1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
|
/*--------------------------------------------------------------------*/
/*--- The leak checker. mc_leakcheck.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of MemCheck, a heavyweight Valgrind tool for
detecting memory errors.
Copyright (C) 2000-2007 Julian Seward
jseward@acm.org
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#include "pub_tool_basics.h"
#include "pub_tool_vki.h"
#include "pub_tool_aspacemgr.h"
#include "pub_tool_execontext.h"
#include "pub_tool_hashtable.h"
#include "pub_tool_libcbase.h"
#include "pub_tool_libcassert.h"
#include "pub_tool_libcprint.h"
#include "pub_tool_libcsignal.h"
#include "pub_tool_machine.h"
#include "pub_tool_mallocfree.h"
#include "pub_tool_options.h"
#include "pub_tool_signals.h"
#include "pub_tool_tooliface.h" // Needed for mc_include.h
#include "mc_include.h"
#include <setjmp.h> // For jmp_buf
/* Define to debug the memory-leak-detector. */
#define VG_DEBUG_LEAKCHECK 0
#define VG_DEBUG_CLIQUE 0
/*------------------------------------------------------------*/
/*--- Low-level address-space scanning, for the leak ---*/
/*--- detector. ---*/
/*------------------------------------------------------------*/
static
jmp_buf memscan_jmpbuf;
static
void scan_all_valid_memory_catcher ( Int sigNo, Addr addr )
{
if (0)
VG_(printf)("OUCH! sig=%d addr=%p\n", sigNo, addr);
if (sigNo == VKI_SIGSEGV || sigNo == VKI_SIGBUS)
__builtin_longjmp(memscan_jmpbuf, 1);
}
/* TODO: GIVE THIS A PROPER HOME
TODO: MERGE THIS WITH DUPLICATE IN m_main.c and coredump-elf.c.
Extract from aspacem a vector of the current segment start
addresses. The vector is dynamically allocated and should be freed
by the caller when done. REQUIRES m_mallocfree to be running.
Writes the number of addresses required into *n_acquired. */
static Addr* get_seg_starts ( /*OUT*/Int* n_acquired )
{
Addr* starts;
Int n_starts, r = 0;
n_starts = 1;
while (True) {
starts = VG_(malloc)( n_starts * sizeof(Addr) );
if (starts == NULL)
break;
r = VG_(am_get_segment_starts)( starts, n_starts );
if (r >= 0)
break;
VG_(free)(starts);
n_starts *= 2;
}
if (starts == NULL) {
*n_acquired = 0;
return NULL;
}
*n_acquired = r;
return starts;
}
/*------------------------------------------------------------*/
/*--- Detecting leaked (unreachable) malloc'd blocks. ---*/
/*------------------------------------------------------------*/
/* An entry in the mark stack */
typedef
struct {
Int next:30; /* Index of next in mark stack */
UInt state:2; /* Reachedness */
SizeT indirect; /* if Unreached, how much is unreachable from here */
}
MarkStack;
/* Find the i such that ptr points at or inside the block described by
shadows[i]. Return -1 if none found. This assumes that shadows[]
has been sorted on the ->data field. */
#if VG_DEBUG_LEAKCHECK
/* Used to sanity-check the fast binary-search mechanism. */
static
Int find_shadow_for_OLD ( Addr ptr,
MC_Chunk** shadows,
Int n_shadows )
{
Int i;
Addr a_lo, a_hi;
PROF_EVENT(70, "find_shadow_for_OLD");
for (i = 0; i < n_shadows; i++) {
PROF_EVENT(71, "find_shadow_for_OLD(loop)");
a_lo = shadows[i]->data;
a_hi = ((Addr)shadows[i]->data) + shadows[i]->szB;
if (a_lo <= ptr && ptr < a_hi)
return i;
}
return -1;
}
#endif
static
Int find_shadow_for ( Addr ptr,
MC_Chunk** shadows,
Int n_shadows )
{
Addr a_mid_lo, a_mid_hi;
Int lo, mid, hi, retVal;
/* VG_(printf)("find shadow for %p = ", ptr); */
retVal = -1;
lo = 0;
hi = n_shadows-1;
while (True) {
/* invariant: current unsearched space is from lo to hi, inclusive. */
if (lo > hi) break; /* not found */
mid = (lo + hi) / 2;
a_mid_lo = shadows[mid]->data;
a_mid_hi = shadows[mid]->data + shadows[mid]->szB;
/* Extent of block 'mid' is [a_mid_lo .. a_mid_hi).
Special-case zero-sized blocks - treat them as if they had
size 1. Not doing so causes them to not cover any address
range at all and so will never be identified as the target of
any pointer, which causes them to be incorrectly reported as
definitely leaked. */
if (shadows[mid]->szB == 0)
a_mid_hi++;
if (ptr < a_mid_lo) {
hi = mid-1;
continue;
}
if (ptr >= a_mid_hi) {
lo = mid+1;
continue;
}
tl_assert(ptr >= a_mid_lo && ptr < a_mid_hi);
retVal = mid;
break;
}
# if VG_DEBUG_LEAKCHECK
tl_assert(retVal == find_shadow_for_OLD ( ptr, shadows, n_shadows ));
# endif
/* VG_(printf)("%d\n", retVal); */
return retVal;
}
/* Globals, for the following callback used by VG_(detect_memory_leaks). */
static MC_Chunk** lc_shadows;
static Int lc_n_shadows;
static MarkStack* lc_markstack;
static Int lc_markstack_top;
static Addr lc_min_mallocd_addr;
static Addr lc_max_mallocd_addr;
static SizeT lc_scanned;
static Bool (*lc_is_within_valid_secondary) (Addr addr);
static Bool (*lc_is_valid_aligned_word) (Addr addr);
SizeT MC_(bytes_leaked) = 0;
SizeT MC_(bytes_indirect) = 0;
SizeT MC_(bytes_dubious) = 0;
SizeT MC_(bytes_reachable) = 0;
SizeT MC_(bytes_suppressed) = 0;
static Int lc_compar(void* n1, void* n2)
{
MC_Chunk* mc1 = *(MC_Chunk**)n1;
MC_Chunk* mc2 = *(MC_Chunk**)n2;
return (mc1->data < mc2->data ? -1 : 1);
}
/* If ptr is pointing to a heap-allocated block which hasn't been seen
before, push it onto the mark stack. Clique is the index of the
clique leader; -1 if none. */
static void lc_markstack_push_WRK(Addr ptr, Int clique)
{
Int sh_no;
/* quick filter */
if (!VG_(am_is_valid_for_client)(ptr, 1, VKI_PROT_NONE))
return;
sh_no = find_shadow_for(ptr, lc_shadows, lc_n_shadows);
if (VG_DEBUG_LEAKCHECK)
VG_(printf)("ptr=%p -> block %d\n", ptr, sh_no);
if (sh_no == -1)
return;
tl_assert(sh_no >= 0 && sh_no < lc_n_shadows);
tl_assert(ptr >= lc_shadows[sh_no]->data);
tl_assert(ptr < lc_shadows[sh_no]->data
+ lc_shadows[sh_no]->szB
+ (lc_shadows[sh_no]->szB==0 ? 1 : 0));
if (lc_markstack[sh_no].state == Unreached) {
if (0)
VG_(printf)("pushing %p-%p\n", lc_shadows[sh_no]->data,
lc_shadows[sh_no]->data + lc_shadows[sh_no]->szB);
tl_assert(lc_markstack[sh_no].next == -1);
lc_markstack[sh_no].next = lc_markstack_top;
lc_markstack_top = sh_no;
}
tl_assert(clique >= -1 && clique < lc_n_shadows);
if (clique != -1) {
if (0)
VG_(printf)("mopup: %d: %p is %d\n",
sh_no, lc_shadows[sh_no]->data, lc_markstack[sh_no].state);
/* An unmarked block - add it to the clique. Add its size to
the clique-leader's indirect size. If the new block was
itself a clique leader, it isn't any more, so add its
indirect to the new clique leader.
If this block *is* the clique leader, it means this is a
cyclic structure, so none of this applies. */
if (lc_markstack[sh_no].state == Unreached) {
lc_markstack[sh_no].state = IndirectLeak;
if (sh_no != clique) {
if (VG_DEBUG_CLIQUE) {
if (lc_markstack[sh_no].indirect)
VG_(printf)(" clique %d joining clique %d adding %lu+%lu bytes\n",
sh_no, clique,
lc_shadows[sh_no]->szB, lc_markstack[sh_no].indirect);
else
VG_(printf)(" %d joining %d adding %lu\n",
sh_no, clique, lc_shadows[sh_no]->szB);
}
lc_markstack[clique].indirect += lc_shadows[sh_no]->szB;
lc_markstack[clique].indirect += lc_markstack[sh_no].indirect;
lc_markstack[sh_no].indirect = 0; /* shouldn't matter */
}
}
} else if (ptr == lc_shadows[sh_no]->data) {
lc_markstack[sh_no].state = Proper;
} else {
if (lc_markstack[sh_no].state == Unreached)
lc_markstack[sh_no].state = Interior;
}
}
static void lc_markstack_push(Addr ptr)
{
lc_markstack_push_WRK(ptr, -1);
}
/* Return the top of the mark stack, if any. */
static Int lc_markstack_pop(void)
{
Int ret = lc_markstack_top;
if (ret != -1) {
lc_markstack_top = lc_markstack[ret].next;
lc_markstack[ret].next = -1;
}
return ret;
}
/* Scan a block of memory between [start, start+len). This range may
be bogus, inaccessable, or otherwise strange; we deal with it.
If clique != -1, it means we're gathering leaked memory into
cliques, and clique is the index of the current clique leader. */
static void lc_scan_memory_WRK(Addr start, SizeT len, Int clique)
{
Addr ptr = VG_ROUNDUP(start, sizeof(Addr));
Addr end = VG_ROUNDDN(start+len, sizeof(Addr));
vki_sigset_t sigmask;
if (VG_DEBUG_LEAKCHECK)
VG_(printf)("scan %p-%p\n", start, start+len);
VG_(sigprocmask)(VKI_SIG_SETMASK, NULL, &sigmask);
VG_(set_fault_catcher)(scan_all_valid_memory_catcher);
// lc_scanned += end-ptr;
if (!VG_(am_is_valid_for_client)(ptr, sizeof(Addr), VKI_PROT_READ))
ptr = VG_PGROUNDUP(ptr+1); /* first page bad */
while (ptr < end) {
Addr addr;
/* Skip invalid chunks */
if (!(*lc_is_within_valid_secondary)(ptr)) {
ptr = VG_ROUNDUP(ptr+1, SM_SIZE);
continue;
}
/* Look to see if this page seems reasonble */
if ((ptr % VKI_PAGE_SIZE) == 0) {
if (!VG_(am_is_valid_for_client)(ptr, sizeof(Addr), VKI_PROT_READ))
ptr += VKI_PAGE_SIZE; /* bad page - skip it */
}
if (__builtin_setjmp(memscan_jmpbuf) == 0) {
if ((*lc_is_valid_aligned_word)(ptr)) {
lc_scanned += sizeof(Addr);
addr = *(Addr *)ptr;
lc_markstack_push_WRK(addr, clique);
} else if (0 && VG_DEBUG_LEAKCHECK)
VG_(printf)("%p not valid\n", ptr);
ptr += sizeof(Addr);
} else {
/* We need to restore the signal mask, because we were
longjmped out of a signal handler. */
VG_(sigprocmask)(VKI_SIG_SETMASK, &sigmask, NULL);
ptr = VG_PGROUNDUP(ptr+1); /* bad page - skip it */
}
}
VG_(sigprocmask)(VKI_SIG_SETMASK, &sigmask, NULL);
VG_(set_fault_catcher)(NULL);
}
static void lc_scan_memory(Addr start, SizeT len)
{
lc_scan_memory_WRK(start, len, -1);
}
/* Process the mark stack until empty. If mopup is true, then we're
actually gathering leaked blocks, so they should be marked
IndirectLeak. */
static void lc_do_leakcheck(Int clique)
{
Int top;
while((top = lc_markstack_pop()) != -1) {
tl_assert(top >= 0 && top < lc_n_shadows);
tl_assert(lc_markstack[top].state != Unreached);
lc_scan_memory_WRK(lc_shadows[top]->data, lc_shadows[top]->szB, clique);
}
}
static SizeT blocks_leaked;
static SizeT blocks_indirect;
static SizeT blocks_dubious;
static SizeT blocks_reachable;
static SizeT blocks_suppressed;
static void full_report(ThreadId tid)
{
Int i;
Int n_lossrecords;
LossRecord* errlist;
LossRecord* p;
Bool is_suppressed;
/* Go through and group lost structures into cliques. For each
Unreached block, push it onto the mark stack, and find all the
blocks linked to it. These are marked IndirectLeak, and their
size is added to the clique leader's indirect size. If one of
the found blocks was itself a clique leader (from a previous
pass), then the cliques are merged. */
for (i = 0; i < lc_n_shadows; i++) {
if (VG_DEBUG_CLIQUE)
VG_(printf)("cliques: %d at %p -> Loss state %d\n",
i, lc_shadows[i]->data, lc_markstack[i].state);
if (lc_markstack[i].state != Unreached)
continue;
tl_assert(lc_markstack_top == -1);
if (VG_DEBUG_CLIQUE)
VG_(printf)("%d: gathering clique %p\n", i, lc_shadows[i]->data);
lc_markstack_push_WRK(lc_shadows[i]->data, i);
lc_do_leakcheck(i);
tl_assert(lc_markstack_top == -1);
tl_assert(lc_markstack[i].state == IndirectLeak
/* jrs 20051218: Ashley Pittman supplied a
custom-allocator test program which causes the ==
IndirectLeak condition to fail - it causes .state
to be Unreached. Since I have no idea how this
clique stuff works and no time to figure it out,
just allow that condition too. This could well be
a completely bogus fix. It doesn't seem unsafe
given that in any case the .state field is
immediately overwritten by the next statement. */
|| lc_markstack[i].state == Unreached);
lc_markstack[i].state = Unreached; /* Return to unreached state,
to indicate its a clique
leader */
}
/* Common up the lost blocks so we can print sensible error messages. */
n_lossrecords = 0;
errlist = NULL;
for (i = 0; i < lc_n_shadows; i++) {
ExeContext* where = lc_shadows[i]->where;
for (p = errlist; p != NULL; p = p->next) {
if (p->loss_mode == lc_markstack[i].state
&& VG_(eq_ExeContext) ( MC_(clo_leak_resolution),
p->allocated_at,
where) ) {
break;
}
}
if (p != NULL) {
p->num_blocks ++;
p->total_bytes += lc_shadows[i]->szB;
p->indirect_bytes += lc_markstack[i].indirect;
} else {
n_lossrecords ++;
p = VG_(malloc)(sizeof(LossRecord));
p->loss_mode = lc_markstack[i].state;
p->allocated_at = where;
p->total_bytes = lc_shadows[i]->szB;
p->indirect_bytes = lc_markstack[i].indirect;
p->num_blocks = 1;
p->next = errlist;
errlist = p;
}
}
/* Print out the commoned-up blocks and collect summary stats. */
for (i = 0; i < n_lossrecords; i++) {
Bool print_record;
LossRecord* p_min = NULL;
SizeT n_min = ~(0x0L);
for (p = errlist; p != NULL; p = p->next) {
if (p->num_blocks > 0 && p->total_bytes < n_min) {
n_min = p->total_bytes + p->indirect_bytes;
p_min = p;
}
}
tl_assert(p_min != NULL);
/* Ok to have tst==NULL; it's only used if --gdb-attach=yes, and
we disallow that when --leak-check=yes.
Prints the error if not suppressed, unless it's reachable (Proper
or IndirectLeak) and --show-reachable=no */
print_record = ( MC_(clo_show_reachable) ||
Unreached == p_min->loss_mode ||
Interior == p_min->loss_mode );
// Nb: because VG_(unique_error) does all the error processing
// immediately, and doesn't save the error, leakExtra can be
// stack-allocated.
is_suppressed =
MC_(record_leak_error) ( tid, i+1, n_lossrecords, p_min,
print_record );
if (is_suppressed) {
blocks_suppressed += p_min->num_blocks;
MC_(bytes_suppressed) += p_min->total_bytes;
} else if (Unreached == p_min->loss_mode) {
blocks_leaked += p_min->num_blocks;
MC_(bytes_leaked) += p_min->total_bytes;
} else if (IndirectLeak == p_min->loss_mode) {
blocks_indirect += p_min->num_blocks;
MC_(bytes_indirect) += p_min->total_bytes;
} else if (Interior == p_min->loss_mode) {
blocks_dubious += p_min->num_blocks;
MC_(bytes_dubious) += p_min->total_bytes;
} else if (Proper == p_min->loss_mode) {
blocks_reachable += p_min->num_blocks;
MC_(bytes_reachable) += p_min->total_bytes;
} else {
VG_(tool_panic)("generic_detect_memory_leaks: unknown loss mode");
}
p_min->num_blocks = 0;
}
}
/* Compute a quick summary of the leak check. */
static void make_summary(void)
{
Int i;
for(i = 0; i < lc_n_shadows; i++) {
SizeT size = lc_shadows[i]->szB;
switch(lc_markstack[i].state) {
case Unreached:
blocks_leaked++;
MC_(bytes_leaked) += size;
break;
case Proper:
blocks_reachable++;
MC_(bytes_reachable) += size;
break;
case Interior:
blocks_dubious++;
MC_(bytes_dubious) += size;
break;
case IndirectLeak: /* shouldn't happen */
blocks_indirect++;
MC_(bytes_indirect) += size;
break;
}
}
}
static MC_Chunk**
find_active_shadows(UInt* n_shadows)
{
/* Our goal is to construct a set of shadows that includes every
* mempool chunk, and every malloc region that *doesn't* contain a
* mempool chunk. We do this in several phases.
*
* First we collect all the malloc chunks into an array and sort it.
* We do this because we want to query the chunks by interior
* pointers, requiring binary search.
*
* Second we build an array containing a Bool for each malloc chunk,
* indicating whether it contains any mempools.
*
* Third we loop over the mempool tables. For each chunk in each
* pool, we set the entry in the Bool array corresponding to the
* malloc chunk containing the mempool chunk.
*
* Finally we copy the mempool chunks and the non-marked malloc
* chunks into a combined array of shadows, free our temporaries,
* and return the combined array.
*/
MC_Mempool *mp;
MC_Chunk **mallocs, **shadows, *mc;
UInt n_mallocs, m, s;
Bool *malloc_chunk_holds_a_pool_chunk;
mallocs = (MC_Chunk**) VG_(HT_to_array)( MC_(malloc_list), &n_mallocs );
if (n_mallocs == 0) {
tl_assert(mallocs == NULL);
*n_shadows = 0;
return NULL;
}
VG_(ssort)((void*)mallocs, n_mallocs,
sizeof(VgHashNode*), lc_compar);
malloc_chunk_holds_a_pool_chunk = VG_(calloc)( n_mallocs, sizeof(Bool) );
*n_shadows = n_mallocs;
VG_(HT_ResetIter)(MC_(mempool_list));
while ( (mp = VG_(HT_Next)(MC_(mempool_list))) ) {
VG_(HT_ResetIter)(mp->chunks);
while ( (mc = VG_(HT_Next)(mp->chunks)) ) {
/* We'll need a shadow for this chunk. */
++(*n_shadows);
/* Possibly invalidate the malloc holding the beginning of this chunk. */
m = find_shadow_for(mc->data, mallocs, n_mallocs);
if (m != -1 && malloc_chunk_holds_a_pool_chunk[m] == False) {
tl_assert(*n_shadows > 0);
--(*n_shadows);
malloc_chunk_holds_a_pool_chunk[m] = True;
}
/* Possibly invalidate the malloc holding the end of this chunk. */
if (mc->szB > 1) {
m = find_shadow_for(mc->data + (mc->szB - 1), mallocs, n_mallocs);
if (m != -1 && malloc_chunk_holds_a_pool_chunk[m] == False) {
tl_assert(*n_shadows > 0);
--(*n_shadows);
malloc_chunk_holds_a_pool_chunk[m] = True;
}
}
}
}
tl_assert(*n_shadows > 0);
shadows = VG_(malloc)(sizeof(VgHashNode*) * (*n_shadows));
s = 0;
/* Copy the mempool chunks into the final array. */
VG_(HT_ResetIter)(MC_(mempool_list));
while ( (mp = VG_(HT_Next)(MC_(mempool_list))) ) {
VG_(HT_ResetIter)(mp->chunks);
while ( (mc = VG_(HT_Next)(mp->chunks)) ) {
tl_assert(s < *n_shadows);
shadows[s++] = mc;
}
}
/* Copy the malloc chunks into the final array. */
for (m = 0; m < n_mallocs; ++m) {
if (!malloc_chunk_holds_a_pool_chunk[m]) {
tl_assert(s < *n_shadows);
shadows[s++] = mallocs[m];
}
}
tl_assert(s == *n_shadows);
VG_(free)(mallocs);
VG_(free)(malloc_chunk_holds_a_pool_chunk);
return shadows;
}
/* Top level entry point to leak detector. Call here, passing in
suitable address-validating functions (see comment at top of
scan_all_valid_memory above). These functions used to encapsulate the
differences between Memcheck and Addrcheck; they no longer do but it
doesn't hurt to keep them here.
*/
void MC_(do_detect_memory_leaks) (
ThreadId tid, LeakCheckMode mode,
Bool (*is_within_valid_secondary) ( Addr ),
Bool (*is_valid_aligned_word) ( Addr )
)
{
Int i;
tl_assert(mode != LC_Off);
lc_shadows = find_active_shadows(&lc_n_shadows);
/* Sort the array. */
VG_(ssort)((void*)lc_shadows, lc_n_shadows, sizeof(VgHashNode*), lc_compar);
/* Sanity check; assert that the blocks are now in order */
for (i = 0; i < lc_n_shadows-1; i++) {
tl_assert( lc_shadows[i]->data <= lc_shadows[i+1]->data);
}
/* Sanity check -- make sure they don't overlap. But do allow
exact duplicates. If this assertion fails, it may mean that the
application has done something stupid with
VALGRIND_MALLOCLIKE_BLOCK client requests, specifically, has
made overlapping requests (which are nonsensical). Another way
to screw up is to use VALGRIND_MALLOCLIKE_BLOCK for stack
locations; again nonsensical. */
for (i = 0; i < lc_n_shadows-1; i++) {
tl_assert( /* normal case - no overlap */
(lc_shadows[i]->data + lc_shadows[i]->szB
<= lc_shadows[i+1]->data )
||
/* degenerate case: exact duplicates */
(lc_shadows[i]->data == lc_shadows[i+1]->data
&& lc_shadows[i]->szB == lc_shadows[i+1]->szB)
);
}
if (lc_n_shadows == 0) {
tl_assert(lc_shadows == NULL);
if (VG_(clo_verbosity) >= 1 && !VG_(clo_xml)) {
VG_(message)(Vg_UserMsg,
"All heap blocks were freed -- no leaks are possible.");
}
return;
}
if (VG_(clo_verbosity) > 0 && !VG_(clo_xml))
VG_(message)(Vg_UserMsg,
"searching for pointers to %,d not-freed blocks.",
lc_n_shadows );
lc_min_mallocd_addr = lc_shadows[0]->data;
lc_max_mallocd_addr = lc_shadows[lc_n_shadows-1]->data
+ lc_shadows[lc_n_shadows-1]->szB;
lc_markstack = VG_(malloc)( lc_n_shadows * sizeof(*lc_markstack) );
for (i = 0; i < lc_n_shadows; i++) {
lc_markstack[i].next = -1;
lc_markstack[i].state = Unreached;
lc_markstack[i].indirect = 0;
}
lc_markstack_top = -1;
lc_is_within_valid_secondary = is_within_valid_secondary;
lc_is_valid_aligned_word = is_valid_aligned_word;
lc_scanned = 0;
/* Push roots onto the mark stack. Roots are:
- the integer registers of all threads
- all mappings belonging to the client, including stacks
- .. but excluding any client heap segments.
Client heap segments are excluded because we wish to differentiate
client heap blocks which are referenced only from inside the heap
from those outside. This facilitates the indirect vs direct loss
categorisation, which [if the users ever manage to understand it]
is really useful for detecting lost cycles.
*/
{ Addr* seg_starts;
Int n_seg_starts;
seg_starts = get_seg_starts( &n_seg_starts );
tl_assert(seg_starts && n_seg_starts > 0);
/* VG_(am_show_nsegments)( 0,"leakcheck"); */
for (i = 0; i < n_seg_starts; i++) {
NSegment const* seg = VG_(am_find_nsegment)( seg_starts[i] );
tl_assert(seg);
if (seg->kind != SkFileC && seg->kind != SkAnonC)
continue;
if (!(seg->hasR && seg->hasW))
continue;
if (seg->isCH)
continue;
/* Don't poke around in device segments as this may cause
hangs. Exclude /dev/zero just in case someone allocated
memory by explicitly mapping /dev/zero. */
if (seg->kind == SkFileC
&& (VKI_S_ISCHR(seg->mode) || VKI_S_ISBLK(seg->mode))) {
HChar* dev_name = VG_(am_get_filename)( (NSegment*)seg );
if (dev_name && 0 == VG_(strcmp)(dev_name, "/dev/zero")) {
/* don't skip /dev/zero */
} else {
/* skip this device mapping */
continue;
}
}
if (0)
VG_(printf)("ACCEPT %2d %p %p\n", i, seg->start, seg->end);
lc_scan_memory(seg->start, seg->end+1 - seg->start);
}
}
/* Push registers onto mark stack */
VG_(apply_to_GP_regs)(lc_markstack_push);
/* Keep walking the heap until everything is found */
lc_do_leakcheck(-1);
if (VG_(clo_verbosity) > 0 && !VG_(clo_xml))
VG_(message)(Vg_UserMsg, "checked %,lu bytes.", lc_scanned);
blocks_leaked = MC_(bytes_leaked) = 0;
blocks_indirect = MC_(bytes_indirect) = 0;
blocks_dubious = MC_(bytes_dubious) = 0;
blocks_reachable = MC_(bytes_reachable) = 0;
blocks_suppressed = MC_(bytes_suppressed) = 0;
if (mode == LC_Full)
full_report(tid);
else
make_summary();
if (VG_(clo_verbosity) > 0 && !VG_(clo_xml)) {
VG_(message)(Vg_UserMsg, "");
VG_(message)(Vg_UserMsg, "LEAK SUMMARY:");
VG_(message)(Vg_UserMsg, " definitely lost: %,lu bytes in %,lu blocks.",
MC_(bytes_leaked), blocks_leaked );
if (blocks_indirect > 0)
VG_(message)(Vg_UserMsg, " indirectly lost: %,lu bytes in %,lu blocks.",
MC_(bytes_indirect), blocks_indirect );
VG_(message)(Vg_UserMsg, " possibly lost: %,lu bytes in %,lu blocks.",
MC_(bytes_dubious), blocks_dubious );
VG_(message)(Vg_UserMsg, " still reachable: %,lu bytes in %,lu blocks.",
MC_(bytes_reachable), blocks_reachable );
VG_(message)(Vg_UserMsg, " suppressed: %,lu bytes in %,lu blocks.",
MC_(bytes_suppressed), blocks_suppressed );
if (mode == LC_Summary
&& (blocks_leaked + blocks_indirect
+ blocks_dubious + blocks_reachable) > 0) {
VG_(message)(Vg_UserMsg,
"Rerun with --leak-check=full to see details of leaked memory.");
}
if (blocks_reachable > 0 && !MC_(clo_show_reachable) && mode == LC_Full) {
VG_(message)(Vg_UserMsg,
"Reachable blocks (those to which a pointer was found) are not shown.");
VG_(message)(Vg_UserMsg,
"To see them, rerun with: --leak-check=full --show-reachable=yes");
}
}
VG_(free) ( lc_shadows );
VG_(free) ( lc_markstack );
}
/*--------------------------------------------------------------------*/
/*--- end ---*/
/*--------------------------------------------------------------------*/
|