File: valgrind-low.c

package info (click to toggle)
valgrind 1%3A3.7.0-6
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 58,060 kB
  • sloc: ansic: 396,820; xml: 18,453; cpp: 6,698; asm: 5,584; perl: 5,008; sh: 4,852; makefile: 3,965; exp: 625; haskell: 195
file content (639 lines) | stat: -rw-r--r-- 19,429 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
/* Low level interface to valgrind, for the remote server for GDB integrated
   in valgrind.
   Copyright (C) 2011
   Free Software Foundation, Inc.

   This file is part of VALGRIND.
   It has been inspired from a file from gdbserver in gdb 6.6.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street, Fifth Floor,
   Boston, MA 02110-1301, USA.  */

#include "server.h"
#include "target.h"
#include "regdef.h"
#include "regcache.h"
#include "valgrind_low.h"
#include "gdb/signals.h"
#include "pub_core_aspacemgr.h"
#include "pub_tool_machine.h"
#include "pub_core_threadstate.h"
#include "pub_core_transtab.h"
#include "pub_core_gdbserver.h" 
#include "pub_tool_debuginfo.h"

/* the_low_target defines the architecture specific aspects depending
   on the cpu */
static struct valgrind_target_ops the_low_target;

/* builds an image of bin according to byte order of the architecture 
   Useful for register and int image */
char* heximage (char *buf, char *bin, int count)
{
#if defined(VGA_x86) || defined(VGA_amd64)
   char rev[count]; 
   /* note: no need for trailing \0, length is known with count */
  int i;
  for (i = 0; i < count; i++)
    rev[i] = bin[count - i - 1];
  hexify (buf, rev, count);
#else
  hexify (buf, bin, count);
#endif
  return buf;
}

void* C2v(CORE_ADDR addr)
{
   return (void*) addr;
}

static
char *image_ptid(unsigned long ptid)
{
  static char result[100];
  VG_(sprintf) (result, "id %ld", ptid);
  return result;
}
#define get_thread(inf) ((struct thread_info *)(inf))
static
void remove_thread_if_not_in_vg_threads (struct inferior_list_entry *inf)
{
  struct thread_info *thread = get_thread (inf);
  if (!VG_(lwpid_to_vgtid)(thread_to_gdb_id(thread))) {
     dlog(1, "removing gdb ptid %s\n", 
          image_ptid(thread_to_gdb_id(thread)));
     remove_thread (thread);
  }
}

/* synchronize threads known by valgrind and threads known by gdbserver */
static
void valgrind_update_threads (int pid)
{
  ThreadId tid;
  ThreadState *ts;
  unsigned long ptid;
  struct thread_info *ti;

  /* call remove_thread for all gdb threads not in valgrind threads */
  for_each_inferior (&all_threads, remove_thread_if_not_in_vg_threads);
  
  /* call add_thread for all valgrind threads not known in gdb all_threads */
  for (tid = 1; tid < VG_N_THREADS; tid++) {

#define LOCAL_THREAD_TRACE " ti* %p vgtid %d status %s as gdb ptid %s lwpid %d\n", \
        ti, tid, VG_(name_of_ThreadStatus) (ts->status), \
        image_ptid (ptid), ts->os_state.lwpid

     if (VG_(is_valid_tid) (tid)) {
        ts = VG_(get_ThreadState) (tid);
        ptid = ts->os_state.lwpid;
        ti = gdb_id_to_thread (ptid);
        if (!ti) {
           /* we do not report the threads which are not yet fully
              initialized otherwise this creates duplicated threads
              in gdb: once with pid xxx lwpid 0, then after that
              with pid xxx lwpid yyy. */
           if (ts->status != VgTs_Init) {
              dlog(1, "adding_thread" LOCAL_THREAD_TRACE);
              add_thread (ptid, ts, ptid);
           }
        } else {
           dlog(2, "(known thread)" LOCAL_THREAD_TRACE);
        }
     }
#undef LOCAL_THREAD_TRACE
  }
}

/* Return nonzero if the given thread is still alive.  */
static
int valgrind_thread_alive (unsigned long tid)
{
  struct thread_info *ti =  gdb_id_to_thread(tid);
  ThreadState *tst;

  if (ti != NULL) {
     tst = (ThreadState *) inferior_target_data (ti);
     return tst->status != VgTs_Zombie;
  }
  else {
    return 0;
  }
}

/* allocate and build a register structure containing the shadow registers.
   reg_defs is the normal registers, n is their numbers */
static
struct reg* build_shadow_arch (struct reg *reg_defs, int n) {
   int i, r;
   static char *postfix[3] = { "", "s1", "s2" };
   struct reg *new_regs = malloc(3 * n * sizeof(reg_defs[0]));
   int reg_set_len = reg_defs[n-1].offset + reg_defs[n-1].size;

   for (i = 0; i < 3; i++) {
      for (r = 0; r < n; r++) {
         new_regs[i*n + r].name = malloc(strlen(reg_defs[r].name) 
                                         + strlen (postfix[i]) + 1);
         strcpy (new_regs[i*n + r].name, reg_defs[r].name);
         strcat (new_regs[i*n + r].name, postfix[i]);
         new_regs[i*n + r].offset = i*reg_set_len + reg_defs[r].offset;
         new_regs[i*n + r].size = reg_defs[r].size;
         dlog(1,
              "%10s Nr %d offset(bit) %d offset(byte) %d  size(bit) %d\n",
              new_regs[i*n + r].name, i*n + r, new_regs[i*n + r].offset,
              (new_regs[i*n + r].offset) / 8, new_regs[i*n + r].size);
      }  
   }

   return new_regs;
}

/* Fetch one register from valgrind VEX guest state.  */
static
void fetch_register (int regno)
{
   int size;
   ThreadState *tst = (ThreadState *) inferior_target_data (current_inferior);
   ThreadId tid = tst->tid;

   if (regno >= the_low_target.num_regs) {
      dlog(0, "error fetch_register regno %d max %d\n",
           regno, the_low_target.num_regs);
      return;
   }
   size = register_size (regno);
   if (size > 0) {
      Bool mod;
      char buf [size];
      VG_(memset) (buf, 0, size); // registers not fetched will be seen as 0.
      (*the_low_target.transfer_register) (tid, regno, buf,
                                           valgrind_to_gdbserver, size, &mod);
      // Note: the *mod received from transfer_register is not interesting.
      // We are interested to see if the register data in the register cache is modified.
      supply_register (regno, buf, &mod);
      if (mod && VG_(debugLog_getLevel)() > 1) {
         char bufimage [2*size + 1];
         heximage (bufimage, buf, size);
         dlog(2, "fetched register %d size %d name %s value %s tid %d status %s\n", 
              regno, size, the_low_target.reg_defs[regno].name, bufimage, 
              tid, VG_(name_of_ThreadStatus) (tst->status));
      }
   }
}

/* Fetch all registers, or just one, from the child process.  */
static
void usr_fetch_inferior_registers (int regno)
{
   if (regno == -1 || regno == 0)
      for (regno = 0; regno < the_low_target.num_regs; regno++)
         fetch_register (regno);
   else
      fetch_register (regno);
}

/* Store our register values back into the inferior.
   If REGNO is -1, do this for all registers.
   Otherwise, REGNO specifies which register (so we can save time).  */
static
void usr_store_inferior_registers (int regno)
{
   int size;
   ThreadState *tst = (ThreadState *) inferior_target_data (current_inferior);
   ThreadId tid = tst->tid;
   
   if (regno >= 0) {

      if (regno >= the_low_target.num_regs) {
         dlog(0, "error store_register regno %d max %d\n",
              regno, the_low_target.num_regs);
         return;
      }
      
      size = register_size (regno);
      if (size > 0) {
         Bool mod;
         Addr old_SP, new_SP;
         char buf[size];

         if (regno == the_low_target.stack_pointer_regno) {
            /* When the stack pointer register is changed such that
               the stack is extended, we better inform the tool of the
               stack increase.  This is needed in particular to avoid
               spurious Memcheck errors during Inferior calls. So, we
               save in old_SP the SP before the change. A change of
               stack pointer is also assumed to have initialised this
               new stack space. For the typical example of an inferior
               call, gdb writes arguments on the stack, and then
               changes the stack pointer. As the stack increase tool
               function might mark it as undefined, we have to call it
               at the good moment. */
            VG_(memset) ((void *) &old_SP, 0, size);
            (*the_low_target.transfer_register) (tid, regno, (void *) &old_SP, 
                                                 valgrind_to_gdbserver, size, &mod);
         }

         VG_(memset) (buf, 0, size);
         collect_register (regno, buf);
         (*the_low_target.transfer_register) (tid, regno, buf, 
                                              gdbserver_to_valgrind, size, &mod);
         if (mod && VG_(debugLog_getLevel)() > 1) {
            char bufimage [2*size + 1];
            heximage (bufimage, buf, size);
            dlog(2, 
                 "stored register %d size %d name %s value %s "
                 "tid %d status %s\n", 
                 regno, size, the_low_target.reg_defs[regno].name, bufimage, 
                 tid, VG_(name_of_ThreadStatus) (tst->status));
         }
         if (regno == the_low_target.stack_pointer_regno) {
            VG_(memcpy) (&new_SP, buf, size);
            if (old_SP > new_SP) {
               Word delta  = (Word)new_SP - (Word)old_SP;
               dlog(1, 
                    "   stack increase by stack pointer changed from %p to %p "
                    "delta %ld\n",
                    (void*) old_SP, (void *) new_SP,
                    delta);
               VG_TRACK( new_mem_stack_w_ECU, new_SP, -delta, 0 );
               VG_TRACK( new_mem_stack,       new_SP, -delta );
               if (VG_(tdict).track_post_mem_write) {
                  VG_(tdict).track_post_mem_write( Vg_CoreClientReq, tid, 
                                                   new_SP, -delta);
               }
            }
         }
      }
   }
   else {
      for (regno = 0; regno < the_low_target.num_regs; regno++)
         usr_store_inferior_registers (regno);
   }
}

static
void valgrind_fetch_registers (int regno)
{
   usr_fetch_inferior_registers (regno);
}

static
void valgrind_store_registers (int regno)
{
   usr_store_inferior_registers (regno);
}

/* Copy LEN bytes from inferior's memory starting at MEMADDR
   to debugger memory starting at MYADDR.  */

static
int valgrind_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
{
   const void *sourceaddr = C2v (memaddr);
   dlog(2, "reading memory %p size %d\n", sourceaddr, len);
   if (!VG_(am_is_valid_for_client_or_free_or_resvn) ((Addr) sourceaddr, 
                                                      len, VKI_PROT_READ)) {
      dlog(1, "error reading memory %p size %d\n", sourceaddr, len);
      return -1;
   }
   VG_(memcpy) (myaddr, sourceaddr, len);
   return 0;
}

/* Copy LEN bytes of data from debugger memory at MYADDR
   to inferior's memory at MEMADDR.
   On failure (cannot write the inferior)
   returns the value of errno.  */

static
int valgrind_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
{
   void *targetaddr = C2v (memaddr);
   dlog(2, "writing memory %p size %d\n", targetaddr, len);
   if (!VG_(am_is_valid_for_client_or_free_or_resvn) ((Addr)targetaddr, 
                                                      len, VKI_PROT_WRITE)) {
      dlog(1, "error writing memory %p size %d\n", targetaddr, len);
      return -1;
   }
   if (len > 0) {
      VG_(memcpy) (targetaddr, myaddr, len);
      if (VG_(tdict).track_post_mem_write) {
         /* Inform the tool of the post memwrite.  Note that we do the
            minimum necessary to avoid complains from e.g.
            memcheck. The idea is that the debugger is as least
            intrusive as possible.  So, we do not inform of the pre
            mem write (and in any case, this would cause problems with
            memcheck that does not like our CorePart in
            pre_mem_write. */
         ThreadState *tst = (ThreadState *) inferior_target_data (current_inferior);
         ThreadId tid = tst->tid;
         VG_(tdict).track_post_mem_write( Vg_CoreClientReq, tid, (Addr) targetaddr, len );
      }
   }
   return 0;
}

/* insert or remove a breakpoint */
static
int valgrind_point (Bool insert, char type, CORE_ADDR addr, int len)
{
   PointKind kind;
   switch (type) {
   case '0': /* implemented by inserting checks at each instruction in sb */
      kind = software_breakpoint;
      break;
   case '1': /* hw breakpoint, same implementation as sw breakpoint */
      kind = hardware_breakpoint;
      break;
   case '2':
      kind = write_watchpoint;
      break;
   case '3':
      kind = read_watchpoint;
      break;
   case '4':
      kind = access_watchpoint;
      break;
   default:
      vg_assert (0);
   }

   /* Attention: gdbserver convention differs: 0 means ok; 1 means not ok */
   if (VG_(gdbserver_point) (kind, insert, addr, len))
      return 0;
   else
      return 1; /* error or unsupported */
}

static
void valgrind_send_signal (int sig)
{
   dlog(1, "valgrind_send_signal %d called ????\n", sig); 
}

static
char* valgrind_target_xml (void)
{
   return (char *) the_low_target.target_xml;
}

static
char* valgrind_shadow_target_xml (void)
{
   return (char *) the_low_target.shadow_target_xml;
}

static
int valgrind_insert_point (char type, CORE_ADDR addr, int len)
{
   return valgrind_point (/* insert */ True, type, addr, len);
}

static
int valgrind_remove_point (char type, CORE_ADDR addr, int len)
{
   return valgrind_point (/* insert*/ False, type, addr, len);
}

static CORE_ADDR stopped_data_address = 0;
void VG_(set_watchpoint_stop_address) (Addr addr)
{
   stopped_data_address = addr;
}

static
int valgrind_stopped_by_watchpoint (void)
{
   return stopped_data_address != 0;
}

static
CORE_ADDR valgrind_stopped_data_address (void)
{
   return stopped_data_address;
}

/* pc at which we last stopped */
static CORE_ADDR stop_pc;

/* pc at which we resume. 
   If stop_pc != resume_pc, it means
      gdb/gdbserver has changed the pc so as to have either
      a    "continue by jumping at that address"
      or a "continue at that address to call some code from gdb".
*/
static CORE_ADDR resume_pc;

static int signal_to_report;

void gdbserver_signal_encountered (Int sigNo)
{
   signal_to_report = sigNo;
}

static int signal_to_deliver;
Bool gdbserver_deliver_signal (Int sigNo)
{
   return sigNo == signal_to_deliver;
}

static
char* sym (Addr addr)
{
   static char buf[200];
   VG_(describe_IP) (addr, buf, 200);
   return buf;
}

ThreadId vgdb_interrupted_tid = 0;
/* called to wait for the process to stop */
static
unsigned char valgrind_wait (char *ourstatus)
{
   int pid;
   unsigned long wptid;
   ThreadState *tst;
   enum target_signal sig;

   pid = VG_(getpid) ();
   dlog(1, "enter valgrind_wait pid %d\n", pid);

   regcache_invalidate();
   valgrind_update_threads(pid);

   /* in valgrind, we consider that a wait always succeeds with STOPPED 'T' 
      and with a signal TRAP (i.e. a breakpoint), unless there is
      a signal to report. */
   *ourstatus = 'T';
   if (signal_to_report == 0)
      sig = TARGET_SIGNAL_TRAP;
   else
      sig = target_signal_from_host(signal_to_report);
   
   if (vgdb_interrupted_tid != 0)
      tst = VG_(get_ThreadState) (vgdb_interrupted_tid);
   else
      tst = VG_(get_ThreadState) (VG_(running_tid));
   wptid = tst->os_state.lwpid;
   /* we can only change the current_inferior when the wptid references
      an existing thread. Otherwise, we are still in the init phase.
      (hack similar to main thread hack in valgrind_update_threads) */
   if (tst->os_state.lwpid)
      current_inferior = gdb_id_to_thread (wptid);
   stop_pc = (*the_low_target.get_pc) ();
   
   dlog(1,
        "exit valgrind_wait returns ptid %s stop_pc %s signal %d\n", 
        image_ptid (wptid), sym (stop_pc), sig);
   return sig;
}

/* 0 => not single stepping.
   1 => single stepping asked by gdb
   2 => single stepping asked by valgrind (watchpoint) */
static int stepping = 0;

/* called when the process is to be resumed */
static
void valgrind_resume (struct thread_resume *resume_info)
{
   dlog(1,
        "resume_info thread %ld leave_stopped %d step %d sig %d stepping %d\n", 
        resume_info->thread,
        resume_info->leave_stopped,
        resume_info->step,
        resume_info->sig,
        stepping);
   if (valgrind_stopped_by_watchpoint()) {
      dlog(1, "clearing watchpoint stopped_data_address %p\n",
           C2v(stopped_data_address));
      VG_(set_watchpoint_stop_address) ((Addr) 0);
   }
   signal_to_deliver = resume_info->sig;
   
   stepping = resume_info->step;
   resume_pc = (*the_low_target.get_pc) ();
   if (resume_pc != stop_pc) {
      dlog(1,
           "stop_pc %p changed to be resume_pc %s\n",
           C2v(stop_pc), sym(resume_pc));
   }
   regcache_invalidate();
}

Addr valgrind_get_ignore_break_once(void)
{
   if (valgrind_single_stepping())
      return resume_pc;
   else
      return 0;
}


void valgrind_set_single_stepping(Bool set)
{
   if (set)
      stepping = 2;
   else
      stepping = 0;
}

Bool valgrind_single_stepping(void)
{
   if (stepping)
      return True;
   else
      return False;
}

static struct target_ops valgrind_target_ops = {
   valgrind_thread_alive,
   valgrind_resume,
   valgrind_wait,
   valgrind_fetch_registers,
   valgrind_store_registers,
   valgrind_read_memory,
   valgrind_write_memory,
   valgrind_send_signal,
   valgrind_target_xml,
   valgrind_shadow_target_xml,
   valgrind_insert_point,
   valgrind_remove_point,
   valgrind_stopped_by_watchpoint,
   valgrind_stopped_data_address,
};


/* returns a pointer to the architecture state corresponding to
   the provided register set: 0 => normal guest registers,
                              1 => shadow1
                              2 => shadow2
*/
VexGuestArchState* get_arch (int set, ThreadState* tst) 
{
  switch (set) {
  case 0: return &tst->arch.vex;
  case 1: return &tst->arch.vex_shadow1;
  case 2: return &tst->arch.vex_shadow2;
  default: vg_assert(0);
  }
}

static int non_shadow_num_regs = 0;
static struct reg *non_shadow_reg_defs = NULL;
void initialize_shadow_low(Bool shadow_mode)
{
  if (non_shadow_reg_defs == NULL) {
    non_shadow_reg_defs = the_low_target.reg_defs;
    non_shadow_num_regs = the_low_target.num_regs;
  }

  regcache_invalidate();
  if (the_low_target.reg_defs != non_shadow_reg_defs) {
     free (the_low_target.reg_defs);
  }
  if (shadow_mode) {
    the_low_target.num_regs = 3 * non_shadow_num_regs;
    the_low_target.reg_defs = build_shadow_arch (non_shadow_reg_defs, non_shadow_num_regs);
  } else {
    the_low_target.num_regs = non_shadow_num_regs;
    the_low_target.reg_defs = non_shadow_reg_defs;
  }
  set_register_cache (the_low_target.reg_defs, the_low_target.num_regs);
}

void initialize_low(void)
{
   set_target_ops (&valgrind_target_ops);

#if defined(VGA_x86)
   x86_init_architecture(&the_low_target);
#elif defined(VGA_amd64)
   amd64_init_architecture(&the_low_target);
#elif defined(VGA_arm)
   arm_init_architecture(&the_low_target);
#elif defined(VGA_ppc32)
   ppc32_init_architecture(&the_low_target);
#elif defined(VGA_ppc64)
   ppc64_init_architecture(&the_low_target);
#elif defined(VGA_s390x)
   s390x_init_architecture(&the_low_target);
#else
   architecture missing in valgrind-low.c
#endif

}