1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
#include <stdio.h>
#include <stdlib.h>
# if defined(VGO_linux)
#include <endian.h>
# elif defined(VGO_darwin)
#include <machine/endian.h>
# endif
#include "../../VEX/pub/libvex.h"
Bool return_false(void*cb, Addr ad)
{
return False;
}
UInt return_0(void *cb, VexRegisterUpdates* pxControl,
const VexGuestExtents *vge)
{
return 0;
}
__attribute__ ((noreturn))
static void failure_exit()
{
fflush(stdout);
fprintf(stderr, "//// failure exit called by libVEX\n");
exit(1);
}
__attribute__ ((noreturn))
static void failure_dispcalled()
{
fflush(stdout);
fprintf(stderr, "//// unexpected call to a disp function by libVEX\n");
exit(1);
}
static void log_bytes (const HChar* chars, SizeT nbytes )
{
printf("%*s", (int)nbytes, chars);
}
// Returns the endness of the system we are running on.
// We use that as the endness of arch that supports both
// little and big endian.
static VexEndness running_endness (void)
{
#if __BYTE_ORDER == __LITTLE_ENDIAN
return VexEndnessLE;
#elif __BYTE_ORDER == __BIG_ENDIAN
return VexEndnessBE;
#else
fprintf(stderr, "cannot determine endianness\n");
exit(1);
#endif
}
// noinline, as this function is also the one we decode.
__attribute__((noinline)) static void get_guest_arch(VexArch *ga)
{
#if defined(VGA_x86)
*ga = VexArchX86;
#elif defined(VGA_amd64)
*ga = VexArchAMD64;
#elif defined(VGA_arm)
*ga = VexArchARM;
#elif defined(VGA_arm64)
*ga = VexArchARM64;
#elif defined(VGA_ppc32)
*ga = VexArchPPC32;
#elif defined(VGA_ppc64be) || defined(VGA_ppc64le)
*ga = VexArchPPC64;
#elif defined(VGA_s390x)
*ga = VexArchS390X;
#elif defined(VGA_mips32)
*ga = VexArchMIPS32;
#elif defined(VGA_mips64)
*ga = VexArchMIPS64;
#elif defined(VGA_nanomips)
*ga = VexArchNANOMIPS;
#else
missing arch;
#endif
}
static VexEndness arch_endness (VexArch va) {
switch (va) {
case VexArch_INVALID: failure_exit();
case VexArchX86: return VexEndnessLE;
case VexArchAMD64: return VexEndnessLE;
case VexArchARM: return VexEndnessLE;
case VexArchARM64: return VexEndnessLE;
case VexArchPPC32: return VexEndnessBE;
case VexArchPPC64:
/* ppc64 supports BE or LE at run time. So, on a LE system,
returns LE, on a BE system, return BE. */
return running_endness();
case VexArchS390X: return VexEndnessBE;
case VexArchMIPS32:
case VexArchMIPS64:
case VexArchNANOMIPS:
/* mips32/64 supports BE or LE, but at compile time.
If mips64 is compiled on a non mips system, the VEX lib
is missing bit and pieces of code related to endianness.
The mandatory code for this test is then compiled as BE.
So, if this test runs on a mips system, returns the
running endianness. Otherwise, returns BE as this one
has the more chances to work. */
{
VexArch ga;
get_guest_arch( &ga);
if (ga == VexArchMIPS64 || ga == VexArchMIPS32 || ga == VexArchNANOMIPS)
return running_endness();
else
return VexEndnessBE;
}
default: failure_exit();
}
}
/* returns whatever kind of hwcaps needed to make
the host and/or guest VexArch happy. */
static UInt arch_hwcaps (VexArch va) {
switch (va) {
case VexArch_INVALID: failure_exit();
case VexArchX86: return 0;
case VexArchAMD64: return 0;
case VexArchARM: return 7;
case VexArchARM64: return 0;
case VexArchPPC32: return 0;
case VexArchPPC64: return 0;
case VexArchS390X: return VEX_HWCAPS_S390X_LDISP;
#if (__mips_isa_rev>=6)
case VexArchMIPS32: return VEX_PRID_COMP_MIPS | VEX_MIPS_CPU_ISA_M32R6 |
VEX_MIPS_HOST_FR;
case VexArchMIPS64: return VEX_PRID_COMP_MIPS | VEX_MIPS_CPU_ISA_M64R6 |
VEX_MIPS_HOST_FR;
#else
case VexArchMIPS32: return VEX_PRID_COMP_MIPS;
case VexArchMIPS64: return VEX_PRID_COMP_MIPS | VEX_MIPS_HOST_FR;
#endif
case VexArchNANOMIPS: return 0;
default: failure_exit();
}
}
static Bool mode64 (VexArch va) {
switch (va) {
case VexArch_INVALID: failure_exit();
case VexArchX86: return False;
case VexArchAMD64: return True;
case VexArchARM: return False;
case VexArchARM64: return True;
case VexArchPPC32: return False;
case VexArchPPC64: return True;
case VexArchS390X: return True;
case VexArchMIPS32: return False;
case VexArchMIPS64: return True;
case VexArchNANOMIPS: return False;
default: failure_exit();
}
}
static void show_vta(char *msg, VexTranslateArgs *vta)
{
printf("//// %s translating guest %s(%d) %s %dbits to host %s(%d)"
" %s %dbits\n",
msg,
LibVEX_ppVexArch(vta->arch_guest),
vta->arch_guest,
LibVEX_ppVexEndness(arch_endness(vta->arch_guest)),
mode64(vta->arch_guest) ? 64 : 32,
LibVEX_ppVexArch(vta->arch_host),
vta->arch_host,
LibVEX_ppVexEndness(arch_endness(vta->arch_host)),
mode64(vta->arch_host) ? 64 : 32);
}
int main(int argc, char **argv)
{
const int multiarch = argc > 1 ? atoi(argv[1]) : 0;
// 0 means: do not do multiarch
// > 0 means: do multiarch
// > VexArch_INVALID means: do multiarch, only and specifically
// with the host arch equal to multiarch
// (ugly interface, but hey, that is for testing only special cases only).
const int endness_may_differ = argc > 2 ? atoi(argv[2]) : 0;
const int wordsize_may_differ = argc > 3 ? atoi(argv[3]) : 0;
// Note: if multiarch > VexArch_INVALID, then endness_may_differ
// and wordsize_may_differ are ignored.
// So, here are examples of usage:
// * run only host == guest:
// ./libvexmultiarch_test
// ./libvex_test
// * run all combinations (this will abort very soon :):
// ./libvexmultiarch_test 1 1 1
// * run all combinations that are supposed to work by default :
// ./libvexmultiarch_test 1 0 0
// * run a specific host arch (e.g. 1028 i.e. VexArchARM64)
// ./libvexmultiarch_test 1028
// * show how a single arch VEX lib reports its failure when host != guest
// ./libvex_test 1 0 0
VexArch guest_arch;
VexEndness guest_endness;
VexControl vcon;
VexGuestExtents vge;
VexTranslateArgs vta;
VexTranslateResult vtr;
UChar host_bytes[10000];
Int host_bytes_used;
LibVEX_default_VexControl(&vcon);
LibVEX_Init (failure_exit, log_bytes, 3, &vcon);
get_guest_arch (&guest_arch);
guest_endness = arch_endness (guest_arch);
LibVEX_default_VexArchInfo(&vta.archinfo_guest);
LibVEX_default_VexArchInfo(&vta.archinfo_host);
LibVEX_default_VexAbiInfo (&vta.abiinfo_both);
// Use some values that makes AMD64 happy.
vta.abiinfo_both.guest_stack_redzone_size = 128;
// Use some values that makes ARM64 happy.
vta.archinfo_guest.arm64_dMinLine_lg2_szB = 6;
vta.archinfo_guest.arm64_iMinLine_lg2_szB = 6;
// Prepare first for a translation where guest == host
// We will translate the get_guest_arch function
vta.arch_guest = guest_arch;
vta.archinfo_guest.endness = guest_endness;
vta.archinfo_guest.hwcaps = arch_hwcaps (vta.arch_guest);
vta.arch_host = guest_arch;
vta.archinfo_host.endness = guest_endness;
vta.archinfo_host.hwcaps = arch_hwcaps (vta.arch_host);
vta.callback_opaque = NULL;
vta.guest_bytes = (UChar*) get_guest_arch;
vta.guest_bytes_addr = (Addr) get_guest_arch;
vta.chase_into_ok = return_false;
vta.guest_extents = &vge;
vta.host_bytes = host_bytes;
vta.host_bytes_size = sizeof host_bytes;
vta.host_bytes_used = &host_bytes_used;
vta.instrument1 = NULL;
vta.instrument2 = NULL;
vta.finaltidy = NULL;
vta.needs_self_check = return_0;
vta.preamble_function = NULL;
vta.traceflags = 0xFFFFFFFF;
vta.sigill_diag = False;
vta.addProfInc = False;
vta.disp_cp_chain_me_to_slowEP = failure_dispcalled;
vta.disp_cp_chain_me_to_fastEP = failure_dispcalled;
vta.disp_cp_xindir = failure_dispcalled;
vta.disp_cp_xassisted = failure_dispcalled;
show_vta("host == guest", &vta);
vtr = LibVEX_Translate ( &vta );
if (vtr.status != VexTransOK)
return 1;
// Now, try various combinations, if told to do so:
// host != guest,
// endness(host) != endness(guest) (not well supported)
// wordsize (host) != wordsize (guest) (not well supported)
// The not well supported combinations are not run, unless requested
// explicitly via command line arguments.
if (multiarch) {
VexArch va;
for (va = VexArchX86; va <= VexArchNANOMIPS; va++) {
vta.arch_host = va;
vta.archinfo_host.endness = arch_endness (vta.arch_host);
vta.archinfo_host.hwcaps = arch_hwcaps (vta.arch_host);
if (arch_endness(va) != arch_endness(guest_arch)
&& !endness_may_differ
&& multiarch != va) {
show_vta("skipped (endness differs)", &vta);
continue;
}
if (mode64(va) != mode64(guest_arch)
&& !wordsize_may_differ
&& multiarch != va) {
show_vta("skipped (word size differs)", &vta);
continue;
}
if (multiarch > VexArch_INVALID
&& multiarch != va) {
show_vta("skipped (!= specific requested arch)", &vta);
continue;
}
show_vta ("doing", &vta);
vtr = LibVEX_Translate ( &vta );
if (vtr.status != VexTransOK)
return 1;
}
}
printf ("//// libvex testing normal exit\n");
return 0;
}
|