1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
/** Compute the matrix inverse via Gauss-Jordan elimination.
* This program uses OpenMP separate computation steps but no
* mutexes. It is an example of a race-free program on which no data races
* are reported by the happens-before algorithm (drd), but a lot of data races
* (all false positives) are reported by the Eraser-algorithm (helgrind).
*/
#define _GNU_SOURCE
/***********************/
/* Include directives. */
/***********************/
#include <assert.h>
#include <math.h>
#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h> // getopt()
/*********************/
/* Type definitions. */
/*********************/
typedef double elem_t;
/********************/
/* Local variables. */
/********************/
static int s_trigger_race;
/*************************/
/* Function definitions. */
/*************************/
/** Allocate memory for a matrix with the specified number of rows and
* columns.
*/
static elem_t* new_matrix(const int rows, const int cols)
{
assert(rows > 0);
assert(cols > 0);
return malloc(rows * cols * sizeof(elem_t));
}
/** Free the memory that was allocated for a matrix. */
static void delete_matrix(elem_t* const a)
{
free(a);
}
/** Fill in some numbers in a matrix. */
static void init_matrix(elem_t* const a, const int rows, const int cols)
{
int i, j;
for (i = 0; i < rows; i++)
{
for (j = 0; j < rows; j++)
{
a[i * cols + j] = 1.0 / (1 + abs(i-j));
}
}
}
/** Print all elements of a matrix. */
void print_matrix(const char* const label,
const elem_t* const a, const int rows, const int cols)
{
int i, j;
printf("%s:\n", label);
for (i = 0; i < rows; i++)
{
for (j = 0; j < cols; j++)
{
printf("%g ", a[i * cols + j]);
}
printf("\n");
}
}
/** Copy a subset of the elements of a matrix into another matrix. */
static void copy_matrix(const elem_t* const from,
const int from_rows,
const int from_cols,
const int from_row_first,
const int from_row_last,
const int from_col_first,
const int from_col_last,
elem_t* const to,
const int to_rows,
const int to_cols,
const int to_row_first,
const int to_row_last,
const int to_col_first,
const int to_col_last)
{
int i, j;
assert(from_row_last - from_row_first == to_row_last - to_row_first);
assert(from_col_last - from_col_first == to_col_last - to_col_first);
for (i = from_row_first; i < from_row_last; i++)
{
assert(i < from_rows);
assert(i - from_row_first + to_row_first < to_rows);
for (j = from_col_first; j < from_col_last; j++)
{
assert(j < from_cols);
assert(j - from_col_first + to_col_first < to_cols);
to[(i - from_row_first + to_col_first) * to_cols
+ (j - from_col_first + to_col_first)]
= from[i * from_cols + j];
}
}
}
/** Compute the matrix product of a1 and a2. */
static elem_t* multiply_matrices(const elem_t* const a1,
const int rows1,
const int cols1,
const elem_t* const a2,
const int rows2,
const int cols2)
{
int i, j, k;
elem_t* prod;
assert(cols1 == rows2);
prod = new_matrix(rows1, cols2);
for (i = 0; i < rows1; i++)
{
for (j = 0; j < cols2; j++)
{
prod[i * cols2 + j] = 0;
for (k = 0; k < cols1; k++)
{
prod[i * cols2 + j] += a1[i * cols1 + k] * a2[k * cols2 + j];
}
}
}
return prod;
}
/** Apply the Gauss-Jordan elimination algorithm on the matrix p->a starting
* at row r0 and up to but not including row r1. It is assumed that as many
* threads execute this function concurrently as the count barrier p->b was
* initialized with. If the matrix p->a is nonsingular, and if matrix p->a
* has at least as many columns as rows, the result of this algorithm is that
* submatrix p->a[0..p->rows-1,0..p->rows-1] is the identity matrix.
* @see http://en.wikipedia.org/wiki/Gauss-Jordan_elimination
*/
static void gj(elem_t* const a, const int rows, const int cols)
{
int i, j, k;
for (i = 0; i < rows; i++)
{
{
// Pivoting.
j = i;
for (k = i + 1; k < rows; k++)
{
if (a[k * cols + i] > a[j * cols + i])
{
j = k;
}
}
if (j != i)
{
for (k = 0; k < cols; k++)
{
const elem_t t = a[i * cols + k];
a[i * cols + k] = a[j * cols + k];
a[j * cols + k] = t;
}
}
// Normalize row i.
if (a[i * cols + i] != 0)
{
for (k = cols - 1; k >= 0; k--)
{
a[i * cols + k] /= a[i * cols + i];
}
}
}
// Reduce all rows j != i.
if (s_trigger_race)
{
# pragma omp parallel for private(j)
for (j = 0; j < rows; j++)
{
if (i != j)
{
const elem_t factor = a[j * cols + i];
for (k = 0; k < cols; k++)
{
a[j * cols + k] -= a[i * cols + k] * factor;
}
}
}
}
else
{
# pragma omp parallel for private(j, k)
for (j = 0; j < rows; j++)
{
if (i != j)
{
const elem_t factor = a[j * cols + i];
for (k = 0; k < cols; k++)
{
a[j * cols + k] -= a[i * cols + k] * factor;
}
}
}
}
}
}
/** Matrix inversion via the Gauss-Jordan algorithm. */
static elem_t* invert_matrix(const elem_t* const a, const int n)
{
int i, j;
elem_t* const inv = new_matrix(n, n);
elem_t* const tmp = new_matrix(n, 2*n);
copy_matrix(a, n, n, 0, n, 0, n, tmp, n, 2 * n, 0, n, 0, n);
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
tmp[i * 2 * n + n + j] = (i == j);
gj(tmp, n, 2*n);
copy_matrix(tmp, n, 2*n, 0, n, n, 2*n, inv, n, n, 0, n, 0, n);
delete_matrix(tmp);
return inv;
}
/** Compute the average square error between the identity matrix and the
* product of matrix a with its inverse matrix.
*/
static double identity_error(const elem_t* const a, const int n)
{
int i, j;
elem_t e = 0;
for (i = 0; i < n; i++)
{
for (j = 0; j < n; j++)
{
const elem_t d = a[i * n + j] - (i == j);
e += d * d;
}
}
return sqrt(e / (n * n));
}
/** Compute epsilon for the numeric type elem_t. Epsilon is defined as the
* smallest number for which the sum of one and that number is different of
* one. It is assumed that the underlying representation of elem_t uses
* base two.
*/
static elem_t epsilon()
{
elem_t eps;
for (eps = 1; 1 + eps != 1; eps /= 2)
;
return 2 * eps;
}
static void usage(const char* const exe)
{
printf("Usage: %s [-h] [-q] [-r] [-t<n>] <m>\n"
"-h: display this information.\n"
"-q: quiet mode -- do not print computed error.\n"
"-r: trigger a race condition.\n"
"-t<n>: use <n> threads.\n"
"<m>: matrix size.\n",
exe);
}
int main(int argc, char** argv)
{
int matrix_size;
int nthread = 1;
int silent = 0;
int optchar;
elem_t *a, *inv, *prod;
elem_t eps;
double error;
double ratio;
while ((optchar = getopt(argc, argv, "hqrt:")) != EOF)
{
switch (optchar)
{
case 'h': usage(argv[0]); return 1;
case 'q': silent = 1; break;
case 'r': s_trigger_race = 1; break;
case 't': nthread = atoi(optarg); break;
default:
return 1;
}
}
if (optind + 1 != argc)
{
fprintf(stderr, "Error: wrong number of arguments.\n");
return 1;
}
matrix_size = atoi(argv[optind]);
/* Error checking. */
assert(matrix_size >= 1);
assert(nthread >= 1);
omp_set_num_threads(nthread);
omp_set_dynamic(0);
eps = epsilon();
a = new_matrix(matrix_size, matrix_size);
init_matrix(a, matrix_size, matrix_size);
inv = invert_matrix(a, matrix_size);
prod = multiply_matrices(a, matrix_size, matrix_size,
inv, matrix_size, matrix_size);
error = identity_error(prod, matrix_size);
ratio = error / (eps * matrix_size);
if (! silent)
{
printf("error = %g; epsilon = %g; error / (epsilon * n) = %g\n",
error, eps, ratio);
}
if (isfinite(ratio) && ratio < 100)
printf("Error within bounds.\n");
else
printf("Error out of bounds.\n");
delete_matrix(prod);
delete_matrix(inv);
delete_matrix(a);
return 0;
}
|