1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
// This small program computes a Fast Fourier Transform. It tests
// Valgrind's handling of FP operations. It is representative of all
// programs that do a lot of FP operations.
// Licensing: This program is closely based on the one of the same name from
// http://www.fourmilab.ch/. The front page of that site says:
//
// "Except for a few clearly-marked exceptions, all the material on this
// site is in the public domain and may be used in any manner without
// permission, restriction, attribution, or compensation."
/*
Two-dimensional FFT benchmark
Designed and implemented by John Walker in April of 1989.
This benchmark executes a specified number of passes (default
20) through a loop in which each iteration performs a fast
Fourier transform of a square matrix (default size 256x256) of
complex numbers (default precision double), followed by the
inverse transform. After all loop iterations are performed
the results are checked against known correct values.
This benchmark is intended for use on C implementations which
define "int" as 32 bits or longer and permit allocation and
direct addressing of arrays larger than one megabyte.
If CAPOUT is defined, the result after all iterations is
written as a CA Lab pattern file. This is intended for
debugging in case horribly wrong results are obtained on a
given machine.
Archival timings are run with the definitions below set as
follows: Float = double, Asize = 256, Passes = 20, CAPOUT not
defined.
Time (seconds) System
2393.93 Sun 3/260, SunOS 3.4, C, "-f68881 -O".
(John Walker).
1928 Macintosh IIx, MPW C 3.0, "-mc68020
-mc68881 -elems881 -m". (Hugh Hoover).
1636.1 Sun 4/110, "cc -O3 -lm". (Michael McClary).
The suspicion is that this is software
floating point.
1556.7 Macintosh II, A/UX, "cc -O -lm"
(Michael McClary).
1388.8 Sun 386i/250, SunOS 4.0.1 C
"-O /usr/lib/trig.il". (James Carrington).
1331.93 Sun 3/60, SunOS 4.0.1, C,
"-O4 -f68881 /usr/lib/libm.il"
(Bob Elman).
1204.0 Apollo Domain DN4000, C, "-cpu 3000 -opt 4".
(Sam Crupi).
1174.66 Compaq 386/25, SCO Xenix 386 C.
(Peter Shieh).
1068 Compaq 386/25, SCO Xenix 386,
Metaware High C. (Robert Wenig).
1064.0 Sun 3/80, SunOS 4.0.3 Beta C
"-O3 -f68881 /usr/lib/libm.il". (James Carrington).
1061.4 Compaq 386/25, SCO Xenix, High C 1.4.
(James Carrington).
1059.79 Compaq 386/25, 387/25, High C 1.4,
DOS|Extender 2.2, 387 inline code
generation. (Nathan Bender).
777.14 Compaq 386/25, IIT 3C87-25 (387 Compatible),
High C 1.5, DOS|Extender 2.2, 387 inline
code generation. (Nathan Bender).
751 Compaq DeskPro 386/33, High C 1.5 + DOS|Extender,
387 code generation. (James Carrington).
431.44 Compaq 386/25, Weitek 3167-25, DOS 3.31,
High C 1.4, DOS|Extender, Weitek code generation.
(Nathan Bender).
344.9 Compaq 486/25, Metaware High C 1.6, Phar Lap
DOS|Extender, in-line floating point. (Nathan
Bender).
324.2 Data General Motorola 88000, 16 Mhz, Gnu C.
323.1 Sun 4/280, C, "-O4". (Eric Hill).
254 Compaq SystemPro 486/33, High C 1.5 + DOS|Extender,
387 code generation. (James Carrington).
242.8 Silicon Graphics Personal IRIS, MIPS R2000A,
12.5 Mhz, "-O3" (highest level optimisation).
(Mike Zentner).
233.0 Sun SPARCStation 1, C, "-O4", SunOS 4.0.3.
(Nathan Bender).
187.30 DEC PMAX 3100, MIPS 2000 chip.
(Robert Wenig).
120.46 Sun SparcStation 2, C, "-O4", SunOS 4.1.1.
(John Walker).
120.21 DEC 3MAX, MIPS 3000, "-O4".
98.0 Intel i860 experimental environment,
OS/2, data caching disabled. (Kern
Sibbald).
34.9 Silicon Graphics Indigo, MIPS R4400,
175 Mhz, IRIX 5.2, "-O".
32.4 Pentium 133, Windows NT, Microsoft Visual
C++ 4.0.
17.25 Silicon Graphics Indigo, MIPS R4400,
175 Mhz, IRIX 6.5, "-O3".
14.10 Dell Dimension XPS R100, Pentium II 400 MHz,
Windows 98, Microsoft Visual C 5.0.
10.7 Hewlett-Packard Kayak XU 450Mhz Pentium II,
Microsoft Visual C++ 6.0, Windows NT 4.0sp3. (Nathan Bender).
5.09 Sun Ultra 2, UltraSPARC V9, 300 MHz, gcc -O3.
0.846 Dell Inspiron 9100, Pentium 4, 3.4 GHz, gcc -O3.
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
/* The program may be run with Float defined as either float or
double. With IEEE arithmetic, the same answers are generated for
either floating point mode. */
#define Float double /* Floating point type used in FFT */
#define Asize 256 /* Array edge size */
#define Passes 20 /* Number of FFT/Inverse passes */
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<=(b)?(a):(b))
/*
Multi-dimensional fast Fourier transform
Adapted from Press et al., "Numerical Recipes in C".
*/
#define SWAP(a,b) tempr=(a); (a)=(b); (b)=tempr
static void fourn(data, nn, ndim, isign)
Float data[];
int nn[], ndim, isign;
{
register int i1, i2, i3;
int i2rev, i3rev, ip1, ip2, ip3, ifp1, ifp2;
int ibit, idim, k1, k2, n, nprev, nrem, ntot;
Float tempi, tempr;
double theta, wi, wpi, wpr, wr, wtemp;
ntot = 1;
for (idim = 1; idim <= ndim; idim++)
ntot *= nn[idim];
nprev = 1;
for (idim = ndim; idim >= 1; idim--) {
n = nn[idim];
nrem = ntot / (n * nprev);
ip1 = nprev << 1;
ip2 = ip1 * n;
ip3 = ip2 * nrem;
i2rev = 1;
for (i2 = 1; i2 <= ip2; i2 += ip1) {
if (i2 < i2rev) {
for (i1 = i2; i1 <= i2 + ip1 - 2; i1 += 2) {
for (i3 = i1; i3 <= ip3; i3 += ip2) {
i3rev = i2rev + i3 - i2;
SWAP(data[i3], data[i3rev]);
SWAP(data[i3 + 1], data[i3rev + 1]);
}
}
}
ibit = ip2 >> 1;
while (ibit >= ip1 && i2rev > ibit) {
i2rev -= ibit;
ibit >>= 1;
}
i2rev += ibit;
}
ifp1 = ip1;
while (ifp1 < ip2) {
ifp2 = ifp1 << 1;
theta = isign * 6.28318530717959 / (ifp2 / ip1);
wtemp = sin(0.5 * theta);
wpr = -2.0 * wtemp * wtemp;
wpi = sin(theta);
wr = 1.0;
wi = 0.0;
for (i3 = 1; i3 <= ifp1; i3 += ip1) {
for (i1 = i3; i1 <= i3 + ip1 - 2; i1 += 2) {
for (i2 = i1; i2 <= ip3; i2 += ifp2) {
k1 = i2;
k2 = k1 + ifp1;
tempr = wr * data[k2] - wi * data[k2 + 1];
tempi = wr * data[k2 + 1] + wi * data[k2];
data[k2] = data[k1] - tempr;
data[k2 + 1] = data[k1 + 1] - tempi;
data[k1] += tempr;
data[k1 + 1] += tempi;
}
}
wr = (wtemp = wr) * wpr - wi * wpi + wr;
wi = wi * wpr + wtemp * wpi + wi;
}
ifp1 = ifp2;
}
nprev *= n;
}
}
#undef SWAP
int main()
{
int i, j, k, l, m, npasses = Passes, faedge;
Float *fdata /* , *fd */ ;
static int nsize[] = {0, 0, 0};
long fanum, fasize;
double mapbase, mapscale, /* x, */ rmin, rmax, imin, imax;
faedge = Asize; /* FFT array edge size */
fanum = faedge * faedge; /* Elements in FFT array */
fasize = ((fanum + 1) * 2 * sizeof(Float)); /* FFT array size */
nsize[1] = nsize[2] = faedge;
fdata = (Float *) malloc(fasize);
if (fdata == NULL) {
fprintf(stdout, "Can't allocate data array.\n");
exit(1);
}
/* Generate data array to process. */
#define Re(x,y) fdata[1 + (faedge * (x) + (y)) * 2]
#define Im(x,y) fdata[2 + (faedge * (x) + (y)) * 2]
memset(fdata, 0, fasize);
for (i = 0; i < faedge; i++) {
for (j = 0; j < faedge; j++) {
if (((i & 15) == 8) || ((j & 15) == 8))
Re(i, j) = 128.0;
}
}
for (i = 0; i < npasses; i++) {
/*printf("Pass %d\n", i);*/
/* Transform image to frequency domain. */
fourn(fdata, nsize, 2, 1);
/* Back-transform to image. */
fourn(fdata, nsize, 2, -1);
}
{
double r, ij, ar, ai;
rmin = 1e10; rmax = -1e10;
imin = 1e10; imax = -1e10;
ar = 0;
ai = 0;
for (i = 1; i <= fanum; i += 2) {
r = fdata[i];
ij = fdata[i + 1];
ar += r;
ai += ij;
rmin = min(r, rmin);
rmax = max(r, rmax);
imin = min(ij, imin);
imax = max(ij, imax);
}
#ifdef DEBUG
printf("Real min %.4g, max %.4g. Imaginary min %.4g, max %.4g.\n",
rmin, rmax, imin, imax);
printf("Average real %.4g, imaginary %.4g.\n",
ar / fanum, ai / fanum);
#endif
mapbase = rmin;
mapscale = 255 / (rmax - rmin);
}
/* See if we got the right answers. */
m = 0;
for (i = 0; i < faedge; i++) {
for (j = 0; j < faedge; j++) {
k = (Re(i, j) - mapbase) * mapscale;
l = (((i & 15) == 8) || ((j & 15) == 8)) ? 255 : 0;
if (k != l) {
m++;
fprintf(stdout,
"Wrong answer at (%d,%d)! Expected %d, got %d.\n",
i, j, l, k);
}
}
}
if (m == 0) {
fprintf(stdout, "%d passes. No errors in results.\n", npasses);
} else {
fprintf(stdout, "%d passes. %d errors in results.\n",
npasses, m);
}
#ifdef CAPOUT
/* Output the result of the transform as a CA Lab pattern
file for debugging. */
{
#define SCRX 322
#define SCRY 200
#define SCRN (SCRX * SCRY)
unsigned char patarr[SCRY][SCRX];
FILE *fp;
/* Map user external state numbers to internal state index */
#define UtoI(x) (((((x) >> 1) & 0x7F) | ((x) << 7)) & 0xFF)
/* Copy data from FFT buffer to map. */
memset(patarr, 0, sizeof patarr);
l = (SCRX - faedge) / 2;
m = (faedge > SCRY) ? 0 : ((SCRY - faedge) / 2);
for (i = 1; i < faedge; i++) {
for (j = 0; j < min(SCRY, faedge); j++) {
k = (Re(i, j) - mapbase) * mapscale;
patarr[j + m][i + l] = UtoI(k);
}
}
/* Dump pattern map to file. */
fp = fopen("fft.cap", "w");
if (fp == NULL) {
fprintf(stdout, "Cannot open output file.\n");
exit(0);
}
putc(':', fp);
putc(1, fp);
fwrite(patarr, SCRN, 1, fp);
putc(6, fp);
fclose(fp);
}
#endif
return 0;
}
|