1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
|
// Package logbuffer provides a structure and API for efficiently reading
// and writing logs that may be streamed to a server.
package logbuffer
import (
"context"
"sync"
"sync/atomic"
)
// Entry is just an interface{} type. Buffer doesn't care what the entries
// are since it assumes they come in in some order and are read in that same
// order.
type Entry interface{}
var (
chunkCount = 32
chunkSize = 164
)
// Buffer is a data structure for buffering logs with concurrent read/write access.
//
// Callers can use easy APIs to write and read data and the storage and access
// is managed underneath. If a reader falls behind a writer significantly, then
// the next read may "jump" forward to catch up. There is no way to explicitly
// detect a jump currently.
//
// Writer
//
// The writer calls Write on the buffer as it gets log entries. Multiple
// writers are safe to use. The buffer will always successfully write all
// entries, though it may result in extra allocations.
//
// buf.Write(entries...)
//
// Reader
//
// A reader calls buf.Reader to get a Reader structure, and then calls Read
// to read values from the buffer. The Reader structure is used to maintain
// per-reader cursors so that multiple readers can exist at multiple points.
//
// Internal Details
//
// A buffer is structured as a sliding window over a set of "chunks". A chunk
// is a set of log entries. As you write into the buffer, the buffer will
// append to the current chunk until it is full, then move to the next chunk.
// When all the chunks are full, the buffer will allocate a new set of chunks.
//
// The break into "chunks" is done for two reasons. The first is to prevent
// overallocation; we don't need to allocate a lot of buffer space, only enough
// for the current chunk. Second, to avoid lock contention. Once a chunk is
// full, it will never be written to again so we never need to acquire a lock
// to read the data. This makes reading backlogs very fast.
type Buffer struct {
chunks []chunk
cond *sync.Cond
current int
readers map[*Reader]struct{}
}
// New creates a new Buffer.
func New() *Buffer {
var m sync.Mutex
return &Buffer{
chunks: make([]chunk, chunkCount),
cond: sync.NewCond(&m),
}
}
// Write writes the set of entries into the buffer.
//
// This is safe for concurrent access.
func (b *Buffer) Write(entries ...Entry) {
b.cond.L.Lock()
defer b.cond.L.Unlock()
// Write all our entries
for n := 0; n < len(entries); {
current := &b.chunks[b.current]
// Write our entries
n += current.write(entries[n:])
// If our chunk is full, we need to move to the next chunk or
// otherwise move the full window.
if current.full() {
b.current++ // move to the next chunk
// If our index is beyond the end of our chunk list then we
// allocate a new chunk list and move to that. Existing readers
// hold on to the reference to the old chunk list so they'll
// finish reading there.
if b.current >= len(b.chunks) {
b.chunks = make([]chunk, chunkCount)
b.current = 0
}
}
}
// Wake up any sleeping readers
b.cond.Broadcast()
}
// Reader returns a shared reader for this buffer. The Reader provides
// an easy-to-use API to read log entries.
//
// maxHistory limits the number of elements in the backlog. maxHistory of
// zero will move the cursur to the latest entry. maxHistory less than
// zero will not limit history at all and the full backlog will be
// available to read.
func (b *Buffer) Reader(maxHistory int32) *Reader {
b.cond.L.Lock()
defer b.cond.L.Unlock()
// Default to full history, all chunks and zero index.
var cursor uint32
chunks := b.chunks
// If we have a max history set then we have to setup the cursor/chunks.
if maxHistory >= 0 {
if maxHistory == 0 {
// If we are requesting no history, then we move to the latest
// point in the chunk.
chunks = b.chunks[b.current:]
cursor = chunks[0].size()
} else {
// We have a set amount of history we'd like to have at most.
var size int32
for i := b.current; i >= 0; i-- {
// Add the size of this chunk to our total size
size += int32(chunks[i].size())
// If we passed our maximum size, then trim it here. We
// don't worry about getting an exact amount of history so
// we don't set cursor. maxHistory is documented as "at most"
// and may be missing some available back log.
if size > maxHistory {
chunks = b.chunks[i:]
cursor = uint32(size - maxHistory)
}
}
}
}
// Build our initial reader
result := &Reader{b: b, chunks: chunks, cursor: cursor, closeCh: make(chan struct{})}
// Track our reader
if b.readers == nil {
b.readers = make(map[*Reader]struct{})
}
b.readers[result] = struct{}{}
return result
}
// Close closes this log buffer. This will immediately close all active
// readers and further writes will do nothing.
func (b *Buffer) Close() error {
// We grab a lock to quickly get the readers map, then set the map to
// nil. Reader Close also grabs a lock so we can't hold the whole time.
// We know we'll close all readers so we set the map to nil.
b.cond.L.Lock()
rs := b.readers
b.readers = nil
b.cond.L.Unlock()
// Close all our readers
for r := range rs {
r.Close()
}
return nil
}
// Reader reads log entry values from a buffer.
//
// Each Reader maintains its own read cursor. This allows multiple readers
// to exist across a Buffer at multiple points. Subsequent calls to Read
// may "jump" across time if a reader falls behind the writer.
//
// It is not safe to call Read concurrently. If you want concurrent read
// access you can either create multiple readers or protect Read with a lock.
// You may call Close concurrently with Read.
type Reader struct {
b *Buffer
chunks []chunk
closeCh chan struct{}
idx int
cursor uint32
closed uint32
}
// Read returns a batch of log entries, up to "max" amount. If "max" isn't
// available, this will return any number that currently exists. If zero
// exist and block is true, this will block waiting for available entries.
// If block is false and no more log entries exist, this will return nil.
func (r *Reader) Read(max int, block bool) []Entry {
// If we're closed then do nothing.
if atomic.LoadUint32(&r.closed) > 0 {
return nil
}
chunk := &r.chunks[r.idx] // Important: this must be the pointer
result, cursor := chunk.read(r.b.cond, &r.closed, r.cursor, uint32(max), block)
// If we're not at the end, return our result
if !chunk.atEnd(cursor) {
r.cursor = cursor
return result
}
// We're at the end of this chunk, move to the next one
r.idx++
r.cursor = 0
// If we're at the end of our chunk list, get the next set
if r.idx >= len(r.chunks) {
r.chunks = r.b.Reader(-1).chunks
r.idx = 0
}
return result
}
// Close closes the reader. This will cause all future Read calls to
// return immediately with a nil result. This will also immediately unblock
// any currently blocked Reads.
//
// This is safe to call concurrently with Read.
func (r *Reader) Close() error {
if atomic.CompareAndSwapUint32(&r.closed, 0, 1) {
// Delete ourselves from the registered readers
r.b.cond.L.Lock()
delete(r.b.readers, r)
r.b.cond.L.Unlock()
close(r.closeCh)
// Only broadcast if we closed. The broadcast will wake up any waiters
// which will see that the reader is closed.
r.b.cond.Broadcast()
}
return nil
}
// CloseContext will block until ctx is done and then close the reader.
// This can be called multiple times to register multiple context values
// to close the reader on.
func (r *Reader) CloseContext(ctx context.Context) {
select {
case <-ctx.Done():
r.Close()
case <-r.closeCh:
// Someone else closed, exit.
}
}
type chunk struct {
idx uint32
buffer []Entry
}
// atEnd returns true if the cursor is at the end of the chunk. The
// end means that there will never be any more new values.
func (w *chunk) atEnd(cursor uint32) bool {
return cursor > 0 && cursor >= uint32(len(w.buffer))
}
// full returns true if this chunk is full. full means that the write
// cursor is at the end of the chunk and no more data can be written. Any
// calls to write will return with 0.
func (w *chunk) full() bool {
return w.atEnd(atomic.LoadUint32(&w.idx))
}
// size returns the current size of the chunk
func (w *chunk) size() uint32 {
return atomic.LoadUint32(&w.idx)
}
// read reads up to max number of elements from the chunk from the current
// cursor value. If any values are available, this will return up to max
// amount immediately. If no values are available, this will block until
// more become available.
//
// The caller should take care to check chunk.atEnd with their cursor to
// see if they're at the end of the chunk. If you're at the end of the chunk,
// this will always return immediately to avoid blocking forever.
func (w *chunk) read(cond *sync.Cond, closed *uint32, current, max uint32, block bool) ([]Entry, uint32) {
idx := atomic.LoadUint32(&w.idx)
if idx <= current {
// If we're at the end we'd block forever cause we'll never see another
// write, so just return the current cursor again. This should never
// happen because the caller should be checking atEnd manually.
//
// We also return immediately if we're non-blocking.
if w.atEnd(current) || !block {
return nil, current
}
// Block until we have more data. This is the only scenario we need
// to hold a lock because the buffer will use a condition var to broadcast
// that data has changed.
cond.L.Lock()
for idx <= current {
cond.Wait()
// If we closed, exit
if atomic.LoadUint32(closed) > 0 {
cond.L.Unlock()
return nil, current
}
// Check the new index
idx = atomic.LoadUint32(&w.idx)
}
cond.L.Unlock()
}
end := idx // last index to return, starts with our cursor
// If the length of items we'd return is more than the maximum
// we'd want, we just take the maximum.
if (idx - current) > max {
end = current + max
}
// Return the slice. Note we set the cap() here to be the length
// returned just so the caller doesn't get any leaked info about
// our underlying buffer.
return w.buffer[current:end:end], end
}
// write wites the set of entries into this chunk and returns the number
// of entries written. If the return value is less than the length of
// entries, this means this chunk is full and the remaining entries must
// be written to the next chunk.
func (w *chunk) write(entries []Entry) int {
// If we have no buffer then allocate it now. This is safe to do in
// a concurrent setting because we'll only ever attempt to read
// w.buffer in read if w.idx > 0.
if w.buffer == nil {
w.buffer = make([]Entry, chunkSize)
}
// Write as much of the entries as we can into our buffer starting
// with our current index.
n := copy(w.buffer[atomic.LoadUint32(&w.idx):], entries)
// Move our cursor for the readers
atomic.AddUint32(&w.idx, uint32(n))
return n
}
|