1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
/*
* Test program that illustrates how to annotate a smart pointer
* implementation. In a multithreaded program the following is relevant when
* working with smart pointers:
* - whether or not the objects pointed at are shared over threads.
* - whether or not the methods of the objects pointed at are thread-safe.
* - whether or not the smart pointer objects are shared over threads.
* - whether or not the smart pointer object itself is thread-safe.
*
* Most smart pointer implemenations are not thread-safe
* (e.g. boost::shared_ptr<>, tr1::shared_ptr<> and the smart_ptr<>
* implementation below). This means that it is not safe to modify a shared
* pointer object that is shared over threads without proper synchronization.
*
* Even for non-thread-safe smart pointers it is possible to have different
* threads access the same object via smart pointers without triggering data
* races on the smart pointer objects.
*
* A smart pointer implementation guarantees that the destructor of the object
* pointed at is invoked after the last smart pointer that points to that
* object has been destroyed or reset. Data race detection tools cannot detect
* this ordering without explicit annotation for smart pointers that track
* references without invoking synchronization operations recognized by data
* race detection tools.
*/
#include <cassert> // assert()
#include <climits> // PTHREAD_STACK_MIN
#include <iostream> // std::cerr
#include <stdlib.h> // atoi()
#include <vector>
#ifdef _WIN32
#include <process.h> // _beginthreadex()
#include <windows.h> // CRITICAL_SECTION
#else
#include <pthread.h> // pthread_mutex_t
#endif
#include "unified_annotations.h"
static bool s_enable_annotations;
#ifdef _WIN32
class AtomicInt32
{
public:
AtomicInt32(const int value = 0) : m_value(value) { }
~AtomicInt32() { }
LONG operator++() { return InterlockedIncrement(&m_value); }
LONG operator--() { return InterlockedDecrement(&m_value); }
private:
volatile LONG m_value;
};
class Mutex
{
public:
Mutex() : m_mutex()
{ InitializeCriticalSection(&m_mutex); }
~Mutex()
{ DeleteCriticalSection(&m_mutex); }
void Lock()
{ EnterCriticalSection(&m_mutex); }
void Unlock()
{ LeaveCriticalSection(&m_mutex); }
private:
CRITICAL_SECTION m_mutex;
};
class Thread
{
public:
Thread() : m_thread(INVALID_HANDLE_VALUE) { }
~Thread() { }
void Create(void* (*pf)(void*), void* arg)
{
WrapperArgs* wrapper_arg_p = new WrapperArgs(pf, arg);
m_thread = reinterpret_cast<HANDLE>(_beginthreadex(NULL, 0, wrapper,
wrapper_arg_p, 0, NULL));
}
void Join()
{ WaitForSingleObject(m_thread, INFINITE); }
private:
struct WrapperArgs
{
WrapperArgs(void* (*pf)(void*), void* arg) : m_pf(pf), m_arg(arg) { }
void* (*m_pf)(void*);
void* m_arg;
};
static unsigned int __stdcall wrapper(void* arg)
{
WrapperArgs* wrapper_arg_p = reinterpret_cast<WrapperArgs*>(arg);
WrapperArgs wa = *wrapper_arg_p;
delete wrapper_arg_p;
return reinterpret_cast<unsigned>((wa.m_pf)(wa.m_arg));
}
HANDLE m_thread;
};
#else // _WIN32
class AtomicInt32
{
public:
AtomicInt32(const int value = 0) : m_value(value) { }
~AtomicInt32() { }
int operator++() { return __sync_add_and_fetch(&m_value, 1); }
int operator--() { return __sync_sub_and_fetch(&m_value, 1); }
private:
volatile int m_value;
};
class Mutex
{
public:
Mutex() : m_mutex()
{ pthread_mutex_init(&m_mutex, NULL); }
~Mutex()
{ pthread_mutex_destroy(&m_mutex); }
void Lock()
{ pthread_mutex_lock(&m_mutex); }
void Unlock()
{ pthread_mutex_unlock(&m_mutex); }
private:
pthread_mutex_t m_mutex;
};
class Thread
{
public:
Thread() : m_tid() { }
~Thread() { }
void Create(void* (*pf)(void*), void* arg)
{
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN + 4096);
pthread_create(&m_tid, &attr, pf, arg);
pthread_attr_destroy(&attr);
}
void Join()
{ pthread_join(m_tid, NULL); }
private:
pthread_t m_tid;
};
#endif // !defined(_WIN32)
template<class T>
class smart_ptr
{
public:
typedef AtomicInt32 counter_t;
template <typename Q> friend class smart_ptr;
explicit smart_ptr()
: m_ptr(NULL), m_count_ptr(NULL)
{ }
explicit smart_ptr(T* const pT)
: m_ptr(NULL), m_count_ptr(NULL)
{
set(pT, pT ? new counter_t(0) : NULL);
}
template <typename Q>
explicit smart_ptr(Q* const q)
: m_ptr(NULL), m_count_ptr(NULL)
{
set(q, q ? new counter_t(0) : NULL);
}
~smart_ptr()
{
set(NULL, NULL);
}
smart_ptr(const smart_ptr<T>& sp)
: m_ptr(NULL), m_count_ptr(NULL)
{
set(sp.m_ptr, sp.m_count_ptr);
}
template <typename Q>
smart_ptr(const smart_ptr<Q>& sp)
: m_ptr(NULL), m_count_ptr(NULL)
{
set(sp.m_ptr, sp.m_count_ptr);
}
smart_ptr& operator=(const smart_ptr<T>& sp)
{
set(sp.m_ptr, sp.m_count_ptr);
return *this;
}
smart_ptr& operator=(T* const p)
{
set(p, p ? new counter_t(0) : NULL);
return *this;
}
template <typename Q>
smart_ptr& operator=(Q* const q)
{
set(q, q ? new counter_t(0) : NULL);
return *this;
}
T* operator->() const
{
assert(m_ptr);
return m_ptr;
}
T& operator*() const
{
assert(m_ptr);
return *m_ptr;
}
private:
void set(T* const pT, counter_t* const count_ptr)
{
if (m_ptr != pT)
{
if (m_count_ptr)
{
if (s_enable_annotations)
U_ANNOTATE_HAPPENS_BEFORE(m_count_ptr);
if (--(*m_count_ptr) == 0)
{
if (s_enable_annotations)
U_ANNOTATE_HAPPENS_AFTER(m_count_ptr);
delete m_ptr;
m_ptr = NULL;
delete m_count_ptr;
m_count_ptr = NULL;
}
}
m_ptr = pT;
m_count_ptr = count_ptr;
if (count_ptr)
++(*m_count_ptr);
}
}
T* m_ptr;
counter_t* m_count_ptr;
};
class counter
{
public:
counter()
: m_mutex(), m_count()
{ }
~counter()
{
// Data race detection tools that do not recognize the
// ANNOTATE_HAPPENS_BEFORE() / ANNOTATE_HAPPENS_AFTER() annotations in the
// smart_ptr<> implementation will report that the assignment below
// triggers a data race.
m_count = -1;
}
int get() const
{
int result;
m_mutex.Lock();
result = m_count;
m_mutex.Unlock();
return result;
}
int post_increment()
{
int result;
m_mutex.Lock();
result = m_count++;
m_mutex.Unlock();
return result;
}
private:
mutable Mutex m_mutex;
int m_count;
};
static void* thread_func(void* arg)
{
smart_ptr<counter>* pp = reinterpret_cast<smart_ptr<counter>*>(arg);
(*pp)->post_increment();
*pp = NULL;
delete pp;
return NULL;
}
int main(int argc, char** argv)
{
const int nthreads = std::max(argc > 1 ? atoi(argv[1]) : 1, 1);
const int iterations = std::max(argc > 2 ? atoi(argv[2]) : 1, 1);
s_enable_annotations = argc > 3 ? !!atoi(argv[3]) : true;
for (int j = 0; j < iterations; ++j)
{
std::vector<Thread> T(nthreads);
smart_ptr<counter> p(new counter);
p->post_increment();
for (std::vector<Thread>::iterator q = T.begin(); q != T.end(); q++)
q->Create(thread_func, new smart_ptr<counter>(p));
{
// Avoid that counter.m_mutex introduces a false ordering on the
// counter.m_count accesses.
const timespec delay = { 0, 100 * 1000 * 1000 };
nanosleep(&delay, 0);
}
p = NULL;
for (std::vector<Thread>::iterator q = T.begin(); q != T.end(); q++)
q->Join();
}
std::cerr << "Done.\n";
return 0;
}
|