| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 
 | // This small program does some raytracing.  It tests Valgrind's handling of
// FP operations.  It apparently does a lot of trigonometry operations.
// Licensing: This program is closely based on the one of the same name from
// http://www.fourmilab.ch/.  The front page of that site says:
//
//   "Except for a few clearly-marked exceptions, all the material on this
//   site is in the public domain and may be used in any manner without
//   permission, restriction, attribution, or compensation."
/* This program can be used in two ways.  If INTRIG is undefined, sin,
   cos, tan, etc, will be used as supplied by <math.h>.  If it is
   defined, then the program calculates all this stuff from first
   principles (so to speak) and does not use the libc facilities.  For
   benchmarking purposes it seems better to avoid the libc stuff, so
   that the inner loops (sin, sqrt) present a workload independent of
   libc implementations on different platforms.  Hence: */
#define INTRIG 1
/*
        John Walker's Floating Point Benchmark, derived from...
	Marinchip Interactive Lens Design System
				     John Walker   December 1980
	By John Walker
	   http://www.fourmilab.ch/
	This  program may be used, distributed, and modified freely as
	long as the origin information is preserved.
	This  is  a  complete  optical	design	raytracing  algorithm,
	stripped of its user interface and recast into portable C.  It
	not only determines execution speed on an  extremely  floating
	point	(including   trig   function)	intensive   real-world
	application, it  checks  accuracy  on  an  algorithm  that  is
	exquisitely  sensitive	to  errors.   The  performance of this
	program is typically far more  sensitive  to  changes  in  the
	efficiency  of	the  trigonometric  library  routines than the
	average floating point program.
	The benchmark may be compiled in two  modes.   If  the	symbol
	INTRIG	is  defined,  built-in	trigonometric  and square root
	routines will be used for all calculations.  Timings made with
        INTRIG  defined  reflect  the  machine's  basic floating point
	performance for the arithmetic operators.  If  INTRIG  is  not
	defined,  the  system  library	<math.h>  functions  are used.
        Results with INTRIG not defined reflect the  system's  library
	performance  and/or  floating  point hardware support for trig
	functions and square root.  Results with INTRIG defined are  a
	good  guide  to  general  floating  point  performance,  while
	results with INTRIG undefined indicate the performance	of  an
	application which is math function intensive.
	Special  note  regarding  errors in accuracy: this program has
	generated numbers identical to the last digit it  formats  and
	checks on the following machines, floating point
	architectures, and languages:
	Marinchip 9900	  QBASIC    IBM 370 double-precision (REAL * 8) format
	IBM PC / XT / AT  Lattice C IEEE 64 bit, 80 bit temporaries
			  High C    same, in line 80x87 code
                          BASICA    "Double precision"
			  Quick BASIC IEEE double precision, software routines
	Sun 3		  C	    IEEE 64 bit, 80 bit temporaries,
				    in-line 68881 code, in-line FPA code.
        MicroVAX II       C         Vax "G" format floating point
	Macintosh Plus	  MPW C     SANE floating point, IEEE 64 bit format
				    implemented in ROM.
	Inaccuracies  reported	by  this  program should be taken VERY
	SERIOUSLY INDEED, as the program has been demonstrated	to  be
	invariant  under  changes in floating point format, as long as
	the format is a recognised double precision  format.   If  you
	encounter errors, please remember that they are just as likely
	to  be	in  the  floating  point  editing   library   or   the
	trigonometric  libraries  as  in  the low level operator code.
	The benchmark assumes that results are basically reliable, and
	only tests the last result computed against the reference.  If
        you're running on  a  suspect  system  you  can  compile  this
	program  with  ACCURACY defined.  This will generate a version
	which executes as an infinite loop, performing the  ray  trace
	and checking the results on every pass.  All incorrect results
	will be reported.
	Representative	timings  are  given  below.   All  have   been
	normalised as if run for 1000 iterations.
  Time in seconds		   Computer, Compiler, and notes
 Normal      INTRIG
 3466.00    4031.00	Commodore 128, 2 Mhz 8510 with software floating
			point.	Abacus Software/Data-Becker Super-C 128,
			version 3.00, run in fast (2 Mhz) mode.  Note:
			the results generated by this system differed
			from the reference results in the 8th to 10th
			decimal place.
 3290.00		IBM PC/AT 6 Mhz, Microsoft/IBM BASICA version A3.00.
                        Run with the "/d" switch, software floating point.
 2131.50		IBM PC/AT 6 Mhz, Lattice C version 2.14, small model.
			This version of Lattice compiles subroutine
			calls which either do software floating point
			or use the 80x87.  The machine on which I ran
			this had an 80287, but the results were so bad
			I wonder if it was being used.
 1598.00		Macintosh Plus, MPW C, SANE Software floating point.
 1582.13		Marinchip 9900 2 Mhz, QBASIC compiler with software
			floating point.  This was a QBASIC version of the
			program which contained the identical algorithm.
  404.00		IBM PC/AT 6 Mhz, Microsoft QuickBASIC version 2.0.
			Software floating point.
  165.15		IBM PC/AT 6 Mhz, Metaware High C version 1.3, small
			model.	This was compiled to call subroutines for
			floating point, and the machine contained an 80287
			which was used by the subroutines.
  143.20		Macintosh II, MPW C, SANE calls.  I was unable to
			determine whether SANE was using the 68881 chip or
			not.
  121.80		Sun 3/160 16 Mhz, Sun C.  Compiled with -fsoft switch
			which executes floating point in software.
   78.78     110.11	IBM RT PC (Model 6150).  IBM AIX 1.0 C compiler
			with -O switch.
   75.2      254.0	Microsoft Quick C 1.0, in-line 8087 instructions,
			compiled with 80286 optimisation on.  (Switches
			were -Ol -FPi87-G2 -AS).  Small memory model.
   69.50		IBM PC/AT 6Mhz, Borland Turbo BASIC 1.0.  Compiled
                        in "8087 required" mode to generate in-line
			code for the math coprocessor.
   66.96		IBM PC/AT 6Mhz, Microsoft QuickBASIC 4.0.  This
			release of QuickBASIC compiles code for the
			80287 math coprocessor.
   66.36     206.35	IBM PC/AT 6Mhz, Metaware High C version 1.3, small
			model.	This was compiled with in-line code for the
			80287 math coprocessor.  Trig functions still call
			library routines.
   63.07     220.43	IBM PC/AT, 6Mhz, Borland Turbo C, in-line 8087 code,
			small model, word alignment, no stack checking,
			8086 code mode.
   17.18		Apollo DN-3000, 12 Mhz 68020 with 68881, compiled
			with in-line code for the 68881 coprocessor.
			According to Apollo, the library routines are chosen
			at runtime based on coprocessor presence.  Since the
			coprocessor was present, the library is supposed to
			use in-line floating point code.
   15.55      27.56	VAXstation II GPX.  Compiled and executed under
			VAX/VMS C.
   15.14      37.93	Macintosh II, Unix system V.  Green Hills 68020
			Unix compiler with in-line code for the 68881
			coprocessor (-O -ZI switches).
   12.69		Sun 3/160 16 Mhz, Sun C.  Compiled with -fswitch,
			which calls a subroutine to select the fastest
			floating point processor.  This was using the 68881.
   11.74      26.73	Compaq Deskpro 386, 16 Mhz 80386 with 16 Mhz 80387.
			Metaware High C version 1.3, compiled with in-line
			for the math coprocessor (but not optimised for the
			80386/80387).  Trig functions still call library
			routines.
    8.43      30.49	Sun 3/160 16 Mhz, Sun C.  Compiled with -f68881,
			generating in-line MC68881 instructions.  Trig
			functions still call library routines.
    6.29      25.17	Sun 3/260 25 Mhz, Sun C.  Compiled with -f68881,
			generating in-line MC68881 instructions.  Trig
			functions still call library routines.
    4.57		Sun 3/260 25 Mhz, Sun FORTRAN 77.  Compiled with
			-O -f68881, generating in-line MC68881 instructions.
			Trig functions are compiled in-line.  This used
			the FORTRAN 77 version of the program, FBFORT77.F.
    4.00      14.20	Sun386i/25 Mhz model 250, Sun C compiler.
    4.00      14.00	Sun386i/25 Mhz model 250, Metaware C.
    3.10      12.00	Compaq 386/387 25 Mhz running SCO Xenix 2.
			Compiled with Metaware HighC 386, optimized
			for 386.
    3.00      12.00	Compaq 386/387 25MHZ optimized for 386/387.
    2.96       5.17	Sun 4/260, Sparc RISC processor.  Sun C,
			compiled with the -O2 switch for global
			optimisation.
    2.47		COMPAQ 486/25, secondary cache disabled, High C,
			486/387, inline f.p., small memory model.
    2.20       3.40	Data General Motorola 88000, 16 Mhz, Gnu C.
    1.56		COMPAQ 486/25, 128K secondary cache, High C, 486/387,
			inline f.p., small memory model.
    0.66       1.50	DEC Pmax, Mips processor.
    0.63       0.91	Sun SparcStation 2, Sun C (SunOS 4.1.1) with
                        -O4 optimisation and "/usr/lib/libm.il" inline
			floating point.
    0.60       1.07	Intel 860 RISC processor, 33 Mhz, Greenhills
			C compiler.
    0.40       0.90	Dec 3MAX, MIPS 3000 processor, -O4.
    0.31       0.90	IBM RS/6000, -O.
    0.1129     0.2119	Dell Dimension XPS P133c, Pentium 133 MHz,
			Windows 95, Microsoft Visual C 5.0.
    0.0883     0.2166	Silicon Graphics Indigo, MIPS R4400,
                        175 Mhz, "-O3".
    0.0351     0.0561	Dell Dimension XPS R100, Pentium II 400 MHz,
			Windows 98, Microsoft Visual C 5.0.
    0.0312     0.0542	Sun Ultra 2, UltraSPARC V9, 300 MHz, Solaris
			2.5.1.
			
    0.00862    0.01074  Dell Inspiron 9100, Pentium 4, 3.4 GHz, gcc -O3.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifndef INTRIG
#include <math.h>
#endif
#define cot(x) (1.0 / tan(x))
#define TRUE  1
#define FALSE 0
#define max_surfaces 10
/*  Local variables  */
/* static char tbfr[132]; */
static short current_surfaces;
static short paraxial;
static double clear_aperture;
static double aberr_lspher;
static double aberr_osc;
static double aberr_lchrom;
static double max_lspher;
static double max_osc;
static double max_lchrom;
static double radius_of_curvature;
static double object_distance;
static double ray_height;
static double axis_slope_angle;
static double from_index;
static double to_index;
static double spectral_line[9];
static double s[max_surfaces][5];
static double od_sa[2][2];
static char outarr[8][80];	   /* Computed output of program goes here */
int itercount;			   /* The iteration counter for the main loop
				      in the program is made global so that
				      the compiler should not be allowed to
				      optimise out the loop over the ray
				      tracing code. */
#ifndef ITERATIONS
#define ITERATIONS /*1000*/ /*500000*/ 80000
#endif
int niter = ITERATIONS; 	   /* Iteration counter */
static char *refarr[] = {	   /* Reference results.  These happen to
				      be derived from a run on Microsoft 
				      Quick BASIC on the IBM PC/AT. */
        "   Marginal ray          47.09479120920   0.04178472683",
        "   Paraxial ray          47.08372160249   0.04177864821",
        "Longitudinal spherical aberration:        -0.01106960671",
        "    (Maximum permissible):                 0.05306749907",
        "Offense against sine condition (coma):     0.00008954761",
        "    (Maximum permissible):                 0.00250000000",
        "Axial chromatic aberration:                0.00448229032",
        "    (Maximum permissible):                 0.05306749907"
};
/* The	test  case  used  in  this program is the  design for a 4 inch
   achromatic telescope  objective  used  as  the  example  in  Wyld's
   classic  work  on  ray  tracing by hand, given in Amateur Telescope
   Making, Volume 3.  */
static double testcase[4][4] = {
	{27.05, 1.5137, 63.6, 0.52},
	{-16.68, 1, 0, 0.138},
	{-16.68, 1.6164, 36.7, 0.38},
	{-78.1, 1, 0, 0}
};
/*  Internal trig functions (used only if INTRIG is  defined).	 These
    standard  functions  may be enabled to obtain timings that reflect
    the machine's floating point performance rather than the speed  of
    its trig function evaluation.  */
#ifdef INTRIG
/*  The following definitions should keep you from getting intro trouble
    with compilers which don't let you redefine intrinsic functions.  */
#define sin I_sin
#define cos I_cos
#define tan I_tan
#define sqrt I_sqrt
#define atan I_atan
#define atan2 I_atan2
#define asin I_asin
#define fabs(x)  ((x < 0.0) ? -x : x)
#define pic 3.1415926535897932
/*  Commonly used constants  */
static double pi = pic,
	twopi =pic * 2.0,
	piover4 = pic / 4.0,
	fouroverpi = 4.0 / pic,
	piover2 = pic / 2.0;
/*  Coefficients for ATAN evaluation  */
static double atanc[] = {
	0.0,
	0.4636476090008061165,
	0.7853981633974483094,
	0.98279372324732906714,
	1.1071487177940905022,
	1.1902899496825317322,
	1.2490457723982544262,
	1.2924966677897852673,
	1.3258176636680324644
};
/*  aint(x)	  Return integer part of number.  Truncates towards 0	 */
double aint(x)
double x;
{
	long l;
	/*  Note that this routine cannot handle the full floating point
	    number range.  This function should be in the machine-dependent
	    floating point library!  */
	l = x;
	if ((int)(-0.5) != 0  &&  l < 0 )
	   l++;
	x = l;
	return x;
}
/*  sin(x)	  Return sine, x in radians  */
static double sin(x)
double x;
{
	int sign;
	double y, r, z;
	x = (((sign= (x < 0.0)) != 0) ? -x: x);
	if (x > twopi)
	   x -= (aint(x / twopi) * twopi);
	if (x > pi) {
	   x -= pi;
	   sign = !sign;
	}
	if (x > piover2)
	   x = pi - x;
	if (x < piover4) {
	   y = x * fouroverpi;
	   z = y * y;
	   r = y * (((((((-0.202253129293E-13 * z + 0.69481520350522E-11) * z -
	      0.17572474176170806E-8) * z + 0.313361688917325348E-6) * z -
	      0.365762041821464001E-4) * z + 0.249039457019271628E-2) * z -
	      0.0807455121882807815) * z + 0.785398163397448310);
	} else {
	   y = (piover2 - x) * fouroverpi;
	   z = y * y;
	   r = ((((((-0.38577620372E-12 * z + 0.11500497024263E-9) * z -
	      0.2461136382637005E-7) * z + 0.359086044588581953E-5) * z -
	      0.325991886926687550E-3) * z + 0.0158543442438154109) * z -
	      0.308425137534042452) * z + 1.0;
	}
	return sign ? -r : r;
}
/*  cos(x)	  Return cosine, x in radians, by identity  */
static double cos(x)
double x;
{
	x = (x < 0.0) ? -x : x;
	if (x > twopi)		      /* Do range reduction here to limit */
	   x = x - (aint(x / twopi) * twopi); /* roundoff on add of PI/2    */
	return sin(x + piover2);
}
/*  tan(x)	  Return tangent, x in radians, by identity  */
static double tan(x)
double x;
{
	return sin(x) / cos(x);
}
/*  sqrt(x)	  Return square root.  Initial guess, then Newton-
		  Raphson refinement  */
double sqrt(x)
double x;
{
	double c, cl, y;
	int n;
	if (x == 0.0)
	   return 0.0;
	if (x < 0.0) {
	   fprintf(stderr,
              "\nGood work!  You tried to take the square root of %g",
	     x);
	   fprintf(stderr,
              "\nunfortunately, that is too complex for me to handle.\n");
	   exit(1);
	}
	y = (0.154116 + 1.893872 * x) / (1.0 + 1.047988 * x);
	c = (y - x / y) / 2.0;
	cl = 0.0;
	for (n = 50; c != cl && n--;) {
	   y = y - c;
	   cl = c;
	   c = (y - x / y) / 2.0;
	}
	return y;
}
/*  atan(x)	  Return arctangent in radians,
		  range -pi/2 to pi/2  */
static double atan(x)
double x;
{
	int sign, l, y;
	double a, b, z;
	x = (((sign = (x < 0.0)) != 0) ? -x : x);
	l = 0;
	if (x >= 4.0) {
	   l = -1;
	   x = 1.0 / x;
	   y = 0;
	   goto atl;
	} else {
	   if (x < 0.25) {
	      y = 0;
	      goto atl;
	   }
	}
	y = aint(x / 0.5);
	z = y * 0.5;
	x = (x - z) / (x * z + 1);
atl:
	z = x * x;
	b = ((((893025.0 * z + 49116375.0) * z + 425675250.0) * z +
	    1277025750.0) * z + 1550674125.0) * z + 654729075.0;
	a = (((13852575.0 * z + 216602100.0) * z + 891080190.0) * z +
	    1332431100.0) * z + 654729075.0;
	a = (a / b) * x + atanc[y];
	if (l)
	   a=piover2 - a;
	return sign ? -a : a;
}
/*  atan2(y,x)	  Return arctangent in radians of y/x,
		  range -pi to pi  */
static double atan2(y, x)
double y, x;
{
	double temp;
	if (x == 0.0) {
	   if (y == 0.0)   /*  Special case: atan2(0,0) = 0  */
	      return 0.0;
	   else if (y > 0)
	      return piover2;
	   else
	      return -piover2;
	}
	temp = atan(y / x);
	if (x < 0.0) {
	   if (y >= 0.0)
	      temp += pic;
	   else
	      temp -= pic;
	}
	return temp;
}
/*  asin(x)	  Return arcsine in radians of x  */
static double asin(x)
double x;
{
	if (fabs(x)>1.0) {
	   fprintf(stderr,
              "\nInverse trig functions lose much of their gloss when");
	   fprintf(stderr,
              "\ntheir arguments are greater than 1, such as the");
	   fprintf(stderr,
              "\nvalue %g you passed.\n", x);
	   exit(1);
	}
	return atan2(x, sqrt(1 - x * x));
}
#endif
/*	      Calculate passage through surface
	      If  the variable PARAXIAL is true, the trace through the
	      surface will be done using the paraxial  approximations.
	      Otherwise,  the normal trigonometric trace will be done.
	      This routine takes the following inputs:
	      RADIUS_OF_CURVATURE	  Radius of curvature of surface
					  being crossed.  If 0, surface is
					  plane.
	      OBJECT_DISTANCE		  Distance of object focus from
					  lens vertex.	If 0, incoming
					  rays are parallel and
					  the following must be specified:
	      RAY_HEIGHT		  Height of ray from axis.  Only
					  relevant if OBJECT.DISTANCE == 0
	      AXIS_SLOPE_ANGLE		  Angle incoming ray makes with axis
					  at intercept
	      FROM_INDEX		  Refractive index of medium being left
	      TO_INDEX			  Refractive index of medium being
					  entered.
	      The outputs are the following variables:
	      OBJECT_DISTANCE		  Distance from vertex to object focus
					  after refraction.
	      AXIS_SLOPE_ANGLE		  Angle incoming ray makes with axis
					  at intercept after refraction.
*/
static void transit_surface() {
	double iang,		   /* Incidence angle */
	       rang,		   /* Refraction angle */
	       iang_sin,	   /* Incidence angle sin */
	       rang_sin,	   /* Refraction angle sin */
	       old_axis_slope_angle, sagitta;
	if (paraxial) {
	   if (radius_of_curvature != 0.0) {
	      if (object_distance == 0.0) {
		 axis_slope_angle = 0.0;
		 iang_sin = ray_height / radius_of_curvature;
	      } else
		 iang_sin = ((object_distance -
		    radius_of_curvature) / radius_of_curvature) *
		    axis_slope_angle;
	      rang_sin = (from_index / to_index) *
		 iang_sin;
	      old_axis_slope_angle = axis_slope_angle;
	      axis_slope_angle = axis_slope_angle +
		 iang_sin - rang_sin;
	      if (object_distance != 0.0)
		 ray_height = object_distance * old_axis_slope_angle;
	      object_distance = ray_height / axis_slope_angle;
	      return;
	   }
	   object_distance = object_distance * (to_index / from_index);
	   axis_slope_angle = axis_slope_angle * (from_index / to_index);
	   return;
	}
	if (radius_of_curvature != 0.0) {
	   if (object_distance == 0.0) {
	      axis_slope_angle = 0.0;
	      iang_sin = ray_height / radius_of_curvature;
	   } else {
	      iang_sin = ((object_distance -
		 radius_of_curvature) / radius_of_curvature) *
		 sin(axis_slope_angle);
	   }
	   iang = asin(iang_sin);
	   rang_sin = (from_index / to_index) *
	      iang_sin;
	   old_axis_slope_angle = axis_slope_angle;
	   axis_slope_angle = axis_slope_angle +
	      iang - asin(rang_sin);
	   sagitta = sin((old_axis_slope_angle + iang) / 2.0);
	   sagitta = 2.0 * radius_of_curvature*sagitta*sagitta;
	   object_distance = ((radius_of_curvature * sin(
	      old_axis_slope_angle + iang)) *
	      cot(axis_slope_angle)) + sagitta;
	   return;
	}
	rang = -asin((from_index / to_index) *
	   sin(axis_slope_angle));
	object_distance = object_distance * ((to_index *
	   cos(-rang)) / (from_index *
	   cos(axis_slope_angle)));
	axis_slope_angle = -rang;
}
/*  Perform ray trace in specific spectral line  */
static void trace_line(line, ray_h)
int line;
double ray_h;
{
	int i;
	object_distance = 0.0;
	ray_height = ray_h;
	from_index = 1.0;
	for (i = 1; i <= current_surfaces; i++) {
	   radius_of_curvature = s[i][1];
	   to_index = s[i][2];
	   if (to_index > 1.0)
	      to_index = to_index + ((spectral_line[4] -
		 spectral_line[line]) /
		 (spectral_line[3] - spectral_line[6])) * ((s[i][2] - 1.0) /
		 s[i][3]);
	   transit_surface();
	   from_index = to_index;
	   if (i < current_surfaces)
	      object_distance = object_distance - s[i][4];
	}
}
/*  Initialise when called the first time  */
int main(argc, argv)
int argc;
char *argv[];
{
	int i, j, k, errors;
	double od_fline, od_cline;
#ifdef ACCURACY
	long passes;
#endif
	spectral_line[1] = 7621.0;	 /* A */
	spectral_line[2] = 6869.955;	 /* B */
	spectral_line[3] = 6562.816;	 /* C */
	spectral_line[4] = 5895.944;	 /* D */
	spectral_line[5] = 5269.557;	 /* E */
	spectral_line[6] = 4861.344;	 /* F */
        spectral_line[7] = 4340.477;     /* G'*/
	spectral_line[8] = 3968.494;	 /* H */
	/* Process the number of iterations argument, if one is supplied. */
	if (argc > 1) {
	   niter = atoi(argv[1]);
           if (*argv[1] == '-' || niter < 1) {
              printf("This is John Walker's floating point accuracy and\n");
              printf("performance benchmark program.  You call it with\n");
              printf("\nfbench <itercount>\n\n");
              printf("where <itercount> is the number of iterations\n");
              printf("to be executed.  Archival timings should be made\n");
              printf("with the iteration count set so that roughly five\n");
              printf("minutes of execution is timed.\n");
	      exit(0);
	   }
	}
	/* Load test case into working array */
	clear_aperture = 4.0;
	current_surfaces = 4;
	for (i = 0; i < current_surfaces; i++)
	   for (j = 0; j < 4; j++)
	      s[i + 1][j + 1] = testcase[i][j];
#ifdef ACCURACY
        printf("Beginning execution of floating point accuracy test...\n");
	passes = 0;
#else
        printf("Ready to begin John Walker's floating point accuracy\n");
        printf("and performance benchmark.  %d iterations will be made.\n\n",
	   niter);
        printf("\nMeasured run time in seconds should be divided by %.f\n", niter / 1000.0);
        printf("to normalise for reporting results.  For archival results,\n");
        printf("adjust iteration count so the benchmark runs about five minutes.\n\n");
        //printf("Press return to begin benchmark:");
	//gets(tbfr);
#endif
	/* Perform ray trace the specified number of times. */
#ifdef ACCURACY
	while (TRUE) {
	   passes++;
	   if ((passes % 100L) == 0) {
              printf("Pass %ld.\n", passes);
	   }
#else
	for (itercount = 0; itercount < niter; itercount++) {
#endif
	   for (paraxial = 0; paraxial <= 1; paraxial++) {
	      /* Do main trace in D light */
	      trace_line(4, clear_aperture / 2.0);
	      od_sa[paraxial][0] = object_distance;
	      od_sa[paraxial][1] = axis_slope_angle;
	   }
	   paraxial = FALSE;
	   /* Trace marginal ray in C */
	   trace_line(3, clear_aperture / 2.0);
	   od_cline = object_distance;
	   /* Trace marginal ray in F */
	   trace_line(6, clear_aperture / 2.0);
	   od_fline = object_distance;
	   aberr_lspher = od_sa[1][0] - od_sa[0][0];
	   aberr_osc = 1.0 - (od_sa[1][0] * od_sa[1][1]) /
	      (sin(od_sa[0][1]) * od_sa[0][0]);
	   aberr_lchrom = od_fline - od_cline;
	   max_lspher = sin(od_sa[0][1]);
	   /* D light */
	   max_lspher = 0.0000926 / (max_lspher * max_lspher);
	   max_osc = 0.0025;
	   max_lchrom = max_lspher;
#ifndef ACCURACY
	}
        //printf("Stop the timer:\007");
	//gets(tbfr);
#endif
	/* Now evaluate the accuracy of the results from the last ray trace */
        sprintf(outarr[0], "%15s   %21.11f  %14.11f",
           "Marginal ray", od_sa[0][0], od_sa[0][1]);
        sprintf(outarr[1], "%15s   %21.11f  %14.11f",
           "Paraxial ray", od_sa[1][0], od_sa[1][1]);
	sprintf(outarr[2],
           "Longitudinal spherical aberration:      %16.11f",
	   aberr_lspher);
	sprintf(outarr[3],
           "    (Maximum permissible):              %16.11f",
	   max_lspher);
	sprintf(outarr[4],
           "Offense against sine condition (coma):  %16.11f",
	   aberr_osc);
	sprintf(outarr[5],
           "    (Maximum permissible):              %16.11f",
	   max_osc);
	sprintf(outarr[6],
           "Axial chromatic aberration:             %16.11f",
	   aberr_lchrom);
	sprintf(outarr[7],
           "    (Maximum permissible):              %16.11f",
	   max_lchrom);
	/* Now compare the edited results with the master values from
	   reference executions of this program. */
	errors = 0;
	for (i = 0; i < 8; i++) {
	   if (strcmp(outarr[i], refarr[i]) != 0) {
#ifdef ACCURACY
              printf("\nError in pass %ld for results on line %d...\n",
		     passes, i + 1);
#else
              printf("\nError in results on line %d...\n", i + 1);
#endif
              printf("Expected:  \"%s\"\n", refarr[i]);
              printf("Received:  \"%s\"\n", outarr[i]);
              printf("(Errors)    ");
	      k = strlen(refarr[i]);
	      for (j = 0; j < k; j++) {
                 printf("%c", refarr[i][j] == outarr[i][j] ? ' ' : '^');
		 if (refarr[i][j] != outarr[i][j])
		    errors++;
	      }
              printf("\n");
	   }
	}
#ifdef ACCURACY
	}
#else
	if (errors > 0) {
           printf("\n%d error%s in results.  This is VERY SERIOUS.\n",
              errors, errors > 1 ? "s" : "");
	} else
           printf("\nNo errors in results.\n");
#endif
	return 0;
}
 |