint32_t v4l2_rds_add(struct v4l2_rds *handle, struct v4l2_rds_data *rds_data)
{
	struct rds_private_state *priv_state = (struct rds_private_state *) handle;
	struct v4l2_rds_data *rds_data_raw = priv_state->rds_data_raw;
	struct v4l2_rds_statistics *rds_stats = &handle->rds_statistics;
	uint32_t updated_fields = 0;
	uint8_t *decode_state = &(priv_state->decode_state);

	/* get the block id by masking out irrelevant bits */
	int block_id = rds_data->block & V4L2_RDS_BLOCK_MSK;

	rds_stats->block_cnt++;
	/* check for corrected / uncorrectable errors in the data */
	if ((rds_data->block & V4L2_RDS_BLOCK_ERROR) ||
	    block_id == V4L2_RDS_BLOCK_INVALID) {
		block_id = -1;
		rds_stats->block_error_cnt++;
	} else if (rds_data->block & V4L2_RDS_BLOCK_CORRECTED) {
		rds_stats->block_corrected_cnt++;
	}

	switch (*decode_state) {
	case RDS_EMPTY:
		if (block_id == 0) {
			*decode_state = RDS_A_RECEIVED;
			/* begin reception of a new data group, reset raw buffer to 0 */
			memset(rds_data_raw, 0, sizeof(*rds_data_raw));
			rds_data_raw[0] = *rds_data;
		} else {
			/* ignore block if it is not the first block of a group */
			rds_stats->group_error_cnt++;
		}
		break;

	case RDS_A_RECEIVED:
		if (block_id == 1) {
			*decode_state = RDS_B_RECEIVED;
			rds_data_raw[1] = *rds_data;
		} else {
			/* received block with unexpected block id, reset state machine */
			rds_stats->group_error_cnt++;
			*decode_state = RDS_EMPTY;
		}
		break;

	case RDS_B_RECEIVED:
		/* handle type C and C' blocks alike */
		if (block_id == 2 || block_id ==  4) {
			*decode_state = RDS_C_RECEIVED;
			rds_data_raw[2] = *rds_data;
		} else {
			rds_stats->group_error_cnt++;
			*decode_state = RDS_EMPTY;
		}
		break;

	case RDS_C_RECEIVED:
		if (block_id == 3) {
			*decode_state = RDS_EMPTY;
			rds_data_raw[3] = *rds_data;
			/* a full group was received */
			rds_stats->group_cnt++;
			/* decode group type independent fields */
			memset(&priv_state->rds_group, 0, sizeof(priv_state->rds_group));
			updated_fields |= rds_decode_a(priv_state, &rds_data_raw[0]);
			updated_fields |= rds_decode_b(priv_state, &rds_data_raw[1]);
			rds_decode_c(priv_state, &rds_data_raw[2]);
			rds_decode_d(priv_state, &rds_data_raw[3]);
			/* decode group type dependent fields */
			updated_fields |= rds_decode_group(priv_state);
			return updated_fields;
		}
		rds_stats->group_error_cnt++;
		*decode_state = RDS_EMPTY;
		break;

	default:
		/* every unexpected block leads to a reset of the sm */
		rds_stats->group_error_cnt++;
		*decode_state = RDS_EMPTY;
	}
	/* if we reach here, no RDS group was completed */
	return 0;
}

const char *v4l2_rds_get_pty_str(const struct v4l2_rds *handle)
{
	const uint8_t pty = handle->pty;

	if (pty >= 32)
		return NULL;

	static const char *rds_lut[32] = {
		"None", "News", "Affairs", "Info", "Sport", "Education", "Drama",
		"Culture", "Science", "Varied Speech", "Pop Music",
		"Rock Music", "Easy Listening", "Light Classics M",
		"Serious Classics", "Other Music", "Weather", "Finance",
		"Children", "Social Affairs", "Religion", "Phone In",
		"Travel & Touring", "Leisure & Hobby", "Jazz Music",
		"Country Music", "National Music", "Oldies Music", "Folk Music",
		"Documentary", "Alarm Test", "Alarm!"
	};
	static const char *rbds_lut[32] = {
		"None", "News", "Information", "Sports", "Talk", "Rock",
		"Classic Rock", "Adult Hits", "Soft Rock", "Top 40", "Country",
		"Oldies", "Soft", "Nostalgia", "Jazz", "Classical",
		"R&B", "Soft R&B", "Foreign Language", "Religious Music",
		"Religious Talk", "Personality", "Public", "College",
		"Spanish Talk", "Spanish Music", "Hip-Hop", "Unassigned",
		"Unassigned", "Weather", "Emergency Test", "Emergency"
	};

	return handle->is_rbds ? rbds_lut[pty] : rds_lut[pty];
}

const char *v4l2_rds_get_country_str(const struct v4l2_rds *handle)
{
	/* defines the  region of the world
	 * 0x0e = Europe, 0x0d = Africa, 0x0a = ITU Region 2,
	 * 0x0f = ITU Region 3 */
	uint8_t ecc_h = handle->ecc >> 4;
	/* sub identifier for the region, valid range 0..4 */
	uint8_t ecc_l = handle->ecc & 0x0f;
	/* bits 12-15 pi contain the country code */
	uint8_t country_code = handle->pi >> 12;

	/* LUT for European countries
	 * the standard doesn't define every possible value but leaves some
	 * undefined. An exception is e4-7 which is defined as a dash ("-") */
	static const char *e_lut[5][16] = {
	{
		NULL, "DE", "DZ", "AD", "IL", "IT", "BE", "RU", "PS", "AL",
		"AT", "HU", "MT", "DE", NULL, "EG"
	}, {
		NULL, "GR", "CY", "SM", "CH", "JO", "FI", "LU", "BG", "DK",
		"GI", "IQ", "GB", "LY", "RO", "FR"
	}, {
		NULL, "MA", "CZ", "PL", "VA", "SK", "SY", "TN", NULL, "LI",
		"IS", "MC", "LT", "RS", "ES", "NO"
	}, {
		NULL, "ME", "IE", "TR", "MK", NULL, NULL, NULL, "NL", "LV",
		"LB", "AZ", "HR", "KZ", "SE", "BY"
	}, {
		NULL, "MD", "EE", "KG", NULL, NULL, "UA", "-", "PT", "SI",
		"AM", NULL, "GE", NULL, NULL, "BA"
	}
	};

	/* for now only European countries are supported -> ECC E0 - E4
	 * but the standard defines country codes for the whole world,
	 * that's the reason for returning "unknown" instead of a NULL
	 * pointer until all defined countries are supported */
	if (ecc_h == 0x0e && ecc_l <= 0x04)
		return e_lut[ecc_l][country_code];
	return "Unknown";
}

static const char *rds_language_lut(const uint8_t lc)
{
	const uint8_t max_lc = 127;
	const char *language;

	static const char *language_lut[128] = {
		"Unknown", "Albanian", "Breton", "Catalan",
		"Croatian", "Welsh", "Czech", "Danish",
		"German", "English", "Spanish", "Esperanto",
		"Estonian", "Basque", "Faroese", "French",
		"Frisian", "Irish", "Gaelic", "Galician",
		"Icelandic", "Italian", "Lappish", "Latin",
		"Latvian", "Luxembourgian", "Lithuanian", "Hungarian",
		"Maltese", "Dutch", "Norwegian", "Occitan",
		"Polish", "Portuguese", "Romanian", "Ramansh",
		"Serbian", "Slovak", "Slovene", "Finnish",
		"Swedish", "Turkish", "Flemish", "Walloon",
		NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
		NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
		NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
		NULL, "Zulu", "Vietnamese", "Uzbek",
		"Urdu", "Ukrainian", "Thai", "Telugu",
		"Tatar", "Tamil", "Tadzhik", "Swahili",
		"Sranan Tongo", "Somali", "Sinhalese", "Shona",
		"Serbo-Croat", "Ruthenian", "Russian", "Quechua",
		"Pushtu", "Punjabi", "Persian", "Papamiento",
		"Oriya", "Nepali", "Ndebele", "Marathi",
		"Moldavian", "Malaysian", "Malagasay", "Macedonian",
		"Laotian", "Korean", "Khmer", "Kazahkh",
		"Kannada", "Japanese", "Indonesian", "Hindi",
		"Hebrew", "Hausa", "Gurani", "Gujurati",
		"Greek", "Georgian", "Fulani", "Dani",
		"Churash", "Chinese", "Burmese", "Bulgarian",
		"Bengali", "Belorussian", "Bambora", "Azerbaijani",
		"Assamese", "Armenian", "Arabic", "Amharic"
	};

	/* filter invalid values and undefined table entries */
	language = (lc > max_lc) ? "Unknown" : language_lut[lc];
	if (!language)
		return "Unknown";
	return language;
}

const char *v4l2_rds_get_language_str(const struct v4l2_rds *handle)
{
	return rds_language_lut(handle->lc);
}

const char *v4l2_rds_get_coverage_str(const struct v4l2_rds *handle)
{
	/* bits 8-11 contain the area coverage code */
	uint8_t coverage = (handle->pi >> 8) & 0x0f;
	uint8_t nibble = (handle->pi >> 12) & 0x0f;
	static const char *coverage_lut[16] = {
		"Local", "International", "National", "Supra-Regional",
		"Regional 1", "Regional 2", "Regional 3", "Regional 4",
		"Regional 5", "Regional 6", "Regional 7", "Regional 8",
		"Regional 9", "Regional 10", "Regional 11", "Regional 12"
	};

	/*
	 * Coverage area codes are restricted to the B, D and E PI code
	 * blocks for RBDS.
	 */
	if (!handle->is_rbds ||
	    (nibble == 0xb || nibble == 0xd || nibble == 0xe))
		return coverage_lut[coverage];
	return "Not Available";
}

const struct v4l2_rds_group *v4l2_rds_get_group(const struct v4l2_rds *handle)
{
	struct rds_private_state *priv_state = (struct rds_private_state *) handle;
	return &priv_state->rds_group;
}