1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
|
/*--------------------------------------------------------------------*/
/*--- Management of the translation table and cache. ---*/
/*--- m_transtab.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of Valgrind, a dynamic binary instrumentation
framework.
Copyright (C) 2000-2017 Julian Seward
jseward@acm.org
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
The GNU General Public License is contained in the file COPYING.
*/
#include "pub_core_basics.h"
#include "pub_core_debuglog.h"
#include "pub_core_machine.h" // For VG_(machine_get_VexArchInfo)
#include "pub_core_libcbase.h"
#include "pub_core_vki.h" // to keep pub_core_libproc.h happy, sigh
#include "pub_core_libcproc.h" // VG_(invalidate_icache)
#include "pub_core_libcassert.h"
#include "pub_core_libcprint.h"
#include "pub_core_options.h"
#include "pub_core_tooliface.h" // For VG_(details).avg_translation_sizeB
#include "pub_core_transtab.h"
#include "pub_core_aspacemgr.h"
#include "pub_core_mallocfree.h" // VG_(out_of_memory_NORETURN)
#include "pub_core_xarray.h"
#include "pub_core_dispatch.h" // For VG_(disp_cp*) addresses
#define DEBUG_TRANSTAB 0
/*-------------------------------------------------------------*/
/*--- Management of the FIFO-based translation table+cache. ---*/
/*-------------------------------------------------------------*/
/* Nr of sectors provided via command line parameter. */
UInt VG_(clo_num_transtab_sectors) = N_SECTORS_DEFAULT;
/* Nr of sectors.
Will be set by VG_(init_tt_tc) to VG_(clo_num_transtab_sectors). */
static SECno n_sectors = 0;
/* Average size of a transtab code entry. 0 means to use the tool
provided default. */
UInt VG_(clo_avg_transtab_entry_size) = 0;
/*------------------ CONSTANTS ------------------*/
/* Number of entries in hash table of each sector. This needs to be a prime
number to work properly, it must be <= 65535 (so that a TTE index
fits in a UShort, leaving room for 0xFFFF(EC2TTE_DELETED, HTT_DELETED)
to denote 'deleted') and 0xFFFE (HTT_EMPTY) to denote 'Empty' in the
hash table.
It is strongly recommended not to change this.
65521 is the largest prime <= 65535. */
#define N_HTTES_PER_SECTOR /*10007*/ /*30011*/ /*40009*/ 65521
#define EC2TTE_DELETED 0xFFFF /* 16-bit special value */
#define HTT_DELETED EC2TTE_DELETED
#define HTT_EMPTY 0XFFFE
// HTTno is the Sector->htt hash table index. Must be the same type as TTEno.
typedef UShort HTTno;
/* Because each sector contains a hash table of TTEntries, we need to
specify the maximum allowable loading, after which the sector is
deemed full. */
#define SECTOR_TT_LIMIT_PERCENT 65
/* The sector is deemed full when this many entries are in it. */
#define N_TTES_PER_SECTOR \
((N_HTTES_PER_SECTOR * SECTOR_TT_LIMIT_PERCENT) / 100)
/* Equivalence classes for fast address range deletion. There are 1 +
2^ECLASS_WIDTH bins. The highest one, ECLASS_MISC, describes an
address range which does not fall cleanly within any specific bin.
Note that ECLASS_SHIFT + ECLASS_WIDTH must be < 32.
ECLASS_N must fit in a EclassNo. */
#define ECLASS_SHIFT 13U
#define ECLASS_WIDTH 9U
#define ECLASS_MISC (1U << ECLASS_WIDTH)
#define ECLASS_N (1U + ECLASS_MISC)
STATIC_ASSERT(ECLASS_SHIFT + ECLASS_WIDTH < 32);
typedef UShort EClassNo;
/*------------------ TYPES ------------------*/
/* In edges ("to-me") in the graph created by chaining. */
typedef
struct {
SECno from_sNo; /* sector number */
TTEno from_tteNo; /* TTE number in given sector */
UInt from_offs: (sizeof(UInt)*8)-1; /* code offset from TCEntry::tcptr
where the patch is */
Bool to_fastEP:1; /* Is the patch to a fast or slow entry point? */
}
InEdge;
/* Out edges ("from-me") in the graph created by chaining. */
typedef
struct {
SECno to_sNo; /* sector number */
TTEno to_tteNo; /* TTE number in given sector */
UInt from_offs; /* code offset in owning translation where patch is */
}
OutEdge;
#define N_FIXED_IN_EDGE_ARR 3
typedef
struct {
Bool has_var:1; /* True if var is used (then n_fixed must be 0) */
UInt n_fixed: (sizeof(UInt)*8)-1; /* 0 .. N_FIXED_IN_EDGE_ARR */
union {
InEdge fixed[N_FIXED_IN_EDGE_ARR]; /* if !has_var */
XArray* var; /* XArray* of InEdgeArr */ /* if has_var */
} edges;
}
InEdgeArr;
#define N_FIXED_OUT_EDGE_ARR 2
typedef
struct {
Bool has_var:1; /* True if var is used (then n_fixed must be 0) */
UInt n_fixed: (sizeof(UInt)*8)-1; /* 0 .. N_FIXED_OUT_EDGE_ARR */
union {
OutEdge fixed[N_FIXED_OUT_EDGE_ARR]; /* if !has_var */
XArray* var; /* XArray* of OutEdgeArr */ /* if has_var */
} edges;
}
OutEdgeArr;
/* A translation-table entry. This indicates precisely which areas of
guest code are included in the translation, and contains all other
auxiliary info too. These are split into hold and cold parts,
TTEntryH and TTEntryC, so as to be more cache-friendly
(a.k.a. "faster") when searching for translations that intersect
with a certain guest code address range, for deletion. In the
worst case this can involve a sequential scan through all the hot
parts, so they are packed as compactly as possible -- 32 bytes on a
64-bit platform, 20 bytes on a 32-bit platform.
Each TTEntry is logically a matching cold-and-hot pair, and in fact
it was originally one structure. First, the cold part.
*/
typedef
struct {
union {
struct {
/* Profiling only: the count and weight (arbitrary meaning) for
this translation. Weight is a property of the translation
itself and computed once when the translation is created.
Count is an entry count for the translation and is
incremented by 1 every time the translation is used, if we
are profiling. */
ULong count;
UShort weight;
} prof; // if status == InUse
TTEno next_empty_tte; // if status != InUse
} usage;
/* 64-bit aligned pointer to one or more 64-bit words containing
the corresponding host code (must be in the same sector!)
This is a pointer into the sector's tc (code) area. */
ULong* tcptr;
/* This is the original guest address that purportedly is the
entry point of the translation. You might think that .entry
should be the same as .vge->base[0], and most of the time it
is. However, when doing redirections, that is not the case.
.vge must always correctly describe the guest code sections
from which this translation was made. However, .entry may or
may not be a lie, depending on whether or not we're doing
redirection. */
Addr entry;
/* Address range summary info: these are pointers back to
eclass[] entries in the containing Sector. Those entries in
turn point back here -- the two structures are mutually
redundant but both necessary to make fast deletions work.
The eclass info is similar to, and derived from, this entry's
'vge' field, but it is not the same */
UShort n_tte2ec; // # tte2ec pointers (1 to 3)
EClassNo tte2ec_ec[3]; // for each, the eclass #
UInt tte2ec_ix[3]; // and the index within the eclass.
// for i in 0 .. n_tte2ec-1
// sec->ec2tte[ tte2ec_ec[i] ][ tte2ec_ix[i] ]
// should be the index
// of this TTEntry in the containing Sector's tt array.
/* Admin information for chaining. 'in_edges' is a set of the
patch points which jump to this translation -- hence are
predecessors in the control flow graph. 'out_edges' points
to successors in the control flow graph -- translations to
which this one has a patched jump. In short these are just
backwards and forwards edges in the graph of patched-together
blocks. The 'in_edges' contain slightly more info, enough
that we can undo the chaining of each mentioned patch point.
The 'out_edges' list exists only so that we can visit the
'in_edges' entries of all blocks we're patched through to, in
order to remove ourselves from then when we're deleted. */
/* A translation can disappear for two reasons:
1. erased (as part of the oldest sector cleanup) when the
youngest sector is full.
2. discarded due to calls to VG_(discard_translations).
VG_(discard_translations) sets the status of the
translation to 'Deleted'.
A.o., the gdbserver discards one or more translations
when a breakpoint is inserted or removed at an Addr,
or when single stepping mode is enabled/disabled
or when a translation is instrumented for gdbserver
(all the target jumps of this translation are
invalidated).
So, it is possible that the translation A to be patched
(to obtain a patched jump from A to B) is invalidated
after B is translated and before A is patched.
In case a translation is erased or discarded, the patching
cannot be done. VG_(tt_tc_do_chaining) and find_TTEntry_from_hcode
are checking the 'from' translation still exists before
doing the patching.
Is it safe to erase or discard the current translation E being
executed ? Amazing, but yes, it is safe.
Here is the explanation:
The translation E being executed can only be erased if a new
translation N is being done. A new translation is done only
if the host addr is a not yet patched jump to another
translation. In such a case, the guest address of N is
assigned to the PC in the VEX state. Control is returned
to the scheduler. N will be translated. This can erase the
translation E (in case of sector full). VG_(tt_tc_do_chaining)
will not do the chaining to a non found translation E.
The execution will continue at the current guest PC
(i.e. the translation N).
=> it is safe to erase the current translation being executed.
The current translation E being executed can also be discarded
(e.g. by gdbserver). VG_(discard_translations) will mark
this translation E as Deleted, but the translation itself
is not erased. In particular, its host code can only
be overwritten or erased in case a new translation is done.
A new translation will only be done if a not yet translated
jump is to be executed. The execution of the Deleted translation
E will continue till a non patched jump is encountered.
This situation is then similar to the 'erasing' case above :
the current translation E can be erased or overwritten, as the
execution will continue at the new translation N.
*/
/* It is possible, although very unlikely, that a block A has
more than one patched jump to block B. This could happen if
(eg) A finishes "jcond B; jmp B".
This means in turn that B's in_edges set can list A more than
once (twice in this example). However, each such entry must
have a different from_offs, since a patched jump can only
jump to one place at once (it's meaningless for it to have
multiple destinations.) IOW, the successor and predecessor
edges in the graph are not uniquely determined by a
TTEntry --> TTEntry pair, but rather by a
(TTEntry,offset) --> TTEntry triple.
If A has multiple edges to B then B will mention A multiple
times in its in_edges. To make things simpler, we then
require that A mentions B exactly the same number of times in
its out_edges. Furthermore, a matching out-in pair must have
the same offset (from_offs). This facilitates sanity
checking, and it facilitates establishing the invariant that
a out_edges set may not have duplicates when using the
equality defined by (TTEntry,offset). Hence the out_edges
and in_edges sets really do have both have set semantics.
eg if A has been patched to B at offsets 42 and 87 (in A)
then A.out_edges = { (B,42), (B,87) } (in any order)
and B.in_edges = { (A,42), (A,87) } (in any order)
Hence for each node pair P->Q in the graph, there's a 1:1
mapping between P.out_edges and Q.in_edges.
*/
InEdgeArr in_edges;
OutEdgeArr out_edges;
}
TTEntryC;
/* And this is the hot part. */
typedef
struct {
/* This structure describes precisely what ranges of guest code
the translation covers, so we can decide whether or not to
delete it when translations of a given address range are
invalidated. Originally this was a VexGuestExtents, but that
itself is 32 bytes on a 64-bit target, and we really want to
squeeze in an 8-bit |status| field into the 32 byte field, so
as to get 2 of them in a 64 byte LLC line. Hence the
VexGuestExtents fields are inlined, the _n_used field is
changed to a UChar (it only ever has the values 1, 2 or 3)
and the 8-bit status field is placed in byte 31 of the
structure. */
/* ORIGINALLY: VexGuestExtents vge; */
Addr vge_base[3];
UShort vge_len[3];
UChar vge_n_used; /* BEWARE: is UShort in VexGuestExtents */
/* Status of the slot. Note, we need to be able to do lazy
deletion, hence the Deleted state. */
enum { InUse, Deleted, Empty } status : 8;
}
TTEntryH;
/* Impedance matchers, that convert between a VexGuestExtents and a
TTEntryH, ignoring TTEntryH::status, which doesn't exist in a
VexGuestExtents -- it is entirely unrelated. */
/* Takes a VexGuestExtents and pushes it into a TTEntryH. The
TTEntryH.status field is left unchanged. */
static
inline void TTEntryH__from_VexGuestExtents ( /*MOD*/TTEntryH* tteH,
const VexGuestExtents* vge )
{
tteH->vge_base[0] = vge->base[0];
tteH->vge_base[1] = vge->base[1];
tteH->vge_base[2] = vge->base[2];
tteH->vge_len[0] = vge->len[0];
tteH->vge_len[1] = vge->len[1];
tteH->vge_len[2] = vge->len[2];
tteH->vge_n_used = (UChar)vge->n_used; /* BEWARE: no range check. */
}
/* Takes a TTEntryH and pushes the vge_ components into a VexGuestExtents. */
static
inline void TTEntryH__to_VexGuestExtents ( /*MOD*/VexGuestExtents* vge,
const TTEntryH* tteH )
{
vge->base[0] = tteH->vge_base[0];
vge->base[1] = tteH->vge_base[1];
vge->base[2] = tteH->vge_base[2];
vge->len[0] = tteH->vge_len[0] ;
vge->len[1] = tteH->vge_len[1] ;
vge->len[2] = tteH->vge_len[2] ;
vge->n_used = (UShort)tteH->vge_n_used ;
}
/* A structure used for mapping host code addresses back to the
relevant TTEntry. Used when doing chaining, for finding the
TTEntry to which some arbitrary patch address belongs. */
typedef
struct {
UChar* start;
UInt len;
TTEno tteNo;
}
HostExtent;
/* Finally, a sector itself. Each sector contains an array of
TCEntries, which hold code, and an array of TTEntries, containing
all required administrative info. Profiling is supported using the
TTEntry usage.prof.count and usage.prof.weight fields, if required.
If the sector is not in use, all three pointers are NULL and
tt_n_inuse is zero.
*/
typedef
struct {
/* The TCEntry area. Size of this depends on the average
translation size. We try and size it so it becomes full
precisely when this sector's translation table (tt) reaches
its load limit (SECTOR_TT_LIMIT_PERCENT). */
ULong* tc;
/* An hash table, mapping guest address to an index in the tt array.
htt is a fixed size, always containing
exactly N_HTTES_PER_SECTOR entries. */
TTEno* htt;
/* The TTEntry{C,H} arrays. These are a fixed size, always
containing exactly N_TTES_PER_SECTOR entries. */
TTEntryC* ttC;
TTEntryH* ttH;
/* This points to the current allocation point in tc. */
ULong* tc_next;
/* The count of tt entries with state InUse. */
Int tt_n_inuse;
/* A list of Empty/Deleted entries, chained by tte->next_empty_tte */
TTEno empty_tt_list;
/* Expandable arrays of tt indices for each of the ECLASS_N
address range equivalence classes. These hold indices into
the containing sector's tt array, which in turn should point
back here. */
Int ec2tte_size[ECLASS_N];
Int ec2tte_used[ECLASS_N];
TTEno* ec2tte[ECLASS_N];
/* The host extents. The [start, +len) ranges are constructed
in strictly non-overlapping order, so we can binary search
them at any time. */
XArray* host_extents; /* XArray* of HostExtent */
}
Sector;
/*------------------ DECLS ------------------*/
/* The root data structure is an array of sectors. The index of the
youngest sector is recorded, and new translations are put into that
sector. When it fills up, we move along to the next sector and
start to fill that up, wrapping around at the end of the array.
That way, once all N_TC_SECTORS have been bought into use for the
first time, and are full, we then re-use the oldest sector,
endlessly.
When running, youngest sector should be between >= 0 and <
N_TC_SECTORS. The initial value indicates the TT/TC system is
not yet initialised.
*/
static Sector sectors[MAX_N_SECTORS];
static Int youngest_sector = INV_SNO;
/* The number of ULongs in each TCEntry area. This is computed once
at startup and does not change. */
static Int tc_sector_szQ = 0;
/* A list of sector numbers, in the order which they should be
searched to find translations. This is an optimisation to be used
when searching for translations and should not affect
correctness. INV_SNO denotes "no entry". */
static SECno sector_search_order[MAX_N_SECTORS];
/* Fast helper for the TC. A 4-way set-associative cache, with more-or-less LRU
replacement. It holds a set of recently used (guest address, host address)
pairs. This array is referred to directly from
m_dispatch/dispatch-<platform>.S.
Entries in tt_fast may refer to any valid TC entry, regardless of
which sector it's in. Consequently we must be very careful to
invalidate this cache when TC entries are changed or disappear.
A special .guest address - TRANSTAB_BOGUS_GUEST_ADDR -- must be
pointed at to cause that cache entry to miss. This relies on the
assumption that no guest code actually has that address, hence a
value 0x1 seems good. m_translate gives the client a synthetic
segfault if it tries to execute at this address.
*/
/*
typedef
struct {
Addr guest0;
Addr host0;
Addr guest1;
Addr host1;
Addr guest2;
Addr host2;
Addr guest3;
Addr host3;
}
FastCacheSet;
*/
/*global*/ __attribute__((aligned(64)))
FastCacheSet VG_(tt_fast)[VG_TT_FAST_SETS];
/* Make sure we're not used before initialisation. */
static Bool init_done = False;
/*------------------ STATS DECLS ------------------*/
/* Number of fast-cache updates and flushes done. */
static ULong n_fast_flushes = 0;
static ULong n_fast_updates = 0;
/* Number of full lookups done. */
static ULong n_full_lookups = 0;
static ULong n_lookup_probes = 0;
/* Number/osize/tsize of translations entered; also the number of
those for which self-checking was requested. */
static ULong n_in_count = 0;
static ULong n_in_osize = 0;
static ULong n_in_tsize = 0;
static ULong n_in_sc_count = 0;
/* Number/osize of translations discarded due to lack of space. */
static ULong n_dump_count = 0;
static ULong n_dump_osize = 0;
static ULong n_sectors_recycled = 0;
/* Number/osize of translations discarded due to requests to do so. */
static ULong n_disc_count = 0;
static ULong n_disc_osize = 0;
/*-------------------------------------------------------------*/
/*--- Misc ---*/
/*-------------------------------------------------------------*/
static void* ttaux_malloc ( const HChar* tag, SizeT n )
{
return VG_(arena_malloc)(VG_AR_TTAUX, tag, n);
}
static void ttaux_free ( void* p )
{
VG_(arena_free)(VG_AR_TTAUX, p);
}
/*-------------------------------------------------------------*/
/*--- Chaining support ---*/
/*-------------------------------------------------------------*/
static inline TTEntryC* index_tteC ( SECno sNo, TTEno tteNo )
{
vg_assert(sNo < n_sectors);
vg_assert(tteNo < N_TTES_PER_SECTOR);
Sector* s = §ors[sNo];
vg_assert(s->ttC && s->ttH);
TTEntryC* tteC = &s->ttC[tteNo];
TTEntryH* tteH = &s->ttH[tteNo];
vg_assert(tteH->status == InUse);
return tteC;
}
static inline TTEntryH* index_tteH ( SECno sNo, TTEno tteNo )
{
vg_assert(sNo < n_sectors);
vg_assert(tteNo < N_TTES_PER_SECTOR);
Sector* s = §ors[sNo];
vg_assert(s->ttH);
TTEntryH* tteH = &s->ttH[tteNo];
vg_assert(tteH->status == InUse);
return tteH;
}
static void InEdge__init ( InEdge* ie )
{
ie->from_sNo = INV_SNO; /* invalid */
ie->from_tteNo = 0;
ie->from_offs = 0;
ie->to_fastEP = False;
}
static void OutEdge__init ( OutEdge* oe )
{
oe->to_sNo = INV_SNO; /* invalid */
oe->to_tteNo = 0;
oe->from_offs = 0;
}
static void TTEntryC__init ( TTEntryC* tteC )
{
VG_(bzero_inline)(tteC, sizeof(*tteC));
}
static void TTEntryH__init ( TTEntryH* tteH )
{
VG_(bzero_inline)(tteH, sizeof(*tteH));
}
static UWord InEdgeArr__size ( const InEdgeArr* iea )
{
if (iea->has_var) {
vg_assert(iea->n_fixed == 0);
return VG_(sizeXA)(iea->edges.var);
} else {
vg_assert(iea->n_fixed <= N_FIXED_IN_EDGE_ARR);
return iea->n_fixed;
}
}
static void InEdgeArr__makeEmpty ( InEdgeArr* iea )
{
if (iea->has_var) {
vg_assert(iea->n_fixed == 0);
VG_(deleteXA)(iea->edges.var);
iea->edges.var = NULL;
iea->has_var = False;
} else {
vg_assert(iea->n_fixed <= N_FIXED_IN_EDGE_ARR);
iea->n_fixed = 0;
}
}
static
InEdge* InEdgeArr__index ( InEdgeArr* iea, UWord i )
{
if (iea->has_var) {
vg_assert(iea->n_fixed == 0);
return (InEdge*)VG_(indexXA)(iea->edges.var, i);
} else {
vg_assert(i < iea->n_fixed);
return &iea->edges.fixed[i];
}
}
static
void InEdgeArr__deleteIndex ( InEdgeArr* iea, UWord i )
{
if (iea->has_var) {
vg_assert(iea->n_fixed == 0);
VG_(removeIndexXA)(iea->edges.var, i);
} else {
vg_assert(i < iea->n_fixed);
for (; i+1 < iea->n_fixed; i++) {
iea->edges.fixed[i] = iea->edges.fixed[i+1];
}
iea->n_fixed--;
}
}
static
void InEdgeArr__add ( InEdgeArr* iea, InEdge* ie )
{
if (iea->has_var) {
vg_assert(iea->n_fixed == 0);
VG_(addToXA)(iea->edges.var, ie);
} else {
vg_assert(iea->n_fixed <= N_FIXED_IN_EDGE_ARR);
if (iea->n_fixed == N_FIXED_IN_EDGE_ARR) {
/* The fixed array is full, so we have to initialise an
XArray and copy the fixed array into it. */
XArray *var = VG_(newXA)(ttaux_malloc, "transtab.IEA__add",
ttaux_free,
sizeof(InEdge));
VG_(hintSizeXA) (var, iea->n_fixed + 1);
UWord i;
for (i = 0; i < iea->n_fixed; i++) {
VG_(addToXA)(var, &iea->edges.fixed[i]);
}
VG_(addToXA)(var, ie);
iea->n_fixed = 0;
iea->has_var = True;
iea->edges.var = var;
} else {
/* Just add to the fixed array. */
iea->edges.fixed[iea->n_fixed++] = *ie;
}
}
}
static UWord OutEdgeArr__size ( const OutEdgeArr* oea )
{
if (oea->has_var) {
vg_assert(oea->n_fixed == 0);
return VG_(sizeXA)(oea->edges.var);
} else {
vg_assert(oea->n_fixed <= N_FIXED_OUT_EDGE_ARR);
return oea->n_fixed;
}
}
static void OutEdgeArr__makeEmpty ( OutEdgeArr* oea )
{
if (oea->has_var) {
vg_assert(oea->n_fixed == 0);
VG_(deleteXA)(oea->edges.var);
oea->edges.var = NULL;
oea->has_var = False;
} else {
vg_assert(oea->n_fixed <= N_FIXED_OUT_EDGE_ARR);
oea->n_fixed = 0;
}
}
static
OutEdge* OutEdgeArr__index ( OutEdgeArr* oea, UWord i )
{
if (oea->has_var) {
vg_assert(oea->n_fixed == 0);
return (OutEdge*)VG_(indexXA)(oea->edges.var, i);
} else {
vg_assert(i < oea->n_fixed);
return &oea->edges.fixed[i];
}
}
static
void OutEdgeArr__deleteIndex ( OutEdgeArr* oea, UWord i )
{
if (oea->has_var) {
vg_assert(oea->n_fixed == 0);
VG_(removeIndexXA)(oea->edges.var, i);
} else {
vg_assert(i < oea->n_fixed);
for (; i+1 < oea->n_fixed; i++) {
oea->edges.fixed[i] = oea->edges.fixed[i+1];
}
oea->n_fixed--;
}
}
static
void OutEdgeArr__add ( OutEdgeArr* oea, OutEdge* oe )
{
if (oea->has_var) {
vg_assert(oea->n_fixed == 0);
VG_(addToXA)(oea->edges.var, oe);
} else {
vg_assert(oea->n_fixed <= N_FIXED_OUT_EDGE_ARR);
if (oea->n_fixed == N_FIXED_OUT_EDGE_ARR) {
/* The fixed array is full, so we have to initialise an
XArray and copy the fixed array into it. */
XArray *var = VG_(newXA)(ttaux_malloc, "transtab.OEA__add",
ttaux_free,
sizeof(OutEdge));
VG_(hintSizeXA) (var, oea->n_fixed+1);
UWord i;
for (i = 0; i < oea->n_fixed; i++) {
VG_(addToXA)(var, &oea->edges.fixed[i]);
}
VG_(addToXA)(var, oe);
oea->n_fixed = 0;
oea->has_var = True;
oea->edges.var = var;
} else {
/* Just add to the fixed array. */
oea->edges.fixed[oea->n_fixed++] = *oe;
}
}
}
static
Int HostExtent__cmpOrd ( const void* v1, const void* v2 )
{
const HostExtent* hx1 = v1;
const HostExtent* hx2 = v2;
if (hx1->start + hx1->len <= hx2->start) return -1;
if (hx2->start + hx2->len <= hx1->start) return 1;
return 0; /* partial overlap */
}
/* True if hx is a dead host extent, i.e. corresponds to host code
of an entry that was invalidated. */
static
Bool HostExtent__is_dead (const HostExtent* hx, const Sector* sec)
{
const TTEno tteNo = hx->tteNo;
#define LDEBUG(m) if (DEBUG_TRANSTAB) \
VG_(printf) (m \
" start 0x%p len %u sector %d ttslot %u" \
" tt.entry 0x%lu tt.tcptr 0x%p\n", \
hx->start, hx->len, (int)(sec - sectors), \
hx->tteNo, \
sec->ttC[tteNo].entry, sec->ttC[tteNo].tcptr)
/* Entry might have been invalidated and not re-used yet.*/
if (sec->ttH[tteNo].status == Deleted) {
LDEBUG("found deleted entry");
return True;
}
/* Maybe we found this entry via a host_extents which was
inserted for an entry which was changed to Deleted then
re-used after. If this entry was re-used, then its tcptr
is >= to host_extents start (i.e. the previous tcptr) + len.
This is the case as there is no re-use of host code: a new
entry or re-used entry always gets "higher value" host code. */
if ((UChar*) sec->ttC[tteNo].tcptr >= hx->start + hx->len) {
LDEBUG("found re-used entry");
return True;
}
return False;
#undef LDEBUG
}
static __attribute__((noinline))
Bool find_TTEntry_from_hcode( /*OUT*/SECno* from_sNo,
/*OUT*/TTEno* from_tteNo,
void* hcode )
{
SECno i;
/* Search order logic copied from VG_(search_transtab). */
for (i = 0; i < n_sectors; i++) {
SECno sno = sector_search_order[i];
if (UNLIKELY(sno == INV_SNO))
return False; /* run out of sectors to search */
const Sector* sec = §ors[sno];
const XArray* /* of HostExtent */ host_extents = sec->host_extents;
vg_assert(host_extents);
HostExtent key;
VG_(memset)(&key, 0, sizeof(key));
key.start = hcode;
key.len = 1;
Word firstW = -1, lastW = -1;
Bool found = VG_(lookupXA_UNSAFE)(
host_extents, &key, &firstW, &lastW,
HostExtent__cmpOrd );
vg_assert(firstW == lastW); // always true, even if not found
if (found) {
HostExtent* hx = VG_(indexXA)(host_extents, firstW);
TTEno tteNo = hx->tteNo;
/* Do some additional sanity checks. */
vg_assert(tteNo < N_TTES_PER_SECTOR);
/* if this hx entry corresponds to dead host code, we must
tell this code has not been found, as it cannot be patched. */
if (HostExtent__is_dead (hx, sec))
return False;
vg_assert(sec->ttH[tteNo].status == InUse);
/* Can only half check that the found TTEntry contains hcode,
due to not having a length value for the hcode in the
TTEntry. */
vg_assert((UChar*)sec->ttC[tteNo].tcptr <= (UChar*)hcode);
/* Looks plausible */
*from_sNo = sno;
*from_tteNo = tteNo;
return True;
}
}
return False;
}
/* Figure out whether or not hcode is jitted code present in the main
code cache (but not in the no-redir cache). Used for sanity
checking. */
static Bool is_in_the_main_TC ( const void* hcode )
{
SECno i, sno;
for (i = 0; i < n_sectors; i++) {
sno = sector_search_order[i];
if (sno == INV_SNO)
break; /* run out of sectors to search */
if ((const UChar*)hcode >= (const UChar*)sectors[sno].tc
&& (const UChar*)hcode <= (const UChar*)sectors[sno].tc_next
+ sizeof(ULong) - 1)
return True;
}
return False;
}
/* Fulfill a chaining request, and record admin info so we
can undo it later, if required.
*/
void VG_(tt_tc_do_chaining) ( void* from__patch_addr,
SECno to_sNo,
TTEno to_tteNo,
Bool to_fastEP )
{
/* Get the CPU info established at startup. */
VexArch arch_host = VexArch_INVALID;
VexArchInfo archinfo_host;
VG_(bzero_inline)(&archinfo_host, sizeof(archinfo_host));
VG_(machine_get_VexArchInfo)( &arch_host, &archinfo_host );
VexEndness endness_host = archinfo_host.endness;
// host_code is where we're patching to. So it needs to
// take into account, whether we're jumping to the slow
// or fast entry point. By definition, the fast entry point
// is exactly one event check's worth of code along from
// the slow (tcptr) entry point.
TTEntryC* to_tteC = index_tteC(to_sNo, to_tteNo);
void* host_code = ((UChar*)to_tteC->tcptr)
+ (to_fastEP ? LibVEX_evCheckSzB(arch_host) : 0);
// stay sane -- the patch point (dst) is in this sector's code cache
vg_assert( (UChar*)host_code >= (UChar*)sectors[to_sNo].tc );
vg_assert( (UChar*)host_code <= (UChar*)sectors[to_sNo].tc_next
+ sizeof(ULong) - 1 );
/* Find the TTEntry for the from__ code. This isn't simple since
we only know the patch address, which is going to be somewhere
inside the from_ block. */
SECno from_sNo = INV_SNO;
TTEno from_tteNo = INV_TTE;
Bool from_found
= find_TTEntry_from_hcode( &from_sNo, &from_tteNo,
from__patch_addr );
if (!from_found) {
// The from code might have been discarded due to sector re-use
// or marked Deleted due to translation invalidation.
// In such a case, don't do the chaining.
VG_(debugLog)(1,"transtab",
"host code %p not found (discarded? sector recycled?)"
" => no chaining done\n",
from__patch_addr);
return;
}
TTEntryC* from_tteC = index_tteC(from_sNo, from_tteNo);
/* Get VEX to do the patching itself. We have to hand it off
since it is host-dependent. */
VexInvalRange vir
= LibVEX_Chain(
arch_host, endness_host,
from__patch_addr,
VG_(fnptr_to_fnentry)(
to_fastEP ? &VG_(disp_cp_chain_me_to_fastEP)
: &VG_(disp_cp_chain_me_to_slowEP)),
(void*)host_code
);
VG_(invalidate_icache)( (void*)vir.start, vir.len );
/* Now do the tricky bit -- update the ch_succs and ch_preds info
for the two translations involved, so we can undo the chaining
later, which we will have to do if the to_ block gets removed
for whatever reason. */
/* This is the new from_ -> to_ link to add. */
InEdge ie;
InEdge__init(&ie);
ie.from_sNo = from_sNo;
ie.from_tteNo = from_tteNo;
ie.to_fastEP = to_fastEP;
HWord from_offs = (HWord)( (UChar*)from__patch_addr
- (UChar*)from_tteC->tcptr );
vg_assert(from_offs < 100000/* let's say */);
ie.from_offs = (UInt)from_offs;
/* This is the new to_ -> from_ backlink to add. */
OutEdge oe;
OutEdge__init(&oe);
oe.to_sNo = to_sNo;
oe.to_tteNo = to_tteNo;
oe.from_offs = (UInt)from_offs;
/* Add .. */
InEdgeArr__add(&to_tteC->in_edges, &ie);
OutEdgeArr__add(&from_tteC->out_edges, &oe);
}
/* Unchain one patch, as described by the specified InEdge. For
sanity check purposes only (to check that the patched location is
as expected) it also requires the fast and slow entry point
addresses of the destination block (that is, the block that owns
this InEdge). */
__attribute__((noinline))
static void unchain_one ( VexArch arch_host, VexEndness endness_host,
InEdge* ie,
void* to_fastEPaddr, void* to_slowEPaddr )
{
vg_assert(ie);
TTEntryC* tteC
= index_tteC(ie->from_sNo, ie->from_tteNo);
UChar* place_to_patch
= ((UChar*)tteC->tcptr) + ie->from_offs;
UChar* disp_cp_chain_me
= VG_(fnptr_to_fnentry)(
ie->to_fastEP ? &VG_(disp_cp_chain_me_to_fastEP)
: &VG_(disp_cp_chain_me_to_slowEP)
);
UChar* place_to_jump_to_EXPECTED
= ie->to_fastEP ? to_fastEPaddr : to_slowEPaddr;
// stay sane: both src and dst for this unchaining are
// in the main code cache
vg_assert( is_in_the_main_TC(place_to_patch) ); // src
vg_assert( is_in_the_main_TC(place_to_jump_to_EXPECTED) ); // dst
// dst check is ok because LibVEX_UnChain checks that
// place_to_jump_to_EXPECTED really is the current dst, and
// asserts if it isn't.
VexInvalRange vir
= LibVEX_UnChain( arch_host, endness_host, place_to_patch,
place_to_jump_to_EXPECTED, disp_cp_chain_me );
VG_(invalidate_icache)( (void*)vir.start, vir.len );
}
/* The specified block is about to be deleted. Update the preds and
succs of its associated blocks accordingly. This includes undoing
any chained jumps to this block. */
static
void unchain_in_preparation_for_deletion ( VexArch arch_host,
VexEndness endness_host,
SECno here_sNo, TTEno here_tteNo )
{
if (DEBUG_TRANSTAB)
VG_(printf)("QQQ unchain_in_prep %u.%u...\n", here_sNo, here_tteNo);
UWord i, j, n, m;
Int evCheckSzB = LibVEX_evCheckSzB(arch_host);
TTEntryC* here_tteC = index_tteC(here_sNo, here_tteNo);
TTEntryH* here_tteH = index_tteH(here_sNo, here_tteNo);
if (DEBUG_TRANSTAB)
VG_(printf)("... QQQ tt.entry 0x%lu tt.tcptr 0x%p\n",
here_tteC->entry, here_tteC->tcptr);
vg_assert(here_tteH->status == InUse);
/* Visit all InEdges owned by here_tte. */
n = InEdgeArr__size(&here_tteC->in_edges);
for (i = 0; i < n; i++) {
InEdge* ie = InEdgeArr__index(&here_tteC->in_edges, i);
// Undo the chaining.
UChar* here_slow_EP = (UChar*)here_tteC->tcptr;
UChar* here_fast_EP = here_slow_EP + evCheckSzB;
unchain_one(arch_host, endness_host, ie, here_fast_EP, here_slow_EP);
// Find the corresponding entry in the "from" node's out_edges,
// and remove it.
TTEntryC* from_tteC = index_tteC(ie->from_sNo, ie->from_tteNo);
m = OutEdgeArr__size(&from_tteC->out_edges);
vg_assert(m > 0); // it must have at least one entry
for (j = 0; j < m; j++) {
OutEdge* oe = OutEdgeArr__index(&from_tteC->out_edges, j);
if (oe->to_sNo == here_sNo && oe->to_tteNo == here_tteNo
&& oe->from_offs == ie->from_offs)
break;
}
vg_assert(j < m); // "oe must be findable"
OutEdgeArr__deleteIndex(&from_tteC->out_edges, j);
}
/* Visit all OutEdges owned by here_tte. */
n = OutEdgeArr__size(&here_tteC->out_edges);
for (i = 0; i < n; i++) {
OutEdge* oe = OutEdgeArr__index(&here_tteC->out_edges, i);
// Find the corresponding entry in the "to" node's in_edges,
// and remove it.
TTEntryC* to_tteC = index_tteC(oe->to_sNo, oe->to_tteNo);
m = InEdgeArr__size(&to_tteC->in_edges);
vg_assert(m > 0); // it must have at least one entry
for (j = 0; j < m; j++) {
InEdge* ie = InEdgeArr__index(&to_tteC->in_edges, j);
if (ie->from_sNo == here_sNo && ie->from_tteNo == here_tteNo
&& ie->from_offs == oe->from_offs)
break;
}
vg_assert(j < m); // "ie must be findable"
InEdgeArr__deleteIndex(&to_tteC->in_edges, j);
}
InEdgeArr__makeEmpty(&here_tteC->in_edges);
OutEdgeArr__makeEmpty(&here_tteC->out_edges);
}
/*-------------------------------------------------------------*/
/*--- Address-range equivalence class stuff ---*/
/*-------------------------------------------------------------*/
/* Return equivalence class number for a range. */
static EClassNo range_to_eclass ( Addr start, UInt len )
{
UInt mask = (1 << ECLASS_WIDTH) - 1;
UInt lo = (UInt)start;
UInt hi = lo + len - 1;
UInt loBits = (lo >> ECLASS_SHIFT) & mask;
UInt hiBits = (hi >> ECLASS_SHIFT) & mask;
if (loBits == hiBits) {
vg_assert(loBits < ECLASS_N-1);
return loBits;
} else {
return ECLASS_MISC;
}
}
/* Calculates the equivalence class numbers for any VexGuestExtent.
These are written in *eclasses, which must be big enough to hold 3
Ints. The number written, between 1 and 3, is returned. The
eclasses are presented in order, and any duplicates are removed.
*/
static
Int vexGuestExtents_to_eclasses ( /*OUT*/EClassNo* eclasses,
const TTEntryH* tteH )
{
# define SWAP(_lv1,_lv2) \
do { Int t = _lv1; _lv1 = _lv2; _lv2 = t; } while (0)
UInt i, j, n_ec;
EClassNo r;
vg_assert(tteH->vge_n_used >= 1 && tteH->vge_n_used <= 3);
n_ec = 0;
for (i = 0; i < tteH->vge_n_used; i++) {
r = range_to_eclass( tteH->vge_base[i], tteH->vge_len[i] );
if (r == ECLASS_MISC)
goto bad;
/* only add if we haven't already seen it */
for (j = 0; j < n_ec; j++)
if (eclasses[j] == r)
break;
if (j == n_ec)
eclasses[n_ec++] = r;
}
if (n_ec == 1)
return 1;
if (n_ec == 2) {
/* sort */
if (eclasses[0] > eclasses[1])
SWAP(eclasses[0], eclasses[1]);
return 2;
}
if (n_ec == 3) {
/* sort */
if (eclasses[0] > eclasses[2])
SWAP(eclasses[0], eclasses[2]);
if (eclasses[0] > eclasses[1])
SWAP(eclasses[0], eclasses[1]);
if (eclasses[1] > eclasses[2])
SWAP(eclasses[1], eclasses[2]);
return 3;
}
/* NOTREACHED */
vg_assert(0);
bad:
eclasses[0] = ECLASS_MISC;
return 1;
# undef SWAP
}
/* Add tteno to the set of entries listed for equivalence class ec in
this sector. Returns used location in eclass array. */
static
UInt addEClassNo ( /*MOD*/Sector* sec, EClassNo ec, TTEno tteno )
{
Int old_sz, new_sz, i, r;
TTEno *old_ar, *new_ar;
vg_assert(ec < ECLASS_N);
vg_assert(tteno < N_TTES_PER_SECTOR);
if (DEBUG_TRANSTAB) VG_(printf)("ec %d gets %d\n", ec, (Int)tteno);
if (sec->ec2tte_used[ec] >= sec->ec2tte_size[ec]) {
vg_assert(sec->ec2tte_used[ec] == sec->ec2tte_size[ec]);
old_sz = sec->ec2tte_size[ec];
old_ar = sec->ec2tte[ec];
new_sz = old_sz==0 ? 8 : old_sz<64 ? 2*old_sz : (3*old_sz)/2;
new_ar = ttaux_malloc("transtab.aECN.1",
new_sz * sizeof(TTEno));
for (i = 0; i < old_sz; i++)
new_ar[i] = old_ar[i];
if (old_ar)
ttaux_free(old_ar);
sec->ec2tte_size[ec] = new_sz;
sec->ec2tte[ec] = new_ar;
if (DEBUG_TRANSTAB) VG_(printf)("expand ec %d to %d\n", ec, new_sz);
}
/* Common case */
r = sec->ec2tte_used[ec]++;
vg_assert(r >= 0 && r < sec->ec2tte_size[ec]);
sec->ec2tte[ec][r] = tteno;
return (UInt)r;
}
/* 'vge' is being added to 'sec' at TT entry 'tteno'. Add appropriate
eclass entries to 'sec'. */
static
void upd_eclasses_after_add ( /*MOD*/Sector* sec, TTEno tteno )
{
Int i, r;
EClassNo eclasses[3];
vg_assert(tteno < N_TTES_PER_SECTOR);
TTEntryH* tteH = &sec->ttH[tteno];
r = vexGuestExtents_to_eclasses( eclasses, tteH );
vg_assert(r >= 1 && r <= 3);
TTEntryC* tteC = &sec->ttC[tteno];
tteC->n_tte2ec = r;
for (i = 0; i < r; i++) {
tteC->tte2ec_ec[i] = eclasses[i];
tteC->tte2ec_ix[i] = addEClassNo( sec, eclasses[i], tteno );
}
}
/* Check the eclass info in 'sec' to ensure it is consistent. Returns
True if OK, False if something's not right. Expensive. */
static Bool sanity_check_eclasses_in_sector ( const Sector* sec )
{
# define BAD(_str) do { whassup = (_str); goto bad; } while (0)
const HChar* whassup = NULL;
Int j, k, n, ec_idx;
EClassNo i;
EClassNo ec_num;
TTEno tteno;
ULong* tce;
/* Basic checks on this sector */
if (sec->tt_n_inuse < 0 || sec->tt_n_inuse > N_TTES_PER_SECTOR)
BAD("invalid sec->tt_n_inuse");
tce = sec->tc_next;
if (tce < &sec->tc[0] || tce > &sec->tc[tc_sector_szQ])
BAD("sec->tc_next points outside tc");
/* For each eclass ... */
for (i = 0; i < ECLASS_N; i++) {
if (sec->ec2tte_size[i] == 0 && sec->ec2tte[i] != NULL)
BAD("ec2tte_size/ec2tte mismatch(1)");
if (sec->ec2tte_size[i] != 0 && sec->ec2tte[i] == NULL)
BAD("ec2tte_size/ec2tte mismatch(2)");
if (sec->ec2tte_used[i] < 0
|| sec->ec2tte_used[i] > sec->ec2tte_size[i])
BAD("implausible ec2tte_used");
if (sec->ec2tte_used[i] == 0)
continue;
/* For each tt reference in each eclass .. ensure the reference
is to a valid tt entry, and that the entry's address ranges
really include this eclass. */
for (j = 0; j < sec->ec2tte_used[i]; j++) {
tteno = sec->ec2tte[i][j];
if (tteno == EC2TTE_DELETED)
continue;
if (tteno >= N_TTES_PER_SECTOR)
BAD("implausible tteno");
TTEntryC* tteC = &sec->ttC[tteno];
TTEntryH* tteH = &sec->ttH[tteno];
if (tteH->status != InUse)
BAD("tteno points to non-inuse tte");
if (tteC->n_tte2ec < 1 || tteC->n_tte2ec > 3)
BAD("tteC->n_tte2ec out of range");
/* Exactly least one of tte->eclasses[0 .. tte->n_eclasses-1]
must equal i. Inspect tte's eclass info. */
n = 0;
for (k = 0; k < tteC->n_tte2ec; k++) {
if (k < tteC->n_tte2ec-1
&& tteC->tte2ec_ec[k] >= tteC->tte2ec_ec[k+1])
BAD("tteC->tte2ec_ec[..] out of order");
ec_num = tteC->tte2ec_ec[k];
if (ec_num >= ECLASS_N)
BAD("tteC->tte2ec_ec[..] out of range");
if (ec_num != i)
continue;
ec_idx = tteC->tte2ec_ix[k];
if (ec_idx < 0 || ec_idx >= sec->ec2tte_used[i])
BAD("tteC->tte2ec_ix[..] out of range");
if (ec_idx == j)
n++;
}
if (n != 1)
BAD("tteno does not point back at eclass");
}
}
/* That establishes that for each forward pointer from TTEntrys
there is a corresponding backward pointer from the eclass[]
arrays. However, it doesn't rule out the possibility of other,
bogus pointers in the eclass[] arrays. So do those similarly:
scan through them and check the TTEntryies they point at point
back. */
for (tteno = 0; tteno < N_TTES_PER_SECTOR; tteno++) {
TTEntryC* tteC = &sec->ttC[tteno];
TTEntryH* tteH = &sec->ttH[tteno];
if (tteH->status == Empty || tteH->status == Deleted) {
if (tteC->n_tte2ec != 0)
BAD("tteC->n_tte2ec nonzero for unused tte");
continue;
}
vg_assert(tteH->status == InUse);
if (tteC->n_tte2ec < 1 || tteC->n_tte2ec > 3)
BAD("tteC->n_tte2ec out of range(2)");
for (j = 0; j < tteC->n_tte2ec; j++) {
ec_num = tteC->tte2ec_ec[j];
if (ec_num >= ECLASS_N)
BAD("tteC->tte2ec_ec[..] out of range");
ec_idx = tteC->tte2ec_ix[j];
if (ec_idx < 0 || ec_idx >= sec->ec2tte_used[ec_num])
BAD("tteC->tte2ec_ix[..] out of range(2)");
if (sec->ec2tte[ec_num][ec_idx] != tteno)
BAD("ec2tte does not point back to tte");
}
}
return True;
bad:
if (whassup)
VG_(debugLog)(0, "transtab", "eclass sanity fail: %s\n", whassup);
# if 0
VG_(printf)("eclass = %d\n", i);
VG_(printf)("tteno = %d\n", (Int)tteno);
switch (tte->status) {
case InUse: VG_(printf)("InUse\n"); break;
case Deleted: VG_(printf)("Deleted\n"); break;
case Empty: VG_(printf)("Empty\n"); break;
}
if (tte->status != Empty) {
for (k = 0; k < tte->vge.n_used; k++)
VG_(printf)("0x%lx %u\n", tte->vge.base[k], (UInt)tte->vge.len[k]);
}
# endif
return False;
# undef BAD
}
/* Sanity check absolutely everything. True == check passed. */
/* forwards */
static Bool sanity_check_redir_tt_tc ( void );
static Bool sanity_check_sector_search_order ( void )
{
SECno i, j, nListed;
/* assert the array is the right size */
vg_assert(MAX_N_SECTORS == (sizeof(sector_search_order)
/ sizeof(sector_search_order[0])));
/* Check it's of the form valid_sector_numbers ++ [INV_SNO, INV_SNO, ..] */
for (i = 0; i < n_sectors; i++) {
if (sector_search_order[i] == INV_SNO
|| sector_search_order[i] >= n_sectors)
break;
}
nListed = i;
for (/* */; i < n_sectors; i++) {
if (sector_search_order[i] != INV_SNO)
break;
}
if (i != n_sectors)
return False;
/* Check each sector number only appears once */
for (i = 0; i < n_sectors; i++) {
if (sector_search_order[i] == INV_SNO)
continue;
for (j = i+1; j < n_sectors; j++) {
if (sector_search_order[j] == sector_search_order[i])
return False;
}
}
/* Check that the number of listed sectors equals the number
in use, by counting nListed back down. */
for (i = 0; i < n_sectors; i++) {
if (sectors[i].tc != NULL)
nListed--;
}
if (nListed != 0)
return False;
return True;
}
static Bool sanity_check_all_sectors ( void )
{
SECno sno;
Bool sane;
Sector* sec;
for (sno = 0; sno < n_sectors; sno++) {
Int i;
Int nr_not_dead_hx = 0;
Int szhxa;
sec = §ors[sno];
if (sec->tc == NULL)
continue;
sane = sanity_check_eclasses_in_sector( sec );
if (!sane)
return False;
szhxa = VG_(sizeXA)(sec->host_extents);
for (i = 0; i < szhxa; i++) {
const HostExtent* hx = VG_(indexXA)(sec->host_extents, i);
if (!HostExtent__is_dead (hx, sec))
nr_not_dead_hx++;
}
if (nr_not_dead_hx != sec->tt_n_inuse) {
VG_(debugLog)(0, "transtab",
"nr_not_dead_hx %d sanity fail "
"(expected == in use %d)\n",
nr_not_dead_hx, sec->tt_n_inuse);
return False;
}
}
if ( !sanity_check_redir_tt_tc() )
return False;
if ( !sanity_check_sector_search_order() )
return False;
return True;
}
/*-------------------------------------------------------------*/
/*--- Add/find translations ---*/
/*-------------------------------------------------------------*/
static UInt vge_osize ( const VexGuestExtents* vge )
{
UInt i, n = 0;
for (i = 0; i < vge->n_used; i++)
n += (UInt)vge->len[i];
return n;
}
static UInt TTEntryH__osize ( const TTEntryH* tteH )
{
UInt i, n = 0;
for (i = 0; i < tteH->vge_n_used; i++)
n += (UInt)tteH->vge_len[i];
return n;
}
static Bool isValidSector ( SECno sector )
{
if (sector == INV_SNO || sector >= n_sectors)
return False;
return True;
}
static inline HTTno HASH_TT ( Addr key )
{
UInt kHi = sizeof(Addr) == 4 ? 0 : (key >> 32);
UInt kLo = (UInt)key;
UInt k32 = kHi ^ kLo;
UInt ror = 7;
if (ror > 0)
k32 = (k32 >> ror) | (k32 << (32-ror));
return (HTTno)(k32 % N_HTTES_PER_SECTOR);
}
/* Invalidate the fast cache VG_(tt_fast). */
static void invalidateFastCache ( void )
{
for (UWord j = 0; j < VG_TT_FAST_SETS; j++) {
FastCacheSet* set = &VG_(tt_fast)[j];
set->guest0 = TRANSTAB_BOGUS_GUEST_ADDR;
set->guest1 = TRANSTAB_BOGUS_GUEST_ADDR;
set->guest2 = TRANSTAB_BOGUS_GUEST_ADDR;
set->guest3 = TRANSTAB_BOGUS_GUEST_ADDR;
}
n_fast_flushes++;
}
/* Invalidate a single fast cache entry. */
static void invalidateFastCacheEntry ( Addr guest )
{
/* This shouldn't fail. It should be assured by m_translate
which should reject any attempt to make translation of code
starting at TRANSTAB_BOGUS_GUEST_ADDR. */
vg_assert(guest != TRANSTAB_BOGUS_GUEST_ADDR);
/* If any entry in the line is the right one, just set it to
TRANSTAB_BOGUS_GUEST_ADDR. Doing so ensure that the entry will never
be used in future, so will eventually fall off the end of the line,
due to LRU replacement, and be replaced with something that's actually
useful. */
UWord setNo = (UInt)VG_TT_FAST_HASH(guest);
FastCacheSet* set = &VG_(tt_fast)[setNo];
if (set->guest0 == guest) {
set->guest0 = TRANSTAB_BOGUS_GUEST_ADDR;
}
if (set->guest1 == guest) {
set->guest1 = TRANSTAB_BOGUS_GUEST_ADDR;
}
if (set->guest2 == guest) {
set->guest2 = TRANSTAB_BOGUS_GUEST_ADDR;
}
if (set->guest3 == guest) {
set->guest3 = TRANSTAB_BOGUS_GUEST_ADDR;
}
}
static void setFastCacheEntry ( Addr guest, ULong* tcptr )
{
/* This shouldn't fail. It should be assured by m_translate
which should reject any attempt to make translation of code
starting at TRANSTAB_BOGUS_GUEST_ADDR. */
vg_assert(guest != TRANSTAB_BOGUS_GUEST_ADDR);
/* Shift all entries along one, so that the LRU one disappears, and put the
new entry at the MRU position. */
UWord setNo = (UInt)VG_TT_FAST_HASH(guest);
FastCacheSet* set = &VG_(tt_fast)[setNo];
set->host3 = set->host2;
set->guest3 = set->guest2;
set->host2 = set->host1;
set->guest2 = set->guest1;
set->host1 = set->host0;
set->guest1 = set->guest0;
set->host0 = (Addr)tcptr;
set->guest0 = guest;
n_fast_updates++;
}
static TTEno get_empty_tt_slot(SECno sNo)
{
TTEno i;
i = sectors[sNo].empty_tt_list;
sectors[sNo].empty_tt_list = sectors[sNo].ttC[i].usage.next_empty_tte;
vg_assert (i < N_TTES_PER_SECTOR);
return i;
}
static void add_to_empty_tt_list (SECno sNo, TTEno tteno)
{
sectors[sNo].ttC[tteno].usage.next_empty_tte = sectors[sNo].empty_tt_list;
sectors[sNo].empty_tt_list = tteno;
}
static void initialiseSector ( SECno sno )
{
UInt i;
SysRes sres;
Sector* sec;
vg_assert(isValidSector(sno));
{ Bool sane = sanity_check_sector_search_order();
vg_assert(sane);
}
sec = §ors[sno];
if (sec->tc == NULL) {
/* Sector has never been used before. Need to allocate tt and
tc. */
vg_assert(sec->ttC == NULL);
vg_assert(sec->ttH == NULL);
vg_assert(sec->tc_next == NULL);
vg_assert(sec->tt_n_inuse == 0);
for (EClassNo e = 0; e < ECLASS_N; e++) {
vg_assert(sec->ec2tte_size[e] == 0);
vg_assert(sec->ec2tte_used[e] == 0);
vg_assert(sec->ec2tte[e] == NULL);
}
vg_assert(sec->host_extents == NULL);
if (VG_(clo_stats) || VG_(debugLog_getLevel)() >= 1)
VG_(dmsg)("transtab: " "allocate sector %d\n", sno);
sres = VG_(am_mmap_anon_float_valgrind)( 8 * tc_sector_szQ );
if (sr_isError(sres)) {
VG_(out_of_memory_NORETURN)("initialiseSector(TC)",
8 * tc_sector_szQ, sr_Err(sres) );
/*NOTREACHED*/
}
sec->tc = (ULong*)(Addr)sr_Res(sres);
sres = VG_(am_mmap_anon_float_valgrind)
( N_TTES_PER_SECTOR * sizeof(TTEntryC) );
if (sr_isError(sres)) {
VG_(out_of_memory_NORETURN)("initialiseSector(TTC)",
N_TTES_PER_SECTOR * sizeof(TTEntryC),
sr_Err(sres));
/*NOTREACHED*/
}
sec->ttC = (TTEntryC*)(Addr)sr_Res(sres);
sres = VG_(am_mmap_anon_float_valgrind)
( N_TTES_PER_SECTOR * sizeof(TTEntryH) );
if (sr_isError(sres)) {
VG_(out_of_memory_NORETURN)("initialiseSector(TTH)",
N_TTES_PER_SECTOR * sizeof(TTEntryH),
sr_Err(sres));
/*NOTREACHED*/
}
sec->ttH = (TTEntryH*)(Addr)sr_Res(sres);
sec->empty_tt_list = HTT_EMPTY;
for (TTEno ei = 0; ei < N_TTES_PER_SECTOR; ei++) {
sec->ttH[ei].status = Empty;
sec->ttC[ei].n_tte2ec = 0;
add_to_empty_tt_list(sno, ei);
}
sres = VG_(am_mmap_anon_float_valgrind)
( N_HTTES_PER_SECTOR * sizeof(TTEno) );
if (sr_isError(sres)) {
VG_(out_of_memory_NORETURN)("initialiseSector(HTT)",
N_HTTES_PER_SECTOR * sizeof(TTEno),
sr_Err(sres));
/*NOTREACHED*/
}
sec->htt = (TTEno*)(Addr)sr_Res(sres);
for (HTTno hi = 0; hi < N_HTTES_PER_SECTOR; hi++)
sec->htt[hi] = HTT_EMPTY;
/* Set up the host_extents array. */
sec->host_extents
= VG_(newXA)(ttaux_malloc, "transtab.initialiseSector(host_extents)",
ttaux_free,
sizeof(HostExtent));
/* Add an entry in the sector_search_order */
for (i = 0U; i < n_sectors; i++) {
if (sector_search_order[i] == INV_SNO)
break;
}
vg_assert(i < n_sectors);
sector_search_order[i] = sno;
if (VG_(clo_verbosity) > 2)
VG_(message)(Vg_DebugMsg, "TT/TC: initialise sector %d\n", sno);
} else {
/* Sector has been used before. Dump the old contents. */
if (VG_(clo_stats) || VG_(debugLog_getLevel)() >= 1)
VG_(dmsg)("transtab: " "recycle sector %d\n", sno);
n_sectors_recycled++;
vg_assert(sec->ttC != NULL);
vg_assert(sec->ttH != NULL);
vg_assert(sec->tc_next != NULL);
n_dump_count += sec->tt_n_inuse;
VexArch arch_host = VexArch_INVALID;
VexArchInfo archinfo_host;
VG_(bzero_inline)(&archinfo_host, sizeof(archinfo_host));
VG_(machine_get_VexArchInfo)( &arch_host, &archinfo_host );
VexEndness endness_host = archinfo_host.endness;
/* Visit each just-about-to-be-abandoned translation. */
if (DEBUG_TRANSTAB) VG_(printf)("QQQ unlink-entire-sector: %d START\n",
sno);
sec->empty_tt_list = HTT_EMPTY;
for (TTEno ei = 0; ei < N_TTES_PER_SECTOR; ei++) {
if (sec->ttH[ei].status == InUse) {
vg_assert(sec->ttC[ei].n_tte2ec >= 1);
vg_assert(sec->ttC[ei].n_tte2ec <= 3);
n_dump_osize += TTEntryH__osize(&sec->ttH[ei]);
/* Tell the tool too. */
if (VG_(needs).superblock_discards) {
VexGuestExtents vge_tmp;
TTEntryH__to_VexGuestExtents( &vge_tmp, &sec->ttH[ei] );
VG_TDICT_CALL( tool_discard_superblock_info,
sec->ttC[ei].entry, vge_tmp );
}
unchain_in_preparation_for_deletion(arch_host,
endness_host, sno, ei);
} else {
vg_assert(sec->ttC[ei].n_tte2ec == 0);
}
sec->ttH[ei].status = Empty;
sec->ttC[ei].n_tte2ec = 0;
add_to_empty_tt_list(sno, ei);
}
for (HTTno hi = 0; hi < N_HTTES_PER_SECTOR; hi++)
sec->htt[hi] = HTT_EMPTY;
if (DEBUG_TRANSTAB) VG_(printf)("QQQ unlink-entire-sector: %d END\n",
sno);
/* Free up the eclass structures. */
for (EClassNo e = 0; e < ECLASS_N; e++) {
if (sec->ec2tte_size[e] == 0) {
vg_assert(sec->ec2tte_used[e] == 0);
vg_assert(sec->ec2tte[e] == NULL);
} else {
vg_assert(sec->ec2tte[e] != NULL);
ttaux_free(sec->ec2tte[e]);
sec->ec2tte[e] = NULL;
sec->ec2tte_size[e] = 0;
sec->ec2tte_used[e] = 0;
}
}
/* Empty out the host extents array. */
vg_assert(sec->host_extents != NULL);
VG_(dropTailXA)(sec->host_extents, VG_(sizeXA)(sec->host_extents));
vg_assert(VG_(sizeXA)(sec->host_extents) == 0);
/* Sanity check: ensure it is already in
sector_search_order[]. */
SECno ix;
for (ix = 0; ix < n_sectors; ix++) {
if (sector_search_order[ix] == sno)
break;
}
vg_assert(ix < n_sectors);
if (VG_(clo_verbosity) > 2)
VG_(message)(Vg_DebugMsg, "TT/TC: recycle sector %d\n", sno);
}
sec->tc_next = sec->tc;
sec->tt_n_inuse = 0;
invalidateFastCache();
{ Bool sane = sanity_check_sector_search_order();
vg_assert(sane);
}
}
/* Add a translation of vge to TT/TC. The translation is temporarily
in code[0 .. code_len-1].
pre: youngest_sector points to a valid (although possibly full)
sector.
*/
void VG_(add_to_transtab)( const VexGuestExtents* vge,
Addr entry,
Addr code,
UInt code_len,
Bool is_self_checking,
Int offs_profInc,
UInt n_guest_instrs )
{
Int tcAvailQ, reqdQ, y;
ULong *tcptr, *tcptr2;
UChar* srcP;
UChar* dstP;
vg_assert(init_done);
vg_assert(vge->n_used >= 1 && vge->n_used <= 3);
/* 60000: should agree with N_TMPBUF in m_translate.c. */
vg_assert(code_len > 0 && code_len < 60000);
/* Generally stay sane */
vg_assert(n_guest_instrs < 200); /* it can be zero, tho */
if (DEBUG_TRANSTAB)
VG_(printf)("add_to_transtab(entry = 0x%lx, len = %u) ...\n",
entry, code_len);
n_in_count++;
n_in_tsize += code_len;
n_in_osize += vge_osize(vge);
if (is_self_checking)
n_in_sc_count++;
y = youngest_sector;
vg_assert(isValidSector(y));
if (sectors[y].tc == NULL)
initialiseSector(y);
/* Try putting the translation in this sector. */
reqdQ = (code_len + 7) >> 3;
/* Will it fit in tc? */
tcAvailQ = ((ULong*)(§ors[y].tc[tc_sector_szQ]))
- ((ULong*)(sectors[y].tc_next));
vg_assert(tcAvailQ >= 0);
vg_assert(tcAvailQ <= tc_sector_szQ);
if (tcAvailQ < reqdQ
|| sectors[y].tt_n_inuse >= N_TTES_PER_SECTOR) {
/* No. So move on to the next sector. Either it's never been
used before, in which case it will get its tt/tc allocated
now, or it has been used before, in which case it is set to be
empty, hence throwing out the oldest sector. */
vg_assert(tc_sector_szQ > 0);
Int tt_loading_pct = (100 * sectors[y].tt_n_inuse)
/ N_HTTES_PER_SECTOR;
Int tc_loading_pct = (100 * (tc_sector_szQ - tcAvailQ))
/ tc_sector_szQ;
if (VG_(clo_stats) || VG_(debugLog_getLevel)() >= 1) {
VG_(dmsg)("transtab: "
"declare sector %d full "
"(TT loading %2d%%, TC loading %2d%%, avg tce size %d)\n",
y, tt_loading_pct, tc_loading_pct,
8 * (tc_sector_szQ - tcAvailQ)/sectors[y].tt_n_inuse);
}
youngest_sector++;
if (youngest_sector >= n_sectors)
youngest_sector = 0;
y = youngest_sector;
initialiseSector(y);
}
/* Be sure ... */
tcAvailQ = ((ULong*)(§ors[y].tc[tc_sector_szQ]))
- ((ULong*)(sectors[y].tc_next));
vg_assert(tcAvailQ >= 0);
vg_assert(tcAvailQ <= tc_sector_szQ);
vg_assert(tcAvailQ >= reqdQ);
vg_assert(sectors[y].tt_n_inuse < N_TTES_PER_SECTOR);
vg_assert(sectors[y].tt_n_inuse >= 0);
/* Copy into tc. */
tcptr = sectors[y].tc_next;
vg_assert(tcptr >= §ors[y].tc[0]);
vg_assert(tcptr <= §ors[y].tc[tc_sector_szQ]);
dstP = (UChar*)tcptr;
srcP = (UChar*)code;
VG_(memcpy)(dstP, srcP, code_len);
sectors[y].tc_next += reqdQ;
sectors[y].tt_n_inuse++;
/* more paranoia */
tcptr2 = sectors[y].tc_next;
vg_assert(tcptr2 >= §ors[y].tc[0]);
vg_assert(tcptr2 <= §ors[y].tc[tc_sector_szQ]);
/* Find an empty tt slot, and use it. There must be such a slot
since tt is never allowed to get completely full. */
TTEno tteix = get_empty_tt_slot(y);
TTEntryC__init(§ors[y].ttC[tteix]);
TTEntryH__init(§ors[y].ttH[tteix]);
sectors[y].ttC[tteix].tcptr = tcptr;
sectors[y].ttC[tteix].usage.prof.count = 0;
sectors[y].ttC[tteix].usage.prof.weight
= False
? // Count guest instrs (assumes all side exits are untaken)
(n_guest_instrs == 0 ? 1 : n_guest_instrs)
: // Counts some (not very good) approximation to host instructions
(code_len == 0 ? 1 : (code_len / 4));
sectors[y].ttC[tteix].entry = entry;
TTEntryH__from_VexGuestExtents( §ors[y].ttH[tteix], vge );
sectors[y].ttH[tteix].status = InUse;
// Point an htt entry to the tt slot
HTTno htti = HASH_TT(entry);
vg_assert(htti < N_HTTES_PER_SECTOR);
while (True) {
if (sectors[y].htt[htti] == HTT_EMPTY
|| sectors[y].htt[htti] == HTT_DELETED)
break;
htti++;
if (htti >= N_HTTES_PER_SECTOR)
htti = 0;
}
sectors[y].htt[htti] = tteix;
/* Patch in the profile counter location, if necessary. */
if (offs_profInc != -1) {
vg_assert(offs_profInc >= 0 && offs_profInc < code_len);
VexArch arch_host = VexArch_INVALID;
VexArchInfo archinfo_host;
VG_(bzero_inline)(&archinfo_host, sizeof(archinfo_host));
VG_(machine_get_VexArchInfo)( &arch_host, &archinfo_host );
VexEndness endness_host = archinfo_host.endness;
VexInvalRange vir
= LibVEX_PatchProfInc( arch_host, endness_host,
dstP + offs_profInc,
§ors[y].ttC[tteix].usage.prof.count );
VG_(invalidate_icache)( (void*)vir.start, vir.len );
}
VG_(invalidate_icache)( dstP, code_len );
/* Add this entry to the host_extents map, checking that we're
adding in order. */
{ HostExtent hx;
hx.start = (UChar*)tcptr;
hx.len = code_len;
hx.tteNo = tteix;
vg_assert(hx.len > 0); /* bsearch fails w/ zero length entries */
XArray* hx_array = sectors[y].host_extents;
vg_assert(hx_array);
Word n = VG_(sizeXA)(hx_array);
if (n > 0) {
HostExtent* hx_prev = (HostExtent*)VG_(indexXA)(hx_array, n-1);
vg_assert(hx_prev->start + hx_prev->len <= hx.start);
}
VG_(addToXA)(hx_array, &hx);
if (DEBUG_TRANSTAB)
VG_(printf)("... hx.start 0x%p hx.len %u sector %d ttslot %d\n",
hx.start, hx.len, y, tteix);
}
/* Update the fast-cache. */
setFastCacheEntry( entry, tcptr );
/* Note the eclass numbers for this translation. */
upd_eclasses_after_add( §ors[y], tteix );
}
/* Search for the translation of the given guest address. If
requested, a successful search can also cause the fast-caches to be
updated.
*/
Bool VG_(search_transtab) ( /*OUT*/Addr* res_hcode,
/*OUT*/SECno* res_sNo,
/*OUT*/TTEno* res_tteNo,
Addr guest_addr,
Bool upd_cache )
{
SECno i, sno;
HTTno j, k, kstart;
TTEno tti;
vg_assert(init_done);
/* Find the initial probe point just once. It will be the same in
all sectors and avoids multiple expensive % operations. */
n_full_lookups++;
kstart = HASH_TT(guest_addr);
vg_assert(kstart < N_HTTES_PER_SECTOR);
/* Search in all the sectors,using sector_search_order[] as a
heuristic guide as to what order to visit the sectors. */
for (i = 0; i < n_sectors; i++) {
sno = sector_search_order[i];
if (UNLIKELY(sno == INV_SNO))
return False; /* run out of sectors to search */
k = kstart;
for (j = 0; j < N_HTTES_PER_SECTOR; j++) {
n_lookup_probes++;
tti = sectors[sno].htt[k];
if (tti < N_TTES_PER_SECTOR
&& sectors[sno].ttC[tti].entry == guest_addr) {
/* found it */
if (upd_cache)
setFastCacheEntry(
guest_addr, sectors[sno].ttC[tti].tcptr );
if (res_hcode)
*res_hcode = (Addr)sectors[sno].ttC[tti].tcptr;
if (res_sNo)
*res_sNo = sno;
if (res_tteNo)
*res_tteNo = tti;
/* pull this one one step closer to the front. For large
apps this more or less halves the number of required
probes. */
if (i > 0) {
Int tmp = sector_search_order[i-1];
sector_search_order[i-1] = sector_search_order[i];
sector_search_order[i] = tmp;
}
return True;
}
// tti is HTT_EMPTY or HTT_DELETED or not the entry of guest_addr
if (sectors[sno].htt[k] == HTT_EMPTY)
break; /* not found in this sector */
k++;
if (k == N_HTTES_PER_SECTOR)
k = 0;
}
/* If we fall off the end, all entries are InUse and not
matching, or Deleted. In any case we did not find it in this
sector. */
}
/* Not found in any sector. */
return False;
}
/*-------------------------------------------------------------*/
/*--- Delete translations. ---*/
/*-------------------------------------------------------------*/
/* forward */
static void unredir_discard_translations( Addr /*guest_start*/, ULong /*range*/);
/* Stuff for deleting translations which intersect with a given
address range. Unfortunately, to make this run at a reasonable
speed, it is complex. */
static inline
Bool overlap1 ( Addr s1, ULong r1, Addr s2, ULong r2 )
{
Addr e1 = s1 + r1 - 1;
Addr e2 = s2 + r2 - 1;
if (e1 < s2 || e2 < s1)
return False;
return True;
}
static inline
Bool overlaps ( Addr start, ULong range, const TTEntryH* tteH )
{
if (overlap1(start, range, tteH->vge_base[0], tteH->vge_len[0]))
return True;
if (tteH->vge_n_used < 2)
return False;
if (overlap1(start, range, tteH->vge_base[1], tteH->vge_len[1]))
return True;
if (tteH->vge_n_used < 3)
return False;
if (overlap1(start, range, tteH->vge_base[2], tteH->vge_len[2]))
return True;
return False;
}
/* Delete a tt entry, and update all the eclass data accordingly. */
static void delete_tte ( /*OUT*/Addr* ga_deleted,
/*MOD*/Sector* sec, SECno secNo, TTEno tteno,
VexArch arch_host, VexEndness endness_host )
{
Int i, ec_idx;
EClassNo ec_num;
/* sec and secNo are mutually redundant; cross-check. */
vg_assert(sec == §ors[secNo]);
vg_assert(tteno < N_TTES_PER_SECTOR);
TTEntryC* tteC = &sec->ttC[tteno];
TTEntryH* tteH = &sec->ttH[tteno];
vg_assert(tteH->status == InUse);
vg_assert(tteC->n_tte2ec >= 1 && tteC->n_tte2ec <= 3);
vg_assert(tteH->vge_n_used >= 1 && tteH->vge_n_used <= 3);
vg_assert(tteH->vge_base[0] != TRANSTAB_BOGUS_GUEST_ADDR);
*ga_deleted = tteH->vge_base[0];
/* Unchain .. */
unchain_in_preparation_for_deletion(arch_host, endness_host, secNo, tteno);
/* Deal with the ec-to-tte links first. */
for (i = 0; i < tteC->n_tte2ec; i++) {
ec_num = tteC->tte2ec_ec[i];
ec_idx = tteC->tte2ec_ix[i];
vg_assert(ec_num < ECLASS_N);
vg_assert(ec_idx >= 0);
vg_assert(ec_idx < sec->ec2tte_used[ec_num]);
/* Assert that the two links point at each other. */
vg_assert(sec->ec2tte[ec_num][ec_idx] == tteno);
/* "delete" the pointer back to here. */
sec->ec2tte[ec_num][ec_idx] = EC2TTE_DELETED;
}
/* Now fix up this TTEntry. */
/* Mark the entry as deleted in htt.
Note: we could avoid the below hash table search by
adding a reference from tte to its hash position in tt. */
HTTno j;
HTTno k = HASH_TT(tteC->entry);
vg_assert(k < N_HTTES_PER_SECTOR);
for (j = 0; j < N_HTTES_PER_SECTOR; j++) {
if (sec->htt[k] == tteno)
break;
k++;
if (k == N_HTTES_PER_SECTOR)
k = 0;
}
vg_assert(j < N_HTTES_PER_SECTOR);
sec->htt[k] = HTT_DELETED;
tteH->status = Deleted;
tteC->n_tte2ec = 0;
add_to_empty_tt_list(secNo, tteno);
/* Stats .. */
sec->tt_n_inuse--;
n_disc_count++;
n_disc_osize += TTEntryH__osize(tteH);
/* Tell the tool too. */
if (VG_(needs).superblock_discards) {
VexGuestExtents vge_tmp;
TTEntryH__to_VexGuestExtents( &vge_tmp, tteH );
VG_TDICT_CALL( tool_discard_superblock_info, tteC->entry, vge_tmp );
}
}
/* Delete translations from sec which intersect specified range, but
only consider translations in the specified eclass. */
static
SizeT delete_translations_in_sector_eclass ( /*OUT*/Addr* ga_deleted,
/*MOD*/Sector* sec, SECno secNo,
Addr guest_start, ULong range,
EClassNo ec,
VexArch arch_host,
VexEndness endness_host )
{
Int i;
TTEno tteno;
SizeT numDeld = 0;
vg_assert(ec < ECLASS_N);
for (i = 0; i < sec->ec2tte_used[ec]; i++) {
tteno = sec->ec2tte[ec][i];
if (tteno == EC2TTE_DELETED) {
/* already deleted */
continue;
}
vg_assert(tteno < N_TTES_PER_SECTOR);
TTEntryH* tteH = &sec->ttH[tteno];
vg_assert(tteH->status == InUse);
if (overlaps( guest_start, range, tteH )) {
numDeld++;
delete_tte( ga_deleted, sec, secNo, tteno, arch_host, endness_host );
}
}
return numDeld;
}
/* Delete translations from sec which intersect specified range, the
slow way, by inspecting all translations in sec. */
static
SizeT delete_translations_in_sector ( /*OUT*/Addr* ga_deleted,
/*MOD*/Sector* sec, SECno secNo,
Addr guest_start, ULong range,
VexArch arch_host,
VexEndness endness_host )
{
TTEno i;
SizeT numDeld = 0;
for (i = 0; i < N_TTES_PER_SECTOR; i++) {
/* The entire and only purpose of splitting TTEntry into cold
and hot parts (TTEntryC and TTEntryH) is to make this search
loop run as fast as possible, by avoiding having to pull all
of the cold data up the memory hierarchy. */
if (UNLIKELY(sec->ttH[i].status == InUse
&& overlaps( guest_start, range, &sec->ttH[i] ))) {
numDeld++;
delete_tte( ga_deleted, sec, secNo, i, arch_host, endness_host );
}
}
return numDeld;
}
void VG_(discard_translations) ( Addr guest_start, ULong range,
const HChar* who )
{
Sector* sec;
SECno sno;
EClassNo ec;
/* It is very commonly the case that a call here results in discarding of
exactly one superblock. As an optimisation only, use ga_deleted and
numDeleted to detect this situation and to record the guest addr involved.
That is then used to avoid calling invalidateFastCache in this case.
Instead the individual entry in the fast cache is removed. This can reduce
the overall VG_(fast_cache) miss rate significantly in applications that do
a lot of short code discards (basically jit generated code that is
subsequently patched).
ga_deleted is made to hold the guest address of the last superblock deleted
(in this call to VG_(discard_translations)). If more than one superblock
is deleted (or none), then we ignore what is written to ga_deleted. If
exactly one superblock is deleted then ga_deleted holds exactly what we
want and will be used.
*/
Addr ga_deleted = TRANSTAB_BOGUS_GUEST_ADDR;
SizeT numDeleted = 0;
vg_assert(init_done);
VG_(debugLog)(2, "transtab",
"discard_translations(0x%lx, %llu) req by %s\n",
guest_start, range, who );
/* Pre-deletion sanity check */
if (VG_(clo_sanity_level) >= 4) {
Bool sane = sanity_check_all_sectors();
vg_assert(sane);
}
if (range == 0)
return;
VexArch arch_host = VexArch_INVALID;
VexArchInfo archinfo_host;
VG_(bzero_inline)(&archinfo_host, sizeof(archinfo_host));
VG_(machine_get_VexArchInfo)( &arch_host, &archinfo_host );
VexEndness endness_host = archinfo_host.endness;
/* There are two different ways to do this.
If the range fits within a single address-range equivalence
class, as will be the case for a cache line sized invalidation,
then we only have to inspect the set of translations listed in
that equivalence class, and also in the "sin-bin" equivalence
class ECLASS_MISC.
Otherwise, the invalidation is of a larger range and probably
results from munmap. In this case it's (probably!) faster just
to inspect all translations, dump those we don't want, and
regenerate the equivalence class information (since modifying it
in-situ is even more expensive).
*/
/* First off, figure out if the range falls within a single class,
and if so which one. */
ec = ECLASS_MISC;
if (range <= (1ULL << ECLASS_SHIFT))
ec = range_to_eclass( guest_start, (UInt)range );
/* if ec is ECLASS_MISC then we aren't looking at just a single
class, so use the slow scheme. Else use the fast scheme,
examining 'ec' and ECLASS_MISC. */
if (ec != ECLASS_MISC) {
VG_(debugLog)(2, "transtab",
" FAST, ec = %d\n", ec);
/* Fast scheme */
vg_assert(ec < ECLASS_MISC);
for (sno = 0; sno < n_sectors; sno++) {
sec = §ors[sno];
if (sec->tc == NULL)
continue;
numDeleted += delete_translations_in_sector_eclass(
&ga_deleted, sec, sno, guest_start, range,
ec, arch_host, endness_host
);
numDeleted += delete_translations_in_sector_eclass(
&ga_deleted, sec, sno, guest_start, range,
ECLASS_MISC, arch_host, endness_host
);
}
} else {
/* slow scheme */
VG_(debugLog)(2, "transtab",
" SLOW, ec = %d\n", ec);
for (sno = 0; sno < n_sectors; sno++) {
sec = §ors[sno];
if (sec->tc == NULL)
continue;
numDeleted += delete_translations_in_sector(
&ga_deleted, sec, sno, guest_start, range,
arch_host, endness_host
);
}
}
if (numDeleted == 0) {
// "ga_deleted was never set"
vg_assert(ga_deleted == TRANSTAB_BOGUS_GUEST_ADDR);
} else
if (numDeleted == 1) {
// "ga_deleted was set to something valid"
vg_assert(ga_deleted != TRANSTAB_BOGUS_GUEST_ADDR);
// Just invalidate the individual VG_(tt_fast) cache entry \o/
invalidateFastCacheEntry(ga_deleted);
Addr fake_host = 0;
vg_assert(! VG_(lookupInFastCache)(&fake_host, ga_deleted));
} else {
// "ga_deleted was set to something valid"
vg_assert(ga_deleted != TRANSTAB_BOGUS_GUEST_ADDR);
// Nuke the entire VG_(tt_fast) cache. Sigh.
invalidateFastCache();
}
/* don't forget the no-redir cache */
unredir_discard_translations( guest_start, range );
/* Post-deletion sanity check */
if (VG_(clo_sanity_level) >= 4) {
TTEno i;
Bool sane = sanity_check_all_sectors();
vg_assert(sane);
/* But now, also check the requested address range isn't
present anywhere. */
for (sno = 0; sno < n_sectors; sno++) {
sec = §ors[sno];
if (sec->tc == NULL)
continue;
for (i = 0; i < N_TTES_PER_SECTOR; i++) {
TTEntryH* tteH = &sec->ttH[i];
if (tteH->status != InUse)
continue;
vg_assert(!overlaps( guest_start, range, tteH ));
}
}
}
}
/* Whether or not tools may discard translations. */
Bool VG_(ok_to_discard_translations) = False;
/* This function is exported to tools which can use it to discard
translations, provided it is safe to do so. */
void VG_(discard_translations_safely) ( Addr start, SizeT len,
const HChar* who )
{
vg_assert(VG_(ok_to_discard_translations));
VG_(discard_translations)(start, len, who);
}
/*------------------------------------------------------------*/
/*--- AUXILIARY: the unredirected TT/TC ---*/
/*------------------------------------------------------------*/
/* A very simple translation cache which holds a small number of
unredirected translations. This is completely independent of the
main tt/tc structures. When unredir_tc or unredir_tt becomes full,
both structures are simply dumped and we start over.
Since these translations are unredirected, the search key is (by
definition) the first address entry in the .vge field. */
/* Sized to hold 500 translations of average size 1000 bytes. */
#define UNREDIR_SZB 1000
#define N_UNREDIR_TT 500
#define N_UNREDIR_TCQ (N_UNREDIR_TT * UNREDIR_SZB / (Int)sizeof(ULong))
typedef
struct {
VexGuestExtents vge;
Addr hcode;
Bool inUse;
}
UTCEntry;
/* We just allocate forwards in _tc, never deleting. */
static ULong *unredir_tc;
static Int unredir_tc_used = N_UNREDIR_TCQ;
/* Slots in _tt can come into use and out again (.inUse).
Nevertheless _tt_highwater is maintained so that invalidations
don't have to scan all the slots when only a few are in use.
_tt_highwater holds the index of the highest ever allocated
slot. */
static UTCEntry unredir_tt[N_UNREDIR_TT];
static Int unredir_tt_highwater;
static void init_unredir_tt_tc ( void )
{
Int i;
if (unredir_tc == NULL) {
SysRes sres = VG_(am_mmap_anon_float_valgrind)
( N_UNREDIR_TT * UNREDIR_SZB );
if (sr_isError(sres)) {
VG_(out_of_memory_NORETURN)("init_unredir_tt_tc",
N_UNREDIR_TT * UNREDIR_SZB, sr_Err(sres));
/*NOTREACHED*/
}
unredir_tc = (ULong *)(Addr)sr_Res(sres);
}
unredir_tc_used = 0;
for (i = 0; i < N_UNREDIR_TT; i++)
unredir_tt[i].inUse = False;
unredir_tt_highwater = -1;
}
/* Do a sanity check; return False on failure. */
static Bool sanity_check_redir_tt_tc ( void )
{
Int i;
if (unredir_tt_highwater < -1) return False;
if (unredir_tt_highwater >= N_UNREDIR_TT) return False;
for (i = unredir_tt_highwater+1; i < N_UNREDIR_TT; i++)
if (unredir_tt[i].inUse)
return False;
if (unredir_tc_used < 0) return False;
if (unredir_tc_used > N_UNREDIR_TCQ) return False;
return True;
}
/* Add an UNREDIRECTED translation of vge to TT/TC. The translation
is temporarily in code[0 .. code_len-1].
*/
void VG_(add_to_unredir_transtab)( const VexGuestExtents* vge,
Addr entry,
Addr code,
UInt code_len )
{
Int i, j, code_szQ;
HChar *srcP, *dstP;
vg_assert(sanity_check_redir_tt_tc());
/* This is the whole point: it's not redirected! */
vg_assert(entry == vge->base[0]);
/* How many unredir_tt slots are needed */
code_szQ = (code_len + 7) / 8;
/* Look for an empty unredir_tc slot */
for (i = 0; i < N_UNREDIR_TT; i++)
if (!unredir_tt[i].inUse)
break;
if (i >= N_UNREDIR_TT || code_szQ > (N_UNREDIR_TCQ - unredir_tc_used)) {
/* It's full; dump everything we currently have */
init_unredir_tt_tc();
i = 0;
}
vg_assert(unredir_tc_used >= 0);
vg_assert(unredir_tc_used <= N_UNREDIR_TCQ);
vg_assert(code_szQ > 0);
vg_assert(code_szQ + unredir_tc_used <= N_UNREDIR_TCQ);
vg_assert(i >= 0 && i < N_UNREDIR_TT);
vg_assert(unredir_tt[i].inUse == False);
if (i > unredir_tt_highwater)
unredir_tt_highwater = i;
dstP = (HChar*)&unredir_tc[unredir_tc_used];
srcP = (HChar*)code;
for (j = 0; j < code_len; j++)
dstP[j] = srcP[j];
VG_(invalidate_icache)( dstP, code_len );
unredir_tt[i].inUse = True;
unredir_tt[i].vge = *vge;
unredir_tt[i].hcode = (Addr)dstP;
unredir_tc_used += code_szQ;
vg_assert(unredir_tc_used >= 0);
vg_assert(unredir_tc_used <= N_UNREDIR_TCQ);
vg_assert(&dstP[code_len] <= (HChar*)&unredir_tc[unredir_tc_used]);
}
Bool VG_(search_unredir_transtab) ( /*OUT*/Addr* result,
Addr guest_addr )
{
Int i;
for (i = 0; i < N_UNREDIR_TT; i++) {
if (!unredir_tt[i].inUse)
continue;
if (unredir_tt[i].vge.base[0] == guest_addr) {
*result = unredir_tt[i].hcode;
return True;
}
}
return False;
}
static void unredir_discard_translations( Addr guest_start, ULong range )
{
Int i;
vg_assert(sanity_check_redir_tt_tc());
for (i = 0; i <= unredir_tt_highwater; i++) {
if (unredir_tt[i].inUse) {
/* Fake up a TTEntryH just so we can pass it to overlaps()
without having to make a new version of overlaps() just for
this rare case. */
TTEntryH tmp_tteH;
TTEntryH__from_VexGuestExtents( &tmp_tteH, &unredir_tt[i].vge );
tmp_tteH.status = Empty; /* Completely irrelevant; pure paranoia. */
if (overlaps( guest_start, range, &tmp_tteH )) {
unredir_tt[i].inUse = False;
}
}
}
}
/*------------------------------------------------------------*/
/*--- Initialisation. ---*/
/*------------------------------------------------------------*/
void VG_(init_tt_tc) ( void )
{
Int i, avg_codeszQ;
vg_assert(!init_done);
init_done = True;
/* Otherwise lots of things go wrong... */
vg_assert(sizeof(ULong) == 8);
vg_assert(sizeof(TTEno) == sizeof(HTTno));
vg_assert(sizeof(TTEno) == 2);
vg_assert(N_TTES_PER_SECTOR <= N_HTTES_PER_SECTOR);
vg_assert(N_HTTES_PER_SECTOR < INV_TTE);
vg_assert(N_HTTES_PER_SECTOR < EC2TTE_DELETED);
vg_assert(N_HTTES_PER_SECTOR < HTT_EMPTY);
/* check fast cache entries really are 8 words long */
vg_assert(sizeof(Addr) == sizeof(void*));
vg_assert(sizeof(FastCacheSet) == 8 * sizeof(Addr));
/* check fast cache entries are packed back-to-back with no spaces */
vg_assert(sizeof( VG_(tt_fast) )
== VG_TT_FAST_SETS * sizeof(FastCacheSet));
/* check fast cache entries have the layout that the handwritten assembly
fragments assume. */
vg_assert(sizeof(FastCacheSet) == (1 << VG_FAST_CACHE_SET_BITS));
vg_assert(offsetof(FastCacheSet,guest0) == FCS_g0);
vg_assert(offsetof(FastCacheSet,host0) == FCS_h0);
vg_assert(offsetof(FastCacheSet,guest1) == FCS_g1);
vg_assert(offsetof(FastCacheSet,host1) == FCS_h1);
vg_assert(offsetof(FastCacheSet,guest2) == FCS_g2);
vg_assert(offsetof(FastCacheSet,host2) == FCS_h2);
vg_assert(offsetof(FastCacheSet,guest3) == FCS_g3);
vg_assert(offsetof(FastCacheSet,host3) == FCS_h3);
vg_assert(offsetof(FastCacheSet,guest0) == 0 * sizeof(Addr));
vg_assert(offsetof(FastCacheSet,host0) == 1 * sizeof(Addr));
vg_assert(offsetof(FastCacheSet,guest1) == 2 * sizeof(Addr));
vg_assert(offsetof(FastCacheSet,host1) == 3 * sizeof(Addr));
vg_assert(offsetof(FastCacheSet,guest2) == 4 * sizeof(Addr));
vg_assert(offsetof(FastCacheSet,host2) == 5 * sizeof(Addr));
vg_assert(offsetof(FastCacheSet,guest3) == 6 * sizeof(Addr));
vg_assert(offsetof(FastCacheSet,host3) == 7 * sizeof(Addr));
/* check fast cache is aligned as we requested. Not fatal if it
isn't, but we might as well make sure. */
vg_assert(VG_IS_64_ALIGNED( ((Addr) & VG_(tt_fast)[0]) ));
/* The TTEntryH size is critical for keeping the LLC miss rate down
when doing a lot of discarding. Hence check it here. We also
have a lot of TTEntryCs so let's check that too. */
if (sizeof(HWord) == 8) {
vg_assert(sizeof(TTEntryH) <= 32);
vg_assert(sizeof(TTEntryC) <= 112);
}
else if (sizeof(HWord) == 4) {
vg_assert(sizeof(TTEntryH) <= 20);
# if defined(VGP_ppc32_linux) || defined(VGP_mips32_linux) \
|| (defined(VGP_mips64_linux) && defined(VGABI_N32)) \
|| defined(VGP_nanomips_linux) || defined(VGP_arm_linux)
/* On PPC32, MIPS32, ARM32 platforms, alignof(ULong) == 8, so the
structure is larger than on other 32 bit targets. */
vg_assert(sizeof(TTEntryC) <= 96);
# else
vg_assert(sizeof(TTEntryC) <= 88);
# endif
}
else {
vg_assert(0);
}
/* All the hassle about converting between TTEntryH and
VexGuestExtents was so as to ensure the following. */
vg_assert(sizeof(TTEntryH) == sizeof(VexGuestExtents));
if (VG_(clo_verbosity) > 2)
VG_(message)(Vg_DebugMsg,
"TT/TC: VG_(init_tt_tc) "
"(startup of code management)\n");
/* Figure out how big each tc area should be. */
if (VG_(clo_avg_transtab_entry_size) == 0)
avg_codeszQ = (VG_(details).avg_translation_sizeB + 7) / 8;
else
avg_codeszQ = (VG_(clo_avg_transtab_entry_size) + 7) / 8;
tc_sector_szQ = N_TTES_PER_SECTOR * (1 + avg_codeszQ);
/* Ensure the calculated value is not way crazy. */
vg_assert(tc_sector_szQ >= 2 * N_TTES_PER_SECTOR);
vg_assert(tc_sector_szQ <= 100 * N_TTES_PER_SECTOR);
n_sectors = VG_(clo_num_transtab_sectors);
vg_assert(n_sectors >= MIN_N_SECTORS);
vg_assert(n_sectors <= MAX_N_SECTORS);
/* Initialise the sectors, even the ones we aren't going to use.
Set all fields to zero. */
youngest_sector = 0;
for (i = 0; i < MAX_N_SECTORS; i++)
VG_(memset)(§ors[i], 0, sizeof(sectors[i]));
/* Initialise the sector_search_order hint table, including the
entries we aren't going to use. */
for (i = 0; i < MAX_N_SECTORS; i++)
sector_search_order[i] = INV_SNO;
/* Initialise the fast cache. */
invalidateFastCache();
/* and the unredir tt/tc */
init_unredir_tt_tc();
if (VG_(clo_verbosity) > 2 || VG_(clo_stats)
|| VG_(debugLog_getLevel) () >= 2) {
VG_(message)(Vg_DebugMsg,
"TT/TC: cache: %s--avg-transtab-entry-size=%u, "
"%stool provided default %u\n",
VG_(clo_avg_transtab_entry_size) == 0 ? "ignoring " : "using ",
VG_(clo_avg_transtab_entry_size),
VG_(clo_avg_transtab_entry_size) == 0 ? "using " : "ignoring ",
VG_(details).avg_translation_sizeB);
VG_(message)(Vg_DebugMsg,
"TT/TC: cache: %d sectors of %'d bytes each = %'d total TC\n",
n_sectors, 8 * tc_sector_szQ,
n_sectors * 8 * tc_sector_szQ );
VG_(message)(Vg_DebugMsg,
"TT/TC: table: %'d tables[%d] of C %'d + H %'d bytes each "
"= %'d total TT\n",
n_sectors, N_TTES_PER_SECTOR,
(int)(N_TTES_PER_SECTOR * sizeof(TTEntryC)),
(int)(N_TTES_PER_SECTOR * sizeof(TTEntryH)),
(int)(n_sectors * N_TTES_PER_SECTOR
* (sizeof(TTEntryC) + sizeof(TTEntryH))));
VG_(message)(Vg_DebugMsg,
"TT/TC: table: %d tt entries each = %'d total tt entries\n",
N_TTES_PER_SECTOR, n_sectors * N_TTES_PER_SECTOR);
VG_(message)(Vg_DebugMsg,
"TT/TC: table: %d htt[%d] of %'d bytes each = %'d total HTT"
" (htt[%d] %d%% max occup)\n",
n_sectors, N_HTTES_PER_SECTOR,
(int)(N_HTTES_PER_SECTOR * sizeof(TTEno)),
(int)(n_sectors * N_HTTES_PER_SECTOR * sizeof(TTEno)),
N_HTTES_PER_SECTOR, SECTOR_TT_LIMIT_PERCENT);
}
if (0) {
VG_(printf)("XXXX sizeof(VexGuestExtents) = %d\n",
(Int)sizeof(VexGuestExtents));
VG_(printf)("XXXX sizeof(InEdge) = %d\n", (Int)sizeof(InEdge));
VG_(printf)("XXXX sizeof(OutEdge) = %d\n", (Int)sizeof(OutEdge));
VG_(printf)("XXXX sizeof(InEdgeArr) = %d\n", (Int)sizeof(InEdgeArr));
VG_(printf)("XXXX sizeof(OutEdgeArr) = %d\n", (Int)sizeof(OutEdgeArr));
VG_(printf)("XXXX sizeof(TTEntryC) = %d\n", (Int)sizeof(TTEntryC));
VG_(printf)("XXXX sizeof(TTEntryH) = %d\n", (Int)sizeof(TTEntryH));
}
}
/*------------------------------------------------------------*/
/*--- Printing out statistics. ---*/
/*------------------------------------------------------------*/
static Double safe_idiv( ULong a, ULong b )
{
return (b == 0 ? 0 : (Double)a / (Double)b);
}
ULong VG_(get_bbs_translated) ( void )
{
return n_in_count;
}
ULong VG_(get_bbs_discarded_or_dumped) ( void )
{
return n_disc_count + n_dump_count;
}
void VG_(print_tt_tc_stats) ( void )
{
VG_(message)(Vg_DebugMsg,
" tt/tc: %'llu tt lookups requiring %'llu probes\n",
n_full_lookups, n_lookup_probes );
VG_(message)(Vg_DebugMsg,
" tt/tc: %'llu fast-cache updates, %'llu flushes\n",
n_fast_updates, n_fast_flushes );
VG_(message)(Vg_DebugMsg,
" transtab: new %'llu "
"(%'llu -> %'llu; ratio %3.1f) [%'llu scs] "
"avg tce size %llu\n",
n_in_count, n_in_osize, n_in_tsize,
safe_idiv(n_in_tsize, n_in_osize),
n_in_sc_count,
n_in_tsize / (n_in_count ? n_in_count : 1));
VG_(message)(Vg_DebugMsg,
" transtab: dumped %'llu (%'llu -> ?" "?) "
"(sectors recycled %'llu)\n",
n_dump_count, n_dump_osize, n_sectors_recycled );
VG_(message)(Vg_DebugMsg,
" transtab: discarded %'llu (%'llu -> ?" "?)\n",
n_disc_count, n_disc_osize );
if (DEBUG_TRANSTAB) {
VG_(printf)("\n");
for (EClassNo e = 0; e < ECLASS_N; e++) {
VG_(printf)(" %4d", sectors[0].ec2tte_used[e]);
if (e % 16 == 15)
VG_(printf)("\n");
}
VG_(printf)("\n\n");
}
}
/*------------------------------------------------------------*/
/*--- Printing out of profiling results. ---*/
/*------------------------------------------------------------*/
static ULong score ( const TTEntryC* tteC )
{
return ((ULong)tteC->usage.prof.weight) * ((ULong)tteC->usage.prof.count);
}
ULong VG_(get_SB_profile) ( SBProfEntry tops[], UInt n_tops )
{
SECno sno;
Int r, s;
ULong score_total;
TTEno i;
/* First, compute the total weighted count, and find the top N
ttes. tops contains pointers to the most-used n_tops blocks, in
descending order (viz, tops[0] is the highest scorer). */
for (s = 0; s < n_tops; s++) {
tops[s].addr = 0;
tops[s].score = 0;
}
score_total = 0;
for (sno = 0; sno < n_sectors; sno++) {
if (sectors[sno].tc == NULL)
continue;
for (i = 0; i < N_TTES_PER_SECTOR; i++) {
if (sectors[sno].ttH[i].status != InUse)
continue;
score_total += score(§ors[sno].ttC[i]);
/* Find the rank for sectors[sno].tt{C,H}[i]. */
r = n_tops-1;
while (True) {
if (r == -1)
break;
if (tops[r].addr == 0) {
r--;
continue;
}
if ( score(§ors[sno].ttC[i]) > tops[r].score ) {
r--;
continue;
}
break;
}
r++;
vg_assert(r >= 0 && r <= n_tops);
/* This bb should be placed at r, and bbs above it shifted
upwards one slot. */
if (r < n_tops) {
for (s = n_tops-1; s > r; s--)
tops[s] = tops[s-1];
tops[r].addr = sectors[sno].ttC[i].entry;
tops[r].score = score( §ors[sno].ttC[i] );
}
}
}
/* Now zero out all the counter fields, so that we can make
multiple calls here and just get the values since the last call,
each time, rather than values accumulated for the whole run. */
for (sno = 0; sno < n_sectors; sno++) {
if (sectors[sno].tc == NULL)
continue;
for (i = 0; i < N_TTES_PER_SECTOR; i++) {
if (sectors[sno].ttH[i].status != InUse)
continue;
sectors[sno].ttC[i].usage.prof.count = 0;
}
}
return score_total;
}
/*--------------------------------------------------------------------*/
/*--- end ---*/
/*--------------------------------------------------------------------*/
|