File: binary.c

package info (click to toggle)
valgrind 1%3A3.24.0-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 176,332 kB
  • sloc: ansic: 795,029; exp: 26,134; xml: 23,472; asm: 14,393; cpp: 9,397; makefile: 7,464; sh: 6,122; perl: 5,446; python: 1,498; javascript: 981; awk: 166; csh: 1
file content (721 lines) | stat: -rw-r--r-- 25,129 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
/* -*- mode: C; c-basic-offset: 3; -*- */

/*
   This file is part of MemCheck, a heavyweight Valgrind tool for
   detecting memory errors.

   Copyright (C) 2012-2017  Florian Krohm

   This program is free software; you can redistribute it and/or
   modify it under the terms of the GNU General Public License as
   published by the Free Software Foundation; either version 2 of the
   License, or (at your option) any later version.

   This program is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, see <http://www.gnu.org/licenses/>.

   The GNU General Public License is contained in the file COPYING.
*/

#include <assert.h>
#include <string.h>  // memset
#include "vtest.h"


/* A convenience function to compute either v1 & ~v2 & val2  or
   v1 & ~v2 & ~val2  depending on INVERT_VAL2. */
static vbits_t
and_combine(vbits_t v1, vbits_t v2, value_t val2, int invert_val2)
{
   assert(v1.num_bits == v2.num_bits);

   vbits_t new = { .num_bits = v2.num_bits };

   if (invert_val2) {
      switch (v2.num_bits) {
      case 1:  val2.u32 = ~val2.u32 & 1;      break;
      case 8:  val2.u8  = ~val2.u8  & 0xff;   break;
      case 16: val2.u16 = ~val2.u16 & 0xffff; break;
      case 32: val2.u32 = ~val2.u32;          break;
      case 64: val2.u64 = ~val2.u64;          break;
      default:
         panic(__func__);
      }
   }

   switch (v2.num_bits) {
   case 1:
      new.bits.u32 = (v1.bits.u32 & ~v2.bits.u32 & val2.u32) & 1;
      break;
   case 8:
      new.bits.u8  = (v1.bits.u8 & ~v2.bits.u8  & val2.u8)  & 0xff;
      break;
   case 16:
      new.bits.u16 = (v1.bits.u16 & ~v2.bits.u16 & val2.u16) & 0xffff;
      break;
   case 32:
      new.bits.u32 = (v1.bits.u32 & ~v2.bits.u32 & val2.u32);
      break;
   case 64:
      new.bits.u64 = (v1.bits.u64 & ~v2.bits.u64 & val2.u64);
      break;
   default:
      panic(__func__);
   }
   return new;
}

/* Check the result of a binary operation. */
static void
check_result_for_binary(const irop_t *op, const test_data_t *data)
{
   const opnd_t *result = &data->result;
   const opnd_t *opnd1  = &data->opnds[0];
   const opnd_t *opnd2  = &data->opnds[1];
   opnd_t tmp;
   vbits_t expected_vbits;

   /* Only handle those undef-kinds that actually occur. */
   switch (op->undef_kind) {
   case UNDEF_NONE:
      expected_vbits = defined_vbits(result->vbits.num_bits);
      break;

   case UNDEF_ALL:
      /* Iop_ShlD64, Iop_ShrD64, Iop_ShlD128, Iop_ShrD128 have
       * one immediate operand in operand 2.
       */
      expected_vbits = undefined_vbits(result->vbits.num_bits);
      break;

   case UNDEF_LEFT:
      // LEFT with respect to the leftmost 1-bit in both operands
      expected_vbits = left_vbits(or_vbits(opnd1->vbits, opnd2->vbits),
                                  result->vbits.num_bits);
      break;

   case UNDEF_SAME:
      assert(opnd1->vbits.num_bits == opnd2->vbits.num_bits);
      assert(opnd1->vbits.num_bits == result->vbits.num_bits);

      // SAME with respect to the 1-bits in both operands
      expected_vbits = or_vbits(opnd1->vbits, opnd2->vbits);
      break;

   case UNDEF_CONCAT:
      assert(opnd1->vbits.num_bits == opnd2->vbits.num_bits);
      assert(result->vbits.num_bits == 2 * opnd1->vbits.num_bits);
      expected_vbits = concat_vbits(opnd1->vbits, opnd2->vbits);
      break;

   case UNDEF_SHL:
      /* If any bit in the 2nd operand is undefined, so are all bits
         of the result. */
      if (! completely_defined_vbits(opnd2->vbits)) {
         expected_vbits = undefined_vbits(result->vbits.num_bits);
      } else {
         assert(opnd2->vbits.num_bits == 8);
         unsigned shift_amount = opnd2->value.u8;
      
         expected_vbits = shl_vbits(opnd1->vbits, shift_amount);
      }
      break;

   case UNDEF_SHR:
      /* If any bit in the 2nd operand is undefined, so are all bits
         of the result. */
      if (! completely_defined_vbits(opnd2->vbits)) {
         expected_vbits = undefined_vbits(result->vbits.num_bits);
      } else {
         assert(opnd2->vbits.num_bits == 8);
         unsigned shift_amount = opnd2->value.u8;
      
         expected_vbits = shr_vbits(opnd1->vbits, shift_amount);
      }
      break;

   case UNDEF_SAR:
      /* If any bit in the 2nd operand is undefined, so are all bits
         of the result. */
      if (! completely_defined_vbits(opnd2->vbits)) {
         expected_vbits = undefined_vbits(result->vbits.num_bits);
      } else {
         assert(opnd2->vbits.num_bits == 8);
         unsigned shift_amount = opnd2->value.u8;
      
         expected_vbits = sar_vbits(opnd1->vbits, shift_amount);
      }
      break;

   case UNDEF_AND: {
      /* Let v1, v2 be the V-bits of the 1st and 2nd operand, respectively
         Let b1, b2 be the actual value of the 1st and 2nd operand, respect.
         And output bit is undefined (i.e. its V-bit == 1), iff
         (1) (v1 == 1) && (v2 == 1)   OR
         (2) (v1 == 1) && (v2 == 0 && b2 == 1) OR
         (3) (v2 == 1) && (v1 == 0 && b1 == 1)
      */
      vbits_t term1, term2, term3;
      term1 = and_vbits(opnd1->vbits, opnd2->vbits);
      term2 = and_combine(opnd1->vbits, opnd2->vbits, opnd2->value, 0);
      term3 = and_combine(opnd2->vbits, opnd1->vbits, opnd1->value, 0);
      expected_vbits = or_vbits(term1, or_vbits(term2, term3));
      break;
   }

   case UNDEF_OR: {
      /* Let v1, v2 be the V-bits of the 1st and 2nd operand, respectively
         Let b1, b2 be the actual value of the 1st and 2nd operand, respect.
         And output bit is undefined (i.e. its V-bit == 1), iff
         (1) (v1 == 1) && (v2 == 1)   OR
         (2) (v1 == 1) && (v2 == 0 && b2 == 0) OR
         (3) (v2 == 1) && (v1 == 0 && b1 == 0)
      */
      vbits_t term1, term2, term3;
      term1 = and_vbits(opnd1->vbits, opnd2->vbits);
      term2 = and_combine(opnd1->vbits, opnd2->vbits, opnd2->value, 1);
      term3 = and_combine(opnd2->vbits, opnd1->vbits, opnd1->value, 1);
      expected_vbits = or_vbits(term1, or_vbits(term2, term3));
      break;
   }

   case UNDEF_ORD:
      /* Set expected_vbits for the Iop_CmpORD category of iops.
       * If any of the input bits is undefined the least significant
       * three bits in the result will be set, i.e. 0xe.
       */
      expected_vbits = cmpord_vbits(opnd1->vbits.num_bits,
                                    opnd2->vbits.num_bits);
      break;

   case UNDEF_CMP_EQ_NE:
      expected_vbits = cmp_eq_ne_vbits(opnd1->vbits, opnd2->vbits,
                                       opnd1->value, opnd2->value);
      break;

   case UNDEF_INT_ADD:
      expected_vbits = int_add_or_sub_vbits(1/*isAdd*/,
                                            opnd1->vbits, opnd2->vbits,
                                            opnd1->value, opnd2->value);
      break;

   case UNDEF_INT_SUB:
      expected_vbits = int_add_or_sub_vbits(0/*!isAdd*/,
                                            opnd1->vbits, opnd2->vbits,
                                            opnd1->value, opnd2->value);
      break;

   case UNDEF_ALL_64x2:
      assert(opnd1->vbits.num_bits == opnd2->vbits.num_bits);
      expected_vbits =
         undefined_vbits_BxE(64, 2,
                             or_vbits(opnd1->vbits, opnd2->vbits));
      break;

   case UNDEF_ALL_32x4:
      assert(opnd1->vbits.num_bits == opnd2->vbits.num_bits);
      expected_vbits =
         undefined_vbits_BxE(32, 4,
                             or_vbits(opnd1->vbits, opnd2->vbits));
      break;

   case UNDEF_ALL_16x8:
      assert(opnd1->vbits.num_bits == opnd2->vbits.num_bits);
      expected_vbits =
         undefined_vbits_BxE(16, 8,
                             or_vbits(opnd1->vbits, opnd2->vbits));
      break;

   case UNDEF_ALL_8x16:
      assert(opnd1->vbits.num_bits == opnd2->vbits.num_bits);
      expected_vbits =
         undefined_vbits_BxE(8, 16,
                             or_vbits(opnd1->vbits, opnd2->vbits));
      break;

   case UNDEF_ALL_32x4_EVEN:
      /* Only even input bytes are used, result can be twice as wide */
      assert(opnd1->vbits.num_bits == opnd2->vbits.num_bits);
      expected_vbits =
         undefined_vbits_BxE(64, 2,
                             undefined_vbits_128_even_element(32, 4,
                                        or_vbits(opnd1->vbits, opnd2->vbits)));
      break;

   case UNDEF_ALL_16x8_EVEN:
      /* Only even input bytes are used, result can be twice as wide */
      assert(opnd1->vbits.num_bits == opnd2->vbits.num_bits);
      expected_vbits =
         undefined_vbits_BxE(32, 4,
                             undefined_vbits_128_even_element(16, 8,
                                        or_vbits(opnd1->vbits, opnd2->vbits)));
      break;

   case UNDEF_ALL_8x16_EVEN:
      /* Only even input bytes are used, result can be twice as wide */
      assert(opnd1->vbits.num_bits == opnd2->vbits.num_bits);
      expected_vbits =
         undefined_vbits_BxE(16, 8,
                             undefined_vbits_128_even_element(8, 16,
                                        or_vbits(opnd1->vbits, opnd2->vbits)));
      break;

   case UNDEF_64x2_ROTATE:
      /* Rotate left each element in opnd1 by the amount in the corresponding
       * element of opnd2.
       */
      assert(opnd1->vbits.num_bits == opnd2->vbits.num_bits);
      /* Setup the tmp to match what the vbit tester seems to use.  I can't
       * use opnd2-value since valgrind doesn't think it has been set.
       */
      tmp.value.u128[0] = -1;
      tmp.value.u128[1] = -1;
      /* Calculate expected for the first operand when it is shifted.
       * If any of the vbits are set for the shift field of the second operand
       * then the result of the expected result for that element is all 1's.
       */
      expected_vbits = or_vbits(undefined_vbits_BxE_rotate(64, 2, opnd1->vbits,
                                                           tmp.value),
                                undefined_vbits_BxE(64, 2, opnd2->vbits));
      break;

   case UNDEF_32x4_ROTATE:
      /* Rotate left each element in opnd1 by the amount in the corresponding
       * element of opnd2.
       */
      assert(opnd1->vbits.num_bits == opnd2->vbits.num_bits);
      expected_vbits = undefined_vbits_BxE_rotate(32, 4, opnd1->vbits,
                                                  opnd2->value);
      break;

   case UNDEF_16x8_ROTATE:
      /* Rotate left each element in opnd1 by the amount in the corresponding
       * element of opnd2.
       */
      assert(opnd1->vbits.num_bits == opnd2->vbits.num_bits);
      expected_vbits = undefined_vbits_BxE_rotate(16, 8, opnd1->vbits,
                                                  opnd2->value);
      break;

   case UNDEF_8x16_ROTATE:
      /* Rotate left each element in opnd1 by the amount in the corresponding
       * element of opnd2.
       */
      assert(opnd1->vbits.num_bits == opnd2->vbits.num_bits);
      expected_vbits = undefined_vbits_BxE_rotate(16, 8, opnd1->vbits,
                                                  opnd2->value);
      break;

   case UNDEF_SOME:
      /* The result for the Iop_SHA256 and Iop_SHA256 is a secure hash. If
       * one of the input bits is not defined there must be atleast one
       * undefined bit in the output.  Which bit and how many depends on
       * which bit is undefined.  Don't know the secure hash algorithm so
       * we can only make sure at least one of the result bits is set.
       *
       * The Iop_SHA256, Iop_SHA512 iops have one immediate value in the
       * second operand.
       */
      expected_vbits.num_bits = result->vbits.num_bits;

      if ((result->vbits.bits.u128[0] != 0) ||
          (result->vbits.bits.u128[1] != 0)) {
         expected_vbits.bits.u128[0] = result->vbits.bits.u128[0];
         expected_vbits.bits.u128[1] = result->vbits.bits.u128[1];

      } else {
         /* The input had at least one vbit set but the result doesn't have any
          * bit set.  Set them all so we will trigger the error on the call
          * to complain().
          */
         expected_vbits.bits.u128[0] = ~0x0ULL;
         expected_vbits.bits.u128[1] = ~0x0ULL;
      }
      break;

   case UNDEF_NARROW256_AtoB:
      assert(opnd1->vbits.num_bits == opnd2->vbits.num_bits);
      switch(op->op) {
      case Iop_NarrowBin64to32x4:
         expected_vbits =
            undefined_vbits_Narrow256_AtoB(64, 32, opnd1->vbits, opnd1->value,
                                           opnd2->vbits, opnd2->value,
                                           False);
         break;
      case Iop_QNarrowBin64Sto32Sx4:
         expected_vbits =
            undefined_vbits_Narrow256_AtoB(64, 32, opnd1->vbits, opnd1->value,
                                           opnd2->vbits, opnd2->value,
                                           True);
         break;
      case Iop_QNarrowBin64Uto32Ux4:
         expected_vbits =
            undefined_vbits_Narrow256_AtoB(64, 32, opnd1->vbits, opnd1->value,
                                           opnd2->vbits, opnd2->value,
                                           True);
         break;
      default:
         fprintf(stderr, "ERROR, unknown Iop for UNDEF_NARROW256_AtoB\n");
         panic(__func__);
      }
      break;
   case UNDEF_GT_S_8x16:
      expected_vbits = cmp_gt_vbits(1/* is_signed */, 8 /* bits_per_element */, 16 /* element_count */,
                                    opnd1->vbits, opnd2->vbits, opnd1->value, opnd2->value);
      break;
   case UNDEF_GT_S_16x8:
      expected_vbits = cmp_gt_vbits(1/* is_signed */, 16 /* bits_per_element */, 8 /* element_count */,
                                    opnd1->vbits, opnd2->vbits, opnd1->value, opnd2->value);
      break;
   case UNDEF_GT_S_32x4:
      expected_vbits = cmp_gt_vbits(1/* is_signed */, 32 /* bits_per_element */, 4 /* element_count */,
                                    opnd1->vbits, opnd2->vbits, opnd1->value, opnd2->value);
      break;
   case UNDEF_GT_S_64x2:
      expected_vbits = cmp_gt_vbits(1/* is_signed */, 64 /* bits_per_element */, 2 /* element_count */,
                                    opnd1->vbits, opnd2->vbits, opnd1->value, opnd2->value);
      break;
   case UNDEF_GT_U_8x16:
      expected_vbits = cmp_gt_vbits(0/* is_signed */, 8 /* bits_per_element */, 16 /* element_count */,
                                    opnd1->vbits, opnd2->vbits, opnd1->value, opnd2->value);
      break;
   case UNDEF_GT_U_16x8:
      expected_vbits = cmp_gt_vbits(0/* is_signed */, 16 /* bits_per_element */, 8 /* element_count */,
                                    opnd1->vbits, opnd2->vbits, opnd1->value, opnd2->value);
      break;
   case UNDEF_GT_U_32x4:
      expected_vbits = cmp_gt_vbits(0/* is_signed */, 32 /* bits_per_element */, 4 /* element_count */,
                                    opnd1->vbits, opnd2->vbits, opnd1->value, opnd2->value);
      break;
   case UNDEF_GT_U_64x2:
      expected_vbits = cmp_gt_vbits(0/* is_signed */, 64 /* bits_per_element */, 2 /* element_count */,
                                    opnd1->vbits, opnd2->vbits, opnd1->value, opnd2->value);
      break;

   default:
      panic(__func__);
   }

   if (! equal_vbits(result->vbits, expected_vbits))
      complain(op, data, expected_vbits);
}


static int 
test_shift(const irop_t *op, test_data_t *data)
{
   unsigned num_input_bits, i;
   opnd_t *opnds = data->opnds;
   int tests_done = 0;

   /* When testing the 1st operand's undefinedness propagation,
      do so with all possible shift amnounts */
   for (unsigned amount = 0; amount < bitsof_irtype(opnds[0].type); ++amount) {
      opnds[1].value.u8 = amount;

      // 1st (left) operand
      num_input_bits = bitsof_irtype(opnds[0].type);

      for (i = 0; i < num_input_bits; ++i) {
         opnds[0].vbits = onehot_vbits(i, bitsof_irtype(opnds[0].type));
         opnds[1].vbits = defined_vbits(bitsof_irtype(opnds[1].type));
         
         valgrind_execute_test(op, data);
         
         check_result_for_binary(op, data);
         tests_done++;
      }
   }

   // 2nd (right) operand

   /* If the operand is an immediate value, there are no v-bits to set. */
   if (!op->immediate_index) return tests_done;

   num_input_bits = bitsof_irtype(opnds[1].type);

   for (i = 0; i < num_input_bits; ++i) {
      opnds[0].vbits = defined_vbits(bitsof_irtype(opnds[0].type));
      opnds[1].vbits = onehot_vbits(i, bitsof_irtype(opnds[1].type));

      valgrind_execute_test(op, data);

      check_result_for_binary(op, data);

      tests_done++;
   }
   return tests_done;
}


static value_t
all_bits_zero_value(unsigned num_bits)
{
   value_t val;

   switch (num_bits) {
   case 8:  val.u8  = 0; break;
   case 16: val.u16 = 0; break;
   case 1:
   case 32: val.u32 = 0; break;
   case 64: val.u64 = 0; break;
   default:
      panic(__func__);
   }
   return val;
}


static value_t
all_bits_one_value(unsigned num_bits)
{
   value_t val;

   switch (num_bits) {
   case 1:  val.u32 = 1;      break;
   case 8:  val.u8  = 0xff;   break;
   case 16: val.u16 = 0xffff; break;
   case 32: val.u32 = ~0u;    break;
   case 64: val.u64 = ~0ull;  break;
   default:
      panic(__func__);
   }
   return val;
}


static int
test_and(const irop_t *op, test_data_t *data)
{
   unsigned num_input_bits, bitpos;
   opnd_t *opnds = data->opnds;
   int tests_done = 0;

   /* Undefinedness does not propagate if the other operand is 0.
      Use an all-bits-zero operand and test the other operand in
      the usual way (one bit undefined at a time). */

   // 1st (left) operand variable, 2nd operand all-bits-zero
   num_input_bits = bitsof_irtype(opnds[0].type);

   for (bitpos = 0; bitpos < num_input_bits; ++bitpos) {
      opnds[0].vbits = onehot_vbits(bitpos, bitsof_irtype(opnds[0].type));
      opnds[1].vbits = defined_vbits(bitsof_irtype(opnds[1].type));
      opnds[1].value = all_bits_zero_value(bitsof_irtype(opnds[1].type));

      valgrind_execute_test(op, data);
         
      check_result_for_binary(op, data);
      tests_done++;
   }
   
   // 2nd (right) operand variable, 1st operand all-bits-zero
   num_input_bits = bitsof_irtype(opnds[1].type);

   for (bitpos = 0; bitpos < num_input_bits; ++bitpos) {
      opnds[1].vbits = onehot_vbits(bitpos, bitsof_irtype(opnds[1].type));
      opnds[0].vbits = defined_vbits(bitsof_irtype(opnds[0].type));
      opnds[0].value = all_bits_zero_value(bitsof_irtype(opnds[0].type));

      valgrind_execute_test(op, data);
         
      check_result_for_binary(op, data);
      tests_done++;
   }

   /* Undefinedness propagates if the other operand is 1.
      Use an all-bits-one operand and test the other operand in
      the usual way (one bit undefined at a time). */

   // 1st (left) operand variable, 2nd operand all-bits-one
   num_input_bits = bitsof_irtype(opnds[0].type);

   for (bitpos = 0; bitpos < num_input_bits; ++bitpos) {
      opnds[0].vbits = onehot_vbits(bitpos, bitsof_irtype(opnds[0].type));
      opnds[1].vbits = defined_vbits(bitsof_irtype(opnds[1].type));
      opnds[1].value = all_bits_one_value(bitsof_irtype(opnds[1].type));

      valgrind_execute_test(op, data);
         
      check_result_for_binary(op, data);
      tests_done++;
   }
   
   // 2nd (right) operand variable, 1st operand all-bits-one
   num_input_bits = bitsof_irtype(opnds[1].type);

   for (bitpos = 0; bitpos < num_input_bits; ++bitpos) {
      opnds[1].vbits = onehot_vbits(bitpos, bitsof_irtype(opnds[1].type));
      opnds[0].vbits = defined_vbits(bitsof_irtype(opnds[0].type));
      opnds[0].value = all_bits_one_value(bitsof_irtype(opnds[0].type));

      valgrind_execute_test(op, data);
         
      check_result_for_binary(op, data);
      tests_done++;
   }
   return tests_done;
}


static int
test_or(const irop_t *op, test_data_t *data)
{
   unsigned num_input_bits, bitpos;
   opnd_t *opnds = data->opnds;
   int tests_done = 0;

   /* Undefinedness does not propagate if the other operand is 1.
      Use an all-bits-one operand and test the other operand in
      the usual way (one bit undefined at a time). */

   // 1st (left) operand variable, 2nd operand all-bits-one
   num_input_bits = bitsof_irtype(opnds[0].type);

   opnds[0].vbits = defined_vbits(bitsof_irtype(opnds[0].type));
   opnds[1].vbits = defined_vbits(bitsof_irtype(opnds[1].type));
   opnds[1].value = all_bits_one_value(bitsof_irtype(opnds[1].type));

   for (bitpos = 0; bitpos < num_input_bits; ++bitpos) {
      opnds[0].vbits = onehot_vbits(bitpos, bitsof_irtype(opnds[0].type));

      valgrind_execute_test(op, data);
         
      check_result_for_binary(op, data);
      tests_done++;
   }
   
   // 2nd (right) operand variable, 1st operand all-bits-one
   num_input_bits = bitsof_irtype(opnds[1].type);

   opnds[0].vbits = defined_vbits(bitsof_irtype(opnds[0].type));
   opnds[1].vbits = defined_vbits(bitsof_irtype(opnds[1].type));
   opnds[0].value = all_bits_one_value(bitsof_irtype(opnds[0].type));

   for (bitpos = 0; bitpos < num_input_bits; ++bitpos) {
      opnds[1].vbits = onehot_vbits(bitpos, bitsof_irtype(opnds[1].type));

      valgrind_execute_test(op, data);
         
      check_result_for_binary(op, data);
      tests_done++;
   }

   /* Undefinedness propagates if the other operand is 0.
      Use an all-bits-zero operand and test the other operand in
      the usual way (one bit undefined at a time). */

   // 1st (left) operand variable, 2nd operand all-bits-zero
   num_input_bits = bitsof_irtype(opnds[0].type);

   opnds[0].vbits = defined_vbits(bitsof_irtype(opnds[0].type));
   opnds[1].vbits = defined_vbits(bitsof_irtype(opnds[1].type));
   opnds[1].value = all_bits_zero_value(bitsof_irtype(opnds[1].type));

   for (bitpos = 0; bitpos < num_input_bits; ++bitpos) {
      opnds[0].vbits = onehot_vbits(bitpos, bitsof_irtype(opnds[0].type));

      valgrind_execute_test(op, data);
         
      check_result_for_binary(op, data);
      tests_done++;
   }
   
   // 2nd (right) operand variable, 1st operand all-bits-zero
   num_input_bits = bitsof_irtype(opnds[1].type);

   opnds[0].vbits = defined_vbits(bitsof_irtype(opnds[0].type));
   opnds[1].vbits = defined_vbits(bitsof_irtype(opnds[1].type));
   opnds[0].value = all_bits_zero_value(bitsof_irtype(opnds[0].type));

   for (bitpos = 0; bitpos < num_input_bits; ++bitpos) {
      opnds[1].vbits = onehot_vbits(bitpos, bitsof_irtype(opnds[1].type));

      valgrind_execute_test(op, data);
         
      check_result_for_binary(op, data);
      tests_done++;
   }
   return tests_done;
}


int
test_binary_op(const irop_t *op, test_data_t *data)
{
   unsigned num_input_bits, i, bitpos;
   opnd_t *opnds = data->opnds;
   int tests_done = 0;

   /* Handle special cases upfront */
   switch (op->undef_kind) {
   case UNDEF_SHL:
   case UNDEF_SHR:
   case UNDEF_SAR:
      return test_shift(op, data);

   case UNDEF_AND:
      return test_and(op, data);

   case UNDEF_OR:
      return test_or(op, data);

   default:
      break;
   }

   /* For each operand, set a single bit to undefined and observe how
      that propagates to the output. Do this for all bits in each
      operand. */
   for (i = 0; i < 2; ++i) {

      /* If this is a Iop that requires an immediate amount,
         do not iterate the v-bits of the operand */
      if (((i+1) == op->immediate_index)
          && (op->immediate_index)) break;

      num_input_bits = bitsof_irtype(opnds[i].type);
      opnds[0].vbits = defined_vbits(bitsof_irtype(opnds[0].type));
      opnds[1].vbits = defined_vbits(bitsof_irtype(opnds[1].type));

      /* Set the value of the 2nd operand to something != 0. So division
         won't crash. */
      memset(&opnds[1].value, 0xff, sizeof opnds[1].value);

      /* For immediate shift amounts choose a value of '1'. That value should
         not cause a problem. Note: we always assign to the u64 member here.
         The reason is that in ir_inject.c the value_t type is not visible.
         The value is picked up there by interpreting the memory as an
         ULong value. So, we rely on 
         union {
           ULong   v1;   // value picked up in ir_inject.c
           value_t v2;   // value assigned here
         } xx;
         assert(sizeof xx.v1 == sizeof xx.v2.u64);
         assert(xx.v1 == xx.v2.u64);
      */

      if (op->immediate_index > 0) {
         assert((op->immediate_type == Ity_I8)
                || (op->immediate_type == Ity_I16)
                || (op->immediate_type == Ity_I32));
         opnds[1].value.u64 = 1;
      }

      for (bitpos = 0; bitpos < num_input_bits; ++bitpos) {
         opnds[i].vbits = onehot_vbits(bitpos, bitsof_irtype(opnds[i].type));

         valgrind_execute_test(op, data);

         check_result_for_binary(op, data);

         tests_done++;
      }
   }
   return tests_done;
}