1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
|
<?xml version="1.0"?> <!-- -*- sgml -*- -->
<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"
"http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd"
[ <!ENTITY % vg-entities SYSTEM "../../docs/xml/vg-entities.xml"> %vg-entities; ]>
<!-- Referenced from both the manual and manpage -->
<chapter id="&vg-cg-manual-id;" xreflabel="&vg-cg-manual-label;">
<title>Cachegrind: a high-precision tracing profiler</title>
<para>
To use this tool, specify <option>--tool=cachegrind</option> on the Valgrind
command line.
</para>
<sect1 id="cg-manual.overview" xreflabel="Overview">
<title>Overview</title>
<para>
Cachegrind is a high-precision tracing profiler. It runs slowly, but collects
precise and reproducible profiling data. It can merge and diff data from
different runs. To expand on these characteristics:
</para>
<itemizedlist>
<listitem>
<para>
<emphasis>Precise.</emphasis> Cachegrind measures the exact number of
instructions executed by your program, not an approximation. Furthermore,
it presents the gathered data at the file, function, and line level. This
is different to many other profilers that measure approximate execution
time, using sampling, and only at the function level.
</para>
</listitem>
<listitem>
<para>
<emphasis>Reproducible.</emphasis> In general, execution time is a better
metric than instruction counts because it's what users perceive. However,
execution time often has high variability. When running the exact same
program on the exact same input multiple times, execution time might vary
by several percent. Furthermore, small changes in a program can change its
memory layout and have even larger effects on runtime. In contrast,
instruction counts are highly reproducible; for some programs they are
perfectly reproducible. This means the effects of small changes in a
program can be measured with high precision.
</para>
</listitem>
</itemizedlist>
<para>
For these reasons, Cachegrind is an excellent complement to time-based profilers.
</para>
<para>
Cachegrind can annotate programs written in any language, so long as debug info
is present to map machine code back to the original source code. Cachegrind has
been used successfully on programs written in C, C++, Rust, and assembly.
</para>
<para>
Cachegrind can also simulate how your program interacts with a machine's cache
hierarchy and branch predictor. This simulation was the original motivation for
the tool, hence its name. However, the simulations are basic and unlikely to
reflect the behaviour of a modern machine. For this reason they are off by
default. If you really want cache and branch information, a profiler like
<computeroutput>perf</computeroutput> that accesses hardware counters is a
better choice.
</para>
</sect1>
<sect1 id="cg-manual.profile"
xreflabel="Using Cachegrind and cg_annotate">
<title>Using Cachegrind and cg_annotate</title>
<para>
First, as for normal Valgrind use, you should compile with debugging info (the
<option>-g</option> option in most compilers). But by contrast with normal
Valgrind use, you probably do want to turn optimisation on, since you should
profile your program as it will be normally run.
</para>
<para>
Second, run Cachegrind itself to gather the profiling data.
</para>
<para>
Third, run cg_annotate to get a detailed presentation of that data. cg_annotate
can combine the results of multiple Cachegrind output files. It can also
perform a diff between two Cachegrind output files.
</para>
<sect2 id="cg-manual.running-cachegrind" xreflabel="Running Cachegrind">
<title>Running Cachegrind</title>
<para>
To run Cachegrind on a program <filename>prog</filename>, run:
<screen><![CDATA[
valgrind --tool=cachegrind prog
]]></screen>
</para>
<para>
The program will execute (slowly). Upon completion, summary statistics that
look like this will be printed:
</para>
<programlisting><![CDATA[
==17942== I refs: 8,195,070
]]></programlisting>
<para>
The <computeroutput>I refs</computeroutput> number is short for "Instruction
cache references", which is equivalent to "instructions executed". If you
enable the cache and/or branch simulation, additional counts will be shown.
</para>
</sect2>
<sect2 id="cg-manual.outputfile" xreflabel="Output File">
<title>Output File</title>
<para>
Cachegrind also writes more detailed profiling data to a file. By default this
Cachegrind output file is named <filename>cachegrind.out.<pid></filename>
(where <filename><pid></filename> is the program's process ID), but its
name can be changed with the <option>--cachegrind-out-file</option> option.
This file is human-readable, but is intended to be interpreted by the
accompanying program cg_annotate, described in the next section.
</para>
<para>
The default <computeroutput>.<pid></computeroutput> suffix on the output
file name serves two purposes. First, it means existing Cachegrind output files
aren't immediately overwritten. Second, and more importantly, it allows correct
profiling with the <option>--trace-children=yes</option> option of programs
that spawn child processes.
</para>
</sect2>
<sect2 id="cg-manual.running-cg_annotate" xreflabel="Running cg_annotate">
<title>Running cg_annotate</title>
<para>
Before using cg_annotate, it is worth widening your window to be at least 120
characters wide if possible, because the output lines can be quite long.
</para>
<para>
Then run:
<screen>cg_annotate <filename></screen>
on a Cachegrind output file.
</para>
</sect2>
<!--
To produce the sample date, I did the following. Note that the single hypens in
the valgrind command should be double hyphens, but XML doesn't allow double
hyphens in comments.
gcc -g -O concord.c -o concord
valgrind -tool=cachegrind -cachegrind-out-file=concord.cgout ./concord ../cg_main.c
(to exit, type `q` and hit enter)
python ../cg_annotate concord.cgout > concord.cgann
concord.c is a small C program I wrote at university. It's a good size for an example.
-->
<sect2 id="cg-manual.the-metadata" xreflabel="The Metadata Section">
<title>The Metadata Section</title>
<para>
The first part of the output looks like this:
</para>
<programlisting><![CDATA[
--------------------------------------------------------------------------------
-- Metadata
--------------------------------------------------------------------------------
Invocation: ../cg_annotate concord.cgout
Command: ./concord ../cg_main.c
Events recorded: Ir
Events shown: Ir
Event sort order: Ir
Threshold: 0.1%
Annotation: on
]]></programlisting>
<para>
It summarizes how Cachegrind and the profiled program were run.
</para>
<itemizedlist>
<listitem>
<para>
Invocation: the command line used to produce this output.
</para>
</listitem>
<listitem>
<para>
Command: the command line used to run the profiled program.
</para>
</listitem>
<listitem>
<para>
Events recorded: which events were recorded. By default, this is
<computeroutput>Ir</computeroutput>. More events will be recorded if cache
and/or branch simulation is enabled.
</para>
</listitem>
<listitem>
<para>
Events shown: the events shown, which is a subset of the events gathered.
This can be adjusted with the <option>--show</option> option.
</para>
</listitem>
<listitem>
<para>
Event sort order: the sort order used for the subsequent sections. For
example, in this case those sections are sorted from highest
<computeroutput>Ir</computeroutput> counts to lowest. If there are multiple
events, one will be the primary sort event, and then there can be a
secondary sort event, tertiary sort event, etc., though more than one is
rarely needed. This order can be adjusted with the <option>--sort</option>
option. Note that this does <emphasis>not</emphasis> specify the order in
which the columns appear. That is specified by the "events shown" line (and
can be changed with the <option>--show</option> option).
</para>
</listitem>
<listitem>
<para>
Threshold: cg_annotate by default omits files and functions with very low
counts to keep the output size reasonable. By default cg_annotate only
shows files and functions that account for at least 0.1% of the primary
sort event. The threshold can be adjusted with the
<option>--threshold</option> option.
</para>
</listitem>
<listitem>
<para>
Annotation: whether source file annotation is enabled. Controlled with the
<option>--annotate</option> option.
</para>
</listitem>
</itemizedlist>
<para>
If cache simulation is enabled, details of the cache parameters will be shown
above the "Invocation" line.
</para>
</sect2>
<sect2 id="cg-manual.the-global"
xreflabel="Global, File, and Function-level Counts">
<title>Global, File, and Function-level Counts</title>
<para>
Next comes the summary for the whole program:
</para>
<programlisting><![CDATA[
--------------------------------------------------------------------------------
-- Summary
--------------------------------------------------------------------------------
Ir________________
8,195,070 (100.0%) PROGRAM TOTALS
]]></programlisting>
<para>
The <computeroutput>Ir</computeroutput> column label is suffixed with
underscores to show the bounds of the columns underneath.
</para>
<para>
Then comes file:function counts. Here is the first part of that section:
</para>
<programlisting><![CDATA[
--------------------------------------------------------------------------------
-- File:function summary
--------------------------------------------------------------------------------
Ir______________________ file:function
< 3,078,746 (37.6%, 37.6%) /home/njn/grind/ws1/cachegrind/concord.c:
1,630,232 (19.9%) get_word
630,918 (7.7%) hash
461,095 (5.6%) insert
130,560 (1.6%) add_existing
91,014 (1.1%) init_hash_table
88,056 (1.1%) create
46,676 (0.6%) new_word_node
< 1,746,038 (21.3%, 58.9%) ./malloc/./malloc/malloc.c:
1,285,938 (15.7%) _int_malloc
458,225 (5.6%) malloc
< 1,107,550 (13.5%, 72.4%) ./libio/./libio/getc.c:getc
< 551,071 (6.7%, 79.1%) ./string/../sysdeps/x86_64/multiarch/strcmp-avx2.S:__strcmp_avx2
< 521,228 (6.4%, 85.5%) ./ctype/../include/ctype.h:
260,616 (3.2%) __ctype_tolower_loc
260,612 (3.2%) __ctype_b_loc
< 468,163 (5.7%, 91.2%) ???:
468,151 (5.7%) ???
< 456,071 (5.6%, 96.8%) /usr/include/ctype.h:get_word
]]></programlisting>
<para>
Each entry covers one file, and one or more functions within that file. If
there is only one significant function within a file, as in the first entry,
the file and function are shown on the same line separate by a colon. If there
are multiple significant functions within a file, as in the third entry, each
function gets its own line.
</para>
<para>
This example involves a small C program, and shows a combination of code from
the program itself (including functions like <function>get_word</function> and
<function>hash</function> in the file <filename>concord.c</filename>) as well
as code from system libraries, such as functions like
<function>malloc</function> and <function>getc</function>.
</para>
<para>
Each entry is preceded with a <computeroutput><</computeroutput>, which can
be useful when navigating through the output in an editor, or grepping through
results.
</para>
<para>
The first percentage in each column indicates the proportion of the total event
count is covered by this line. The second percentage, which only shows on the
first line of each entry, shows the cumulative percentage of all the entries up
to and including this one. The entries shown here account for 96.8% of the
instructions executed by the program.
</para>
<para>
The name <computeroutput>???</computeroutput> is used if the file name and/or
function name could not be determined from debugging information. If
<filename>???</filename> filenames dominate, the program probably wasn't
compiled with <option>-g</option>. If <function>???</function> function names
dominate, the program may have had symbols stripped.
</para>
<para>
After that comes function:file counts. Here is the first part of that section:
</para>
<programlisting><![CDATA[
--------------------------------------------------------------------------------
-- Function:file summary
--------------------------------------------------------------------------------
Ir______________________ function:file
> 2,086,303 (25.5%, 25.5%) get_word:
1,630,232 (19.9%) /home/njn/grind/ws1/cachegrind/concord.c
456,071 (5.6%) /usr/include/ctype.h
> 1,285,938 (15.7%, 41.1%) _int_malloc:./malloc/./malloc/malloc.c
> 1,107,550 (13.5%, 54.7%) getc:./libio/./libio/getc.c
> 630,918 (7.7%, 62.4%) hash:/home/njn/grind/ws1/cachegrind/concord.c
> 551,071 (6.7%, 69.1%) __strcmp_avx2:./string/../sysdeps/x86_64/multiarch/strcmp-avx2.S
> 480,248 (5.9%, 74.9%) malloc:
458,225 (5.6%) ./malloc/./malloc/malloc.c
22,023 (0.3%) ./malloc/./malloc/arena.c
> 468,151 (5.7%, 80.7%) ???:???
> 461,095 (5.6%, 86.3%) insert:/home/njn/grind/ws1/cachegrind/concord.c
]]></programlisting>
<para>
This is similar to the previous section, but is grouped by functions first and
files second. Also, the entry markers are <computeroutput>></computeroutput>
instead of <computeroutput><</computeroutput>.
</para>
<para>
You might wonder why this section is needed, and how it differs from the
previous section. The answer is inlining. In this example there are two entries
demonstrating a function whose code is effectively spread across more than one
file: <function>get_word</function> and <function>malloc</function>. Here is an
example from profiling the Rust compiler, a much larger program that uses
inlining more:
</para>
<programlisting><![CDATA[
> 30,469,230 (1.3%, 11.1%) <rustc_middle::ty::context::CtxtInterners>::intern_ty:
10,269,220 (0.5%) /home/njn/.cargo/registry/src/github.com-1ecc6299db9ec823/hashbrown-0.12.3/src/raw/mod.rs
7,696,827 (0.3%) /home/njn/dev/rust0/compiler/rustc_middle/src/ty/context.rs
3,858,099 (0.2%) /home/njn/dev/rust0/library/core/src/cell.rs
]]></programlisting>
<para>
In this case the compiled function <function>intern_ty</function> includes code
from three different source files, due to inlining. These should be examined
together. Older versions of cg_annotate presented this entry as three separate
file:function entries, which would typically be intermixed with all the other
entries, making it hard to see that they are all really part of the same
function.
</para>
</sect2>
<sect2 id="cg-manual.line-by-line" xreflabel="Per-line Counts">
<title>Per-line Counts</title>
<para>
By default, a source file is annotated if it contains at least one function
that meets the significance threshold. This can be disabled with the
<option>--annotate</option> option.
</para>
<para>
To continue the previous example, here is part of the annotation of the file
<filename>concord.c</filename>:
</para>
<programlisting><![CDATA[
--------------------------------------------------------------------------------
-- Annotated source file: /home/njn/grind/ws1/cachegrind/docs/concord.c
--------------------------------------------------------------------------------
Ir____________
. /* Function builds the hash table from the given file. */
. void init_hash_table(char *file_name, Word_Node *table[])
8 (0.0%) {
. FILE *file_ptr;
. Word_Info *data;
2 (0.0%) int line = 1, i;
.
. /* Structure used when reading in words and line numbers. */
3 (0.0%) data = (Word_Info *) create(sizeof(Word_Info));
.
. /* Initialise entire table to NULL. */
2,993 (0.0%) for (i = 0; i < TABLE_SIZE; i++)
997 (0.0%) table[i] = NULL;
.
. /* Open file, check it. */
4 (0.0%) file_ptr = fopen(file_name, "r");
2 (0.0%) if (!(file_ptr)) {
. fprintf(stderr, "Couldn't open '%s'.\n", file_name);
. exit(EXIT_FAILURE);
. }
.
. /* 'Get' the words and lines one at a time from the file, and insert them
. ** into the table one at a time. */
55,363 (0.7%) while ((line = get_word(data, line, file_ptr)) != EOF)
31,632 (0.4%) insert(data->word, data->line, table);
.
2 (0.0%) free(data);
2 (0.0%) fclose(file_ptr);
6 (0.0%) }
]]></programlisting>
<para>
Each executed line is annotated with its event counts. Other lines are
annotated with a dot. This may be because they contain no executable code, or
they contain executable code but were never executed.
</para>
<para>
You can easily tell if a function is inlined from this output. If it is not
inlined, it will have event counts on the lines containing the opening and
closing braces. If it is inlined, it will not have event counts on those lines.
In the example above, <function>init_hash_table</function> does have counts,
so you can tell it is not inlined.
</para>
<para>
Note again that inlining can lead to surprising results. If a function
<function>f</function> is always inlined, in the file:function and
function:file sections counts will be attributed to the functions it is inlined
into, rather than itself. However, if you look at the line-by-line annotations
for <function>f</function> you'll see the counts that belong to
<function>f</function>. So it's worth looking for large counts/percentages in the
line-by-line annotations.
</para>
<para>
Sometimes only a small section of a source file is executed. To minimise
uninteresting output, Cachegrind only shows annotated lines and lines within a
small distance of annotated lines. Gaps are marked with line numbers, for
example:
</para>
<programlisting><![CDATA[
(counts and code for line 704)
-- line 375 ----------------------------------------
-- line 514 ----------------------------------------
(counts and code for line 878)
]]></programlisting>
<para>
The number of lines of context shown around annotated lines is controlled by
the <option>--context</option> option.
</para>
<para>
Any significant source files that could not be found are shown like this:
</para>
<programlisting><![CDATA[
--------------------------------------------------------------------------------
-- Annotated source file: ./malloc/./malloc/malloc.c
--------------------------------------------------------------------------------
Unannotated because one or more of these original files are unreadable:
- ./malloc/./malloc/malloc.c
]]></programlisting>
<para>
This is common for library files, because libraries are usually compiled with
debugging information but the source files are rarely present on a system.
</para>
<para>
Cachegrind relies heavily on accurate debug info. Sometimes compilers do not
map a particular compiled instruction to line number 0, where the 0 represents
"unknown" or "none". This is annoying but does happen in practice. cg_annotate
prints these in the following way:
</para>
<programlisting><![CDATA[
--------------------------------------------------------------------------------
-- Annotated source file: /home/njn/dev/rust0/compiler/rustc_borrowck/src/lib.rs
--------------------------------------------------------------------------------
Ir______________
1,046,746 (0.0%) <unknown (line 0)>
]]></programlisting>
<para>
Finally, when annotation is performed, the output ends with a summary of how
many counts were annotated and unannotated, and why. For example:
</para>
<programlisting><![CDATA[
--------------------------------------------------------------------------------
-- Annotation summary
--------------------------------------------------------------------------------
Ir_______________
3,534,817 (43.1%) annotated: files known & above threshold & readable, line numbers known
0 annotated: files known & above threshold & readable, line numbers unknown
0 unannotated: files known & above threshold & two or more non-identical
4,132,126 (50.4%) unannotated: files known & above threshold & unreadable
59,950 (0.7%) unannotated: files known & below threshold
468,163 (5.7%) unannotated: files unknown
]]></programlisting>
</sect2>
<sect2 id="cg-manual.forkingprograms" xreflabel="Forking Programs">
<title>Forking Programs</title>
<para>
If your program forks, the child will inherit all the profiling data that
has been gathered for the parent.
</para>
<para>
If the output file name (controlled by <option>--cachegrind-out-file</option>)
does not contain <option>%p</option>, then the outputs from the parent and
child will be intermingled in a single output file, which will almost certainly
make it unreadable by cg_annotate.
</para>
</sect2>
<sect2 id="cg-manual.annopts.warnings" xreflabel="cg_annotate Warnings">
<title>cg_annotate Warnings</title>
<para>
There are two situations in which cg_annotate prints warnings.
</para>
<itemizedlist>
<listitem>
<para>
If a source file is more recent than the Cachegrind output file. This is
because the information in the Cachegrind output file is only recorded with
line numbers, so if the line numbers change at all in the source (e.g.
lines added, deleted, swapped), any annotations will be incorrect.
</para>
</listitem>
<listitem>
<para>
If information is recorded about line numbers past the end of a file. This
can be caused by the above problem, e.g. shortening the source file while
using an old Cachegrind output file. If this happens, the figures for the
bogus lines are printed anyway (and clearly marked as bogus) in case they
are important.
</para>
</listitem>
</itemizedlist>
</sect2>
<sect2 id="cg-manual.cg_merge" xreflabel="cg_merge">
<title>Merging Cachegrind Output Files</title>
<para>
cg_annotate can merge data from multiple Cachegrind output files in a single
run. (There is also a program called cg_merge that can merge multiple
Cachegrind output files into a single Cachegrind output file, but it is now
deprecated because cg_annotate's merging does a better job.)
</para>
<para>
Use it as follows:
</para>
<programlisting><![CDATA[
cg_annotate file1 file2 file3 ...
]]></programlisting>
<para>
cg_annotate computes the sum of these files (effectively
<filename>file1</filename> + <filename>file2</filename> +
<filename>file3</filename>), and then produces output as usual that shows the
summed counts.
</para>
<para>
The most common merging scenario is if you want to aggregate costs over
multiple runs of the same program, possibly on different inputs.
</para>
</sect2>
<sect2 id="cg-manual.cg_diff" xreflabel="cg_diff">
<title>Differencing Cachegrind output files</title>
<para>
cg_annotate can diff data from two Cachegrind output files in a single run.
(There is also a program called cg_diff that can diff two Cachegrind output
files into a single Cachegrind output file, but it is now deprecated because
cg_annotate's differencing does a better job.)
</para>
<para>
Use it as follows:
</para>
<programlisting><![CDATA[
cg_annotate --diff file1 file2
]]></programlisting>
<para>
cg_annotate computes the difference between these two files (effectively
<filename>file2</filename> - <filename>file1</filename>), and then
produces output as usual that shows the count differences. Note that many of
the counts may be negative; this indicates that the counts for the relevant
file/function/line are smaller in the second version than those in the first
version.
</para>
<para>
The simplest common scenario is comparing two Cachegrind output files that came
from the same program, but on different inputs. cg_annotate will do a good job
on this without assistance.
</para>
<para>
A more complex scenario is if you want to compare Cachegrind output files from
two slightly different versions of a program that you have sitting
side-by-side, running on the same input. For example, you might have
<filename>version1/prog.c</filename> and <filename>version2/prog.c</filename>.
A straight comparison of the two would not be useful. Because functions are
always paired with filenames, a function <function>f</function> would be listed
as <filename>version1/prog.c:f</filename> for the first version but
<filename>version2/prog.c:f</filename> for the second version.
</para>
<para>
In this case, use the <option>--mod-filename</option> option. Its argument is a
search-and-replace expression that will be applied to all the filenames in both
Cachegrind output files. It can be used to remove minor differences in
filenames. For example, the option
<option>--mod-filename='s/version[0-9]/versionN/'</option> will suffice for the
above example.
</para>
<para>
Similarly, sometimes compilers auto-generate certain functions and give them
randomized names like <function>T.1234</function> where the suffixes vary from
build to build. You can use the <option>--mod-funcname</option> option to
remove small differences like these; it works in the same way as
<option>--mod-filename</option>.
</para>
<para>
When <option>--mod-filename</option> is used to compare two different versions
of the same program, cg_annotate will not annotate any file that is different
between the two versions, because the per-line counts are not reliable in such
a case. For example, imagine if <filename>version2/prog.c</filename> is the
same as <filename>version1/prog.c</filename> except with an extra blank line at
the top of the file. Every single per-line count will have changed. In
comparison, the per-file and per-function counts have not changed, and are
still very useful for determining differences between programs. You might think
that this means every interesting file will be left unannotated, but again
inlining means that files that are identical in the two versions can have
different counts on many lines.
</para>
</sect2>
<sect2 id="cg-manual.cache-branch-sim" xreflabel="cache-branch-sim">
<title>Cache and Branch Simulation</title>
<para>
Cachegrind can simulate how your program interacts with a machine's cache
hierarchy and/or branch predictor.
The cache simulation models a machine with independent first-level instruction
and data caches (I1 and D1), backed by a unified second-level cache (L2). For
these machines (in the cases where Cachegrind can auto-detect the cache
configuration) Cachegrind simulates the first-level and last-level caches.
Therefore, Cachegrind always refers to the I1, D1 and LL (last-level) caches.
</para>
<para>
When simulating the cache, with <option>--cache-sim=yes</option>, Cachegrind
gathers the following statistics:
</para>
<itemizedlist>
<listitem>
<para>
I cache reads (<computeroutput>Ir</computeroutput>, which equals the number
of instructions executed), I1 cache read misses
(<computeroutput>I1mr</computeroutput>) and LL cache instruction read
misses (<computeroutput>ILmr</computeroutput>).
</para>
</listitem>
<listitem>
<para>
D cache reads (<computeroutput>Dr</computeroutput>, which equals the number
of memory reads), D1 cache read misses
(<computeroutput>D1mr</computeroutput>), and LL cache data read misses
(<computeroutput>DLmr</computeroutput>).
</para>
</listitem>
<listitem>
<para>
D cache writes (<computeroutput>Dw</computeroutput>, which equals the
number of memory writes), D1 cache write misses
(<computeroutput>D1mw</computeroutput>), and LL cache data write misses
(<computeroutput>DLmw</computeroutput>).
</para>
</listitem>
</itemizedlist>
<para>
Note that D1 total accesses is given by <computeroutput>D1mr</computeroutput> +
<computeroutput>D1mw</computeroutput>, and that LL total accesses is given by
<computeroutput>ILmr</computeroutput> + <computeroutput>DLmr</computeroutput> +
<computeroutput>DLmw</computeroutput>.
</para>
<para>
When simulating the branch predictor, with <option>--branch-sim=yes</option>,
Cachegrind gathers the following statistics:
</para>
<itemizedlist>
<listitem>
<para>
Conditional branches executed (<computeroutput>Bc</computeroutput>) and
conditional branches mispredicted (<computeroutput>Bcm</computeroutput>).
</para>
</listitem>
<listitem>
<para>
Indirect branches executed (<computeroutput>Bi</computeroutput>) and
indirect branches mispredicted (<computeroutput>Bim</computeroutput>).
</para>
</listitem>
</itemizedlist>
<para>
When cache and/or branch simulation is enabled, cg_annotate will print multiple
counts per line of output. For example:
</para>
<programlisting><![CDATA[
Ir______________________ Bc____________________ Bcm__________________ Bi____________________ Bim______________ function:file
> 8,547 (0.1%, 99.4%) 936 (0.1%, 99.1%) 177 (0.3%, 96.7%) 59 (0.0%, 99.9%) 38 (19.4%, 66.3%) strcmp:
8,503 (0.1%) 928 (0.1%) 175 (0.3%) 59 (0.0%) 38 (19.4%) ./string/../sysdeps/x86_64/multiarch/../multiarch/strcmp-sse2.S
]]></programlisting>
</sect2>
</sect1>
<sect1 id="cg-manual.cgopts" xreflabel="Cachegrind Command-line Options">
<title>Cachegrind Command-line Options</title>
<!-- start of xi:include in the manpage -->
<para>
Cachegrind-specific options are:
</para>
<variablelist id="cg.opts.list">
<varlistentry id="opt.cachegrind-out-file" xreflabel="--cachegrind-out-file">
<term>
<option><![CDATA[--cachegrind-out-file=<file> ]]></option>
</term>
<listitem>
<para>
Write the Cachegrind output file to <filename>file</filename> rather than
to the default output file,
<filename>cachegrind.out.<pid></filename>. The <option>%p</option>
and <option>%q</option> format specifiers can be used to embed the
process ID and/or the contents of an environment variable in the name, as
is the case for the core option
<option><link linkend="opt.log-file">--log-file</link></option>.
</para>
</listitem>
</varlistentry>
<varlistentry id="opt.cache-sim" xreflabel="--cache-sim">
<term>
<option><![CDATA[--cache-sim=no|yes [no] ]]></option>
</term>
<listitem>
<para>
Enables or disables collection of cache access and miss counts.
</para>
</listitem>
</varlistentry>
<varlistentry id="opt.branch-sim" xreflabel="--branch-sim">
<term>
<option><![CDATA[--branch-sim=no|yes [no] ]]></option>
</term>
<listitem>
<para>
Enables or disables collection of branch instruction and
misprediction counts.
</para>
</listitem>
</varlistentry>
<varlistentry id="opt.instr-at-start" xreflabel="--instr-at-start">
<term>
<option><![CDATA[--instr-at-start=no|yes [yes] ]]></option>
</term>
<listitem>
<para>
Enables or disables instrumentation at the start of execution.
Use this in combination with
<computeroutput>CACHEGRIND_START_INSTRUMENTATION</computeroutput> and
<computeroutput>CACHEGRIND_STOP_INSTRUMENTATION</computeroutput> to
measure only part of a client program's execution.
</para>
</listitem>
</varlistentry>
<varlistentry id="cg.opt.I1" xreflabel="--I1">
<term>
<option><![CDATA[--I1=<size>,<associativity>,<line size> ]]></option>
</term>
<listitem>
<para>
Specify the size, associativity and line size of the level 1 instruction
cache. Only useful with <option>--cache-sim=yes</option>.
</para>
</listitem>
</varlistentry>
<varlistentry id="cg.opt.D1" xreflabel="--D1">
<term>
<option><![CDATA[--D1=<size>,<associativity>,<line size> ]]></option>
</term>
<listitem>
<para>
Specify the size, associativity and line size of the level 1 data cache.
Only useful with <option>--cache-sim=yes</option>.
</para>
</listitem>
</varlistentry>
<varlistentry id="cg.opt.LL" xreflabel="--LL">
<term>
<option><![CDATA[--LL=<size>,<associativity>,<line size> ]]></option>
</term>
<listitem>
<para>
Specify the size, associativity and line size of the last-level cache.
Only useful with <option>--cache-sim=yes</option>.
</para>
</listitem>
</varlistentry>
</variablelist>
<!-- end of xi:include in the manpage -->
</sect1>
<sect1 id="cg-manual.annopts" xreflabel="cg_annotate Command-line Options">
<title>cg_annotate Command-line Options</title>
<!-- start of xi:include in the manpage -->
<variablelist id="cg_annotate.opts.list">
<varlistentry>
<term>
<option><![CDATA[-h --help ]]></option>
</term>
<listitem>
<para>Show the help message.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option><![CDATA[--version ]]></option>
</term>
<listitem>
<para>Show the version number.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option><![CDATA[--diff ]]></option>
</term>
<listitem>
<para>Diff two Cachegrind output files.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option><![CDATA[--mod-filename <regex> [default: none]]]></option>
</term>
<listitem>
<para>
Specifies an <option>s/old/new/</option> search-and-replace expression
that is applied to all filenames. Useful when differencing, for removing
minor differences in paths between two different versions of a program
that are sitting in different directories. An <option>i</option> suffix
makes the regex case-insensitive, and a <option>g</option> suffix makes
it match multiple times.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option><![CDATA[--mod-funcname <regex> [default: none]]]></option>
</term>
<listitem>
<para>
Like <option>--mod-filename</option>, but for filenames. Useful for
removing minor differences in randomized names of auto-generated
functions generated by some compilers.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option><![CDATA[--show=A,B,C [default: all, using order in
the Cachegrind output file] ]]></option>
</term>
<listitem>
<para>
Specifies which events to show (and the column order). Default is to use
all present in the Cachegrind output file (and use the order in the
file). Best used in conjunction with <option>--sort</option>.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option><![CDATA[--sort=A,B,C [default: order in the Cachegrind output file] ]]></option>
</term>
<listitem>
<para>
Specifies the events upon which the sorting of the file:function and
function:file entries will be based.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option><![CDATA[--threshold=X [default: 0.1%] ]]></option>
</term>
<listitem>
<para>
Sets the significance threshold for the file:function and function:files
sections. A file or function is shown if it accounts for more than X% of
the counts for the primary sort event. If annotating source files, this
also affects which files are annotated.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option><![CDATA[--show-percs, --no-show-percs, --show-percs=<no|yes> [default: yes] ]]></option>
</term>
<listitem>
<para>
When enabled, a percentage is printed next to all event counts. This
helps gauge the relative importance of each function and line.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option><![CDATA[--annotate, --no-annotate, --auto=<no|yes> [default: yes] ]]></option>
</term>
<listitem>
<para>
Enables or disables source file annotation.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option><![CDATA[--context=N [default: 8] ]]></option>
</term>
<listitem>
<para>
The number of lines of context to show before and after each annotated
line. Use a large number (e.g. 100000) to show all source lines.
</para>
</listitem>
</varlistentry>
</variablelist>
<!-- end of xi:include in the manpage -->
</sect1>
<sect1 id="cg-manual.mergeopts" xreflabel="cg_merge Command-line Options">
<title>cg_merge Command-line Options</title>
<!-- start of xi:include in the manpage -->
<variablelist id="cg_merge.opts.list">
<varlistentry>
<term>
<option><![CDATA[-o outfile]]></option>
</term>
<listitem>
<para>
Write the output to to <computeroutput>outfile</computeroutput>
instead of standard output.
</para>
</listitem>
</varlistentry>
</variablelist>
<!-- end of xi:include in the manpage -->
</sect1>
<sect1 id="cg-manual.diffopts" xreflabel="cg_diff Command-line Options">
<title>cg_diff Command-line Options</title>
<!-- start of xi:include in the manpage -->
<variablelist id="cg_diff.opts.list">
<varlistentry>
<term>
<option><![CDATA[-h --help ]]></option>
</term>
<listitem>
<para>Show the help message.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option><![CDATA[--version ]]></option>
</term>
<listitem>
<para>Show the version number.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option><![CDATA[--mod-filename=<expr> [default: none]]]></option>
</term>
<listitem>
<para>
Specifies an <option>s/old/new/</option> search-and-replace expression
that is applied to all filenames.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option><![CDATA[--mod-funcname=<expr> [default: none]]]></option>
</term>
<listitem>
<para>
Like <option>--mod-filename</option>, but for filenames.
</para>
</listitem>
</varlistentry>
</variablelist>
<!-- end of xi:include in the manpage -->
</sect1>
<sect1 id="cg-manual.clientrequests" xreflabel="Client requests">
<title>Cachegrind Client Requests</title>
<para>Cachegrind provides the following client requests in
<filename>cachegrind.h</filename>.
</para>
<variablelist id="cg.clientrequests.list">
<varlistentry id="cg.cr.start-instr" xreflabel="CACHEGRIND_START_INSTRUMENTATION">
<term>
<computeroutput>CACHEGRIND_START_INSTRUMENTATION</computeroutput>
</term>
<listitem>
<para>Start Cachegrind instrumentation if not already enabled. Use this
in combination with
<computeroutput>CACHEGRIND_STOP_INSTRUMENTATION</computeroutput> and
<option><link linkend="opt.instr-at-start">--instr-at-start</link></option>
to measure only part of a client program's execution.
</para>
</listitem>
</varlistentry>
<varlistentry id="cg.cr.stop-instr" xreflabel="CACHEGRIND_STOP_INSTRUMENTATION">
<term>
<computeroutput>CACHEGRIND_STOP_INSTRUMENTATION</computeroutput>
</term>
<listitem>
<para>Stop Cachegrind instrumentation if not already disabled. Use this
in combination with
<computeroutput>CACHEGRIND_START_INSTRUMENTATION</computeroutput> and
<option><link linkend="opt.instr-at-start">--instr-at-start</link></option>
to measure only part of a client program's execution.
</para>
</listitem>
</varlistentry>
</variablelist>
</sect1>
<sect1 id="cg-manual.sim-details"
xreflabel="Simulation Details">
<title>Simulation Details</title>
<para>
This section talks about details you don't need to know about in order to
use Cachegrind, but may be of interest to some people.
</para>
<sect2 id="cache-sim" xreflabel="Cache Simulation Specifics">
<title>Cache Simulation Specifics</title>
<para>
The cache simulation approximates the hardware of an AMD Athlon CPU circa 2002.
Its specific characteristics are as follows:</para>
<itemizedlist>
<listitem>
<para>Write-allocate: when a write miss occurs, the block
written to is brought into the D1 cache. Most modern caches
have this property.</para>
</listitem>
<listitem>
<para>Bit-selection hash function: the set of line(s) in the cache
to which a memory block maps is chosen by the middle bits
M--(M+N-1) of the byte address, where:</para>
<itemizedlist>
<listitem>
<para>line size = 2^M bytes</para>
</listitem>
<listitem>
<para>(cache size / line size / associativity) = 2^N bytes</para>
</listitem>
</itemizedlist>
</listitem>
<listitem>
<para>Inclusive LL cache: the LL cache typically replicates all
the entries of the L1 caches, because fetching into L1 involves
fetching into LL first (this does not guarantee strict inclusiveness,
as lines evicted from LL still could reside in L1). This is
standard on Pentium chips, but AMD Opterons, Athlons and Durons
use an exclusive LL cache that only holds
blocks evicted from L1. Ditto most modern VIA CPUs.</para>
</listitem>
</itemizedlist>
<para>The cache configuration simulated (cache size,
associativity and line size) is determined automatically using
the x86 CPUID instruction. If you have a machine that (a)
doesn't support the CPUID instruction, or (b) supports it in an
early incarnation that doesn't give any cache information, then
Cachegrind will fall back to using a default configuration (that
of a model 3/4 Athlon). Cachegrind will tell you if this
happens. You can manually specify one, two or all three levels
(I1/D1/LL) of the cache from the command line using the
<option>--I1</option>,
<option>--D1</option> and
<option>--LL</option> options.
For cache parameters to be valid for simulation, the number
of sets (with associativity being the number of cache lines in
each set) has to be a power of two.</para>
<para>On PowerPC platforms
Cachegrind cannot automatically
determine the cache configuration, so you will
need to specify it with the
<option>--I1</option>,
<option>--D1</option> and
<option>--LL</option> options.</para>
<para>Other noteworthy behaviour:</para>
<itemizedlist>
<listitem>
<para>References that straddle two cache lines are treated as
follows:</para>
<itemizedlist>
<listitem>
<para>If both blocks hit --> counted as one hit</para>
</listitem>
<listitem>
<para>If one block hits, the other misses --> counted
as one miss.</para>
</listitem>
<listitem>
<para>If both blocks miss --> counted as one miss (not
two)</para>
</listitem>
</itemizedlist>
</listitem>
<listitem>
<para>Instructions that modify a memory location
(e.g. <computeroutput>inc</computeroutput> and
<computeroutput>dec</computeroutput>) are counted as doing
just a read, i.e. a single data reference. This may seem
strange, but since the write can never cause a miss (the read
guarantees the block is in the cache) it's not very
interesting.</para>
<para>Thus it measures not the number of times the data cache
is accessed, but the number of times a data cache miss could
occur.</para>
</listitem>
</itemizedlist>
<para>
If you are interested in simulating a cache with different properties, it is
not particularly hard to write your own cache simulator, or to modify the
existing ones in <computeroutput>cg_sim.c</computeroutput>.
</para>
</sect2>
<sect2 id="branch-sim" xreflabel="Branch Simulation Specifics">
<title>Branch Simulation Specifics</title>
<para>Cachegrind simulates branch predictors intended to be
typical of mainstream desktop/server processors of around 2004.</para>
<para>Conditional branches are predicted using an array of 16384 2-bit
saturating counters. The array index used for a branch instruction is
computed partly from the low-order bits of the branch instruction's
address and partly using the taken/not-taken behaviour of the last few
conditional branches. As a result the predictions for any specific
branch depend both on its own history and the behaviour of previous
branches. This is a standard technique for improving prediction
accuracy.</para>
<para>For indirect branches (that is, jumps to unknown destinations)
Cachegrind uses a simple branch target address predictor. Targets are
predicted using an array of 512 entries indexed by the low order 9
bits of the branch instruction's address. Each branch is predicted to
jump to the same address it did last time. Any other behaviour causes
a mispredict.</para>
<para>More recent processors have better branch predictors, in
particular better indirect branch predictors. Cachegrind's predictor
design is deliberately conservative so as to be representative of the
large installed base of processors which pre-date widespread
deployment of more sophisticated indirect branch predictors. In
particular, late model Pentium 4s (Prescott), Pentium M, Core and Core
2 have more sophisticated indirect branch predictors than modelled by
Cachegrind. </para>
<para>Cachegrind does not simulate a return stack predictor. It
assumes that processors perfectly predict function return addresses,
an assumption which is probably close to being true.</para>
<para>See Hennessy and Patterson's classic text "Computer
Architecture: A Quantitative Approach", 4th edition (2007), Section
2.3 (pages 80-89) for background on modern branch predictors.</para>
</sect2>
<sect2 id="cg-manual.annopts.accuracy" xreflabel="Accuracy">
<title>Accuracy</title>
<para>
Cachegrind's instruction counting has one shortcoming on x86/amd64:
</para>
<itemizedlist>
<listitem>
<para>
When a <function>REP</function>-prefixed instruction executes each
iteration is counted separately. In contrast, hardware counters count each
such instruction just once, no matter how many times it iterates. It is
arguable that Cachegrind's behaviour is more useful.
</para>
</listitem>
</itemizedlist>
<para>
Cachegrind's cache profiling has a number of shortcomings:
</para>
<itemizedlist>
<listitem>
<para>
It doesn't account for kernel activity. The effect of system calls on the
cache and branch predictor contents is ignored.
</para>
</listitem>
<listitem>
<para>
It doesn't account for other process activity. This is arguably desirable
when considering a single program.
</para>
</listitem>
<listitem>
<para>It doesn't account for virtual-to-physical address
mappings. Hence the simulation is not a true
representation of what's happening in the
cache. Most caches and branch predictors are physically indexed, but
Cachegrind simulates caches using virtual addresses.</para>
</listitem>
<listitem>
<para>It doesn't account for cache misses not visible at the
instruction level, e.g. those arising from TLB misses, or
speculative execution.</para>
</listitem>
<listitem>
<para>Valgrind will schedule
threads differently from how they would be when running natively.
This could warp the results for threaded programs.</para>
</listitem>
<listitem>
<para>
The x86/amd64 instructions <computeroutput>bts</computeroutput>,
<computeroutput>btr</computeroutput> and
<computeroutput>btc</computeroutput> will incorrectly be counted as doing a
data read if both the arguments are registers, e.g.:
<programlisting><![CDATA[
btsl %eax, %edx]]></programlisting>
This should only happen rarely.
</para>
</listitem>
<listitem>
<para>x86/amd64 FPU instructions with data sizes of 28 and 108 bytes
(e.g. <computeroutput>fsave</computeroutput>) are treated as
though they only access 16 bytes. These instructions seem to
be rare so hopefully this won't affect accuracy much.</para>
</listitem>
</itemizedlist>
<para>Another thing worth noting is that results are very sensitive.
Changing the size of the executable being profiled, or the sizes
of any of the shared libraries it uses, or even the length of their
file names, can perturb the results. Variations will be small, but
don't expect perfectly repeatable results if your program changes at
all.</para>
<para>
Many Linux distributions perform address space layout randomisation (ASLR), in
which identical runs of the same program have their shared libraries loaded at
different locations, as a security measure. This also perturbs the
results.
</para>
</sect2>
</sect1>
<sect1 id="cg-manual.impl-details"
xreflabel="Implementation Details">
<title>Implementation Details</title>
<para>
This section talks about details you don't need to know about in order to
use Cachegrind, but may be of interest to some people.
</para>
<sect2 id="cg-manual.impl-details.how-cg-works"
xreflabel="How Cachegrind Works">
<title>How Cachegrind Works</title>
<para>The best reference for understanding how Cachegrind works is chapter 3 of
"Dynamic Binary Analysis and Instrumentation", by Nicholas Nethercote. It
is available on the <ulink url="&vg-pubs-url;">Valgrind publications
page</ulink>.</para>
</sect2>
<sect2 id="cg-manual.impl-details.file-format"
xreflabel="Cachegrind Output File Format">
<title>Cachegrind Output File Format</title>
<para>The file format is fairly straightforward, basically giving the
cost centre for every line, grouped by files and
functions. It's also totally generic and self-describing, in the sense that
it can be used for any events that can be counted on a line-by-line basis,
not just cache and branch predictor events. For example, earlier versions
of Cachegrind didn't have a branch predictor simulation. When this was
added, the file format didn't need to change at all. So the format (and
consequently, cg_annotate) could be used by other tools.</para>
<para>The file format:</para>
<programlisting><![CDATA[
file ::= desc_line* cmd_line events_line data_line+ summary_line
desc_line ::= "desc:" ws? non_nl_string
cmd_line ::= "cmd:" ws? cmd
events_line ::= "events:" ws? (event ws)+
data_line ::= file_line | fn_line | count_line
file_line ::= "fl=" filename
fn_line ::= "fn=" fn_name
count_line ::= line_num (ws+ count)* ws*
summary_line ::= "summary:" ws? count (ws+ count)+ ws*
count ::= num]]></programlisting>
<para>Where:</para>
<itemizedlist>
<listitem>
<para><computeroutput>non_nl_string</computeroutput> is any
string not containing a newline.</para>
</listitem>
<listitem>
<para><computeroutput>cmd</computeroutput> is a string holding the
command line of the profiled program.</para>
</listitem>
<listitem>
<para><computeroutput>event</computeroutput> is a string containing
no whitespace.</para>
</listitem>
<listitem>
<para><computeroutput>filename</computeroutput> and
<computeroutput>fn_name</computeroutput> are strings.</para>
</listitem>
<listitem>
<para><computeroutput>num</computeroutput> and
<computeroutput>line_num</computeroutput> are decimal
numbers.</para>
</listitem>
<listitem>
<para><computeroutput>ws</computeroutput> is whitespace.</para>
</listitem>
</itemizedlist>
<para>The contents of the "desc:" lines are printed out at the top
of the summary. This is a generic way of providing simulation
specific information, e.g. for giving the cache configuration for
cache simulation.</para>
<para>More than one line of info can be present for each file/fn/line number.
In such cases, the counts for the named events will be accumulated.</para>
<para>The number of counts in each
<computeroutput>line</computeroutput> and the
<computeroutput>summary_line</computeroutput> should not exceed
the number of events in the
<computeroutput>event_line</computeroutput>. If the number in
each <computeroutput>line</computeroutput> is less, cg_annotate
treats those missing as though they were a "0" entry. This can reduce
file size.
</para>
<para>A <computeroutput>file_line</computeroutput> changes the
current file name. A <computeroutput>fn_line</computeroutput>
changes the current function name. A
<computeroutput>count_line</computeroutput> contains counts that
pertain to the current filename/fn_name. A "fn="
<computeroutput>file_line</computeroutput> and a
<computeroutput>fn_line</computeroutput> must appear before any
<computeroutput>count_line</computeroutput>s to give the context
of the first <computeroutput>count_line</computeroutput>s.</para>
<para>Similarly, each <computeroutput>file_line</computeroutput> must be
immediately followed by a <computeroutput>fn_line</computeroutput>.
</para>
<para>The summary line is redundant, because it just holds the total counts
for each event. But this serves as a useful sanity check of the data; if
the totals for each event don't match the summary line, something has gone
wrong.</para>
</sect2>
</sect1>
</chapter>
|