1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "tests/asm.h"
#include "tests/malloc.h"
#include <string.h>
#define XSAVE_AREA_SIZE 832
typedef unsigned char UChar;
typedef unsigned int UInt;
typedef unsigned long long int ULong;
typedef unsigned long int UWord;
typedef unsigned char Bool;
#define True ((Bool)1)
#define False ((Bool)0)
const unsigned int vec0[8]
= { 0x12345678, 0x11223344, 0x55667788, 0x87654321,
0x15263748, 0x91929394, 0x19293949, 0x48372615 };
const unsigned int vec1[8]
= { 0xABCDEF01, 0xAABBCCDD, 0xEEFF0011, 0x10FEDCBA,
0xBADCFE10, 0xFFEE9988, 0x11667722, 0x01EFCDAB };
const unsigned int vecZ[8]
= { 0, 0, 0, 0, 0, 0, 0, 0 };
/* A version of memset that doesn't use XMM or YMM registers. */
static __attribute__((noinline))
void* my_memset(void* s, int c, size_t n)
{
size_t i;
for (i = 0; i < n; i++) {
((unsigned char*)s)[i] = (unsigned char)(unsigned int)c;
/* Defeat any attempt at autovectorisation */
__asm__ __volatile__("" ::: "cc","memory");
}
return s;
}
/* Ditto for memcpy */
static __attribute__((noinline))
void* my_memcpy(void *dest, const void *src, size_t n)
{
size_t i;
for (i = 0; i < n; i++) {
((unsigned char*)dest)[i] = ((unsigned char*)src)[i];
__asm__ __volatile__("" ::: "cc","memory");
}
return dest;
}
static void* memalign_zeroed64(size_t size)
{
char* p = memalign64(size);
if (p && size > 0) {
my_memset(p, 0, size);
}
return p;
}
__attribute__((noinline))
static void do_xsave ( void* p, UInt rfbm )
{
assert(rfbm <= 7);
__asm__ __volatile__(
"movq %0, %%rax; xorq %%rdx, %%rdx; xsave (%1)"
: /*OUT*/ : /*IN*/ "r"((ULong)rfbm), "r"(p)
: /*TRASH*/ "memory", "rax", "rdx"
);
}
__attribute__((noinline))
static void do_xrstor ( void* p, UInt rfbm )
{
assert(rfbm <= 7);
__asm__ __volatile__(
"movq %0, %%rax; xorq %%rdx, %%rdx; xrstor (%1)"
: /*OUT*/ : /*IN*/ "r"((ULong)rfbm), "r"(p)
: /*TRASH*/ "rax", "rdx" /* FIXME plus all X87,SSE,AVX regs */
);
}
/* set up the FP, SSE and AVX state, and then dump it. */
static void do_setup_then_xsave ( void* p, UInt rfbm )
{
__asm__ __volatile__("finit");
__asm__ __volatile__("fldpi");
__asm__ __volatile__("fld1");
__asm__ __volatile__("fldln2");
__asm__ __volatile__("fldlg2");
__asm__ __volatile__("fld %st(3)");
__asm__ __volatile__("fld %st(3)");
__asm__ __volatile__("fld1");
__asm__ __volatile__("vmovups (%0), %%ymm0" : : "r"(&vec0[0]) : "xmm0" );
__asm__ __volatile__("vmovups (%0), %%ymm1" : : "r"(&vec1[0]) : "xmm1" );
__asm__ __volatile__("vxorps %ymm2, %ymm2, %ymm2");
__asm__ __volatile__("vmovaps %ymm0, %ymm3");
__asm__ __volatile__("vmovaps %ymm1, %ymm4");
__asm__ __volatile__("vmovaps %ymm2, %ymm5");
__asm__ __volatile__("vmovaps %ymm0, %ymm6");
__asm__ __volatile__("vmovaps %ymm1, %ymm7");
__asm__ __volatile__("vmovaps %ymm1, %ymm8");
__asm__ __volatile__("vmovaps %ymm2, %ymm9");
__asm__ __volatile__("vmovaps %ymm0, %ymm10");
__asm__ __volatile__("vmovaps %ymm1, %ymm11");
__asm__ __volatile__("vmovaps %ymm1, %ymm12");
__asm__ __volatile__("vmovaps %ymm2, %ymm13");
__asm__ __volatile__("vmovaps %ymm0, %ymm14");
__asm__ __volatile__("vmovaps %ymm1, %ymm15");
do_xsave(p, rfbm);
}
static int isFPLsbs ( int i )
{
int q;
q = 32; if (i == q || i == q+1) return 1;
q = 48; if (i == q || i == q+1) return 1;
q = 64; if (i == q || i == q+1) return 1;
q = 80; if (i == q || i == q+1) return 1;
q = 96; if (i == q || i == q+1) return 1;
q = 112; if (i == q || i == q+1) return 1;
q = 128; if (i == q || i == q+1) return 1;
q = 144; if (i == q || i == q+1) return 1;
return 0;
}
static void show ( unsigned char* buf, Bool hideBits64to79 )
{
int i;
for (i = 0; i < XSAVE_AREA_SIZE; i++) {
if ((i % 16) == 0)
fprintf(stderr, "%3d ", i);
if (hideBits64to79 && isFPLsbs(i))
fprintf(stderr, "xx ");
else
fprintf(stderr, "%02x ", buf[i]);
if (i > 0 && ((i % 16) == 15))
fprintf(stderr, "\n");
}
}
static void cpuid ( UInt* eax, UInt* ebx, UInt* ecx, UInt* edx,
UInt index, UInt ecx_in )
{
UInt a,b,c,d;
asm volatile ("cpuid"
: "=a" (a), "=b" (b), "=c" (c), "=d" (d) \
: "0" (index), "2"(ecx_in) );
*eax = a; *ebx = b; *ecx = c; *edx = d;
//fprintf(stderr, "%08x %08x -> %08x %08x %08x %08x\n",
// index,ecx_in, a,b,c,d );
}
static void xgetbv ( UInt* eax, UInt* edx, UInt ecx_in )
{
UInt a,d;
asm volatile ("xgetbv"
: "=a" (a), "=d" (d) \
: "c"(ecx_in) );
*eax = a; *edx = d;
}
static void check_for_xsave ( void )
{
UInt eax, ebx, ecx, edx;
Bool ok = True;
eax = ebx = ecx = edx = 0;
cpuid(&eax, &ebx, &ecx, &edx, 1,0);
//fprintf(stderr, "cpuid(1).ecx[26=xsave] = %u\n", (ecx >> 26) & 1);
ok = ok && (((ecx >> 26) & 1) == 1);
eax = ebx = ecx = edx = 0;
cpuid(&eax, &ebx, &ecx, &edx, 1,0);
//fprintf(stderr, "cpuid(1).ecx[27=osxsave] = %u\n", (ecx >> 27) & 1);
ok = ok && (((ecx >> 27) & 1) == 1);
eax = ebx = ecx = edx = 0;
xgetbv(&eax, &edx, 0);
//fprintf(stderr, "xgetbv(0) = %u:%u\n", edx, eax);
ok = ok && (edx == 0) && (eax == 7);
if (ok) return;
fprintf(stderr,
"This program must be run on a CPU that supports AVX and XSAVE.\n");
exit(1);
}
void test_xsave ( Bool hideBits64to79 )
{
/* Testing XSAVE:
For RBFM in 0 .. 7 (that is, all combinations): set the x87, SSE
and AVX registers with some values, do XSAVE to dump it, and
print the resulting buffer. */
UInt rfbm;
for (rfbm = 0; rfbm <= 7; rfbm++) {
UChar* saved_img = memalign_zeroed64(XSAVE_AREA_SIZE);
my_memset(saved_img, 0xAA, XSAVE_AREA_SIZE);
saved_img[512] = 0;
do_setup_then_xsave(saved_img, rfbm);
fprintf(stderr,
"------------------ XSAVE, rfbm = %u ------------------\n", rfbm);
show(saved_img, hideBits64to79);
fprintf(stderr, "\n");
free(saved_img);
}
}
void test_xrstor ( Bool hideBits64to79 )
{
/* Testing XRSTOR is more complex than testing XSAVE, because the
loaded value(s) depend not only on what bits are requested (by
RBFM) but also on what bits are actually present in the image
(defined by XSTATE_BV). So we have to test all 64 (8 x 8)
combinations.
The approach is to fill a memory buffer with data, do XRSTOR
from the buffer, them dump all components with XSAVE in a new
buffer, and print the result. This is complicated by the fact
that we need to be able to see which parts of the state (in
registers) are neither overwritten nor zeroed by the restore.
Hence the registers must be pre-filled with values which are
neither zero nor the data to be loaded. We choose to use 0x55
where possible. */
UChar* fives = memalign_zeroed64(XSAVE_AREA_SIZE);
my_memset(fives, 0x55, XSAVE_AREA_SIZE);
/* Set MXCSR so that the insn doesn't fault */
fives[24] = 0x80;
fives[25] = 0x1f;
fives[26] = 0;
fives[27] = 0;
/* Ditto for the XSAVE header area. Also set XSTATE_BV. */
fives[512] = 7;
UInt i;
for (i = 1; i <= 23; i++) fives[512+i] = 0;
/* Fill the x87 register values with something that VEX's
80-vs-64-bit kludging won't mess up -- an 80 bit number which is
representable also as 64 bit: 123456789.0123 */
for (i = 0; i <= 7; i++) {
UChar* p = &fives[32 + 16 * i];
p[0]=0x00; p[1]=0xf8; p[2]=0xc2; p[3]=0x64; p[4]=0xa0;
p[5]=0xa2; p[6]=0x79; p[7]=0xeb; p[8]=0x19; p[9]=0x40;
}
/* And mark the tags for all 8 dumped regs as "valid". */
fives[4/*FTW*/] = 0xFF;
/* (1) (see comment in loop below) */
UChar* standard_test_data = memalign_zeroed64(XSAVE_AREA_SIZE);
do_setup_then_xsave(standard_test_data, 7);
UInt xstate_bv, rfbm;
for (xstate_bv = 0; xstate_bv <= 7; xstate_bv++) {
for (rfbm = 0; rfbm <= 7; rfbm++) {
//{ xstate_bv = 7;
// { rfbm = 6;
/* 1. Copy the "standard test data" into registers, and dump
it with XSAVE. This gives us an image we can try
restoring from.
2. Set the register state to all-0x55s (as far as is
possible), so we can see which parts get overwritten
and which parts get zeroed on the test restore.
3. Do the restore from the image prepared in (1).
4. Dump the state with XSAVE and print it.
*/
/* (3a). We can't use |standard_test_data| directly, since we
need to put in the required |xstate_bv| value. So make a
copy and modify that instead. */
UChar* img_to_restore_from = memalign_zeroed64(XSAVE_AREA_SIZE);
my_memcpy(img_to_restore_from, standard_test_data, XSAVE_AREA_SIZE);
img_to_restore_from[512] = xstate_bv;
/* (4a) */
UChar* saved_img = memalign_zeroed64(XSAVE_AREA_SIZE);
my_memset(saved_img, 0xAA, XSAVE_AREA_SIZE);
saved_img[512] = 0;
/* (2) */
do_xrstor(fives, 7);
// X87, SSE, AVX state LIVE
/* (3b) */
/* and this is what we're actually trying to test */
do_xrstor(img_to_restore_from, rfbm);
// X87, SSE, AVX state LIVE
/* (4b) */
do_xsave(saved_img, 7);
fprintf(stderr,
"---------- XRSTOR, xstate_bv = %u, rfbm = %u ---------\n",
xstate_bv, rfbm);
show(saved_img, hideBits64to79);
fprintf(stderr, "\n");
free(saved_img);
free(img_to_restore_from);
}
}
}
int main ( int argc, char** argv )
{
Bool hideBits64to79 = argc > 1;
fprintf(stderr, "Re-run with any arg to suppress least-significant\n"
" 16 bits of 80-bit FP numbers\n");
check_for_xsave();
if (1)
test_xsave(hideBits64to79);
if (1)
test_xrstor(hideBits64to79);
return 0;
}
|