1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
|
/*--------------------------------------------------------------------*/
/*--- Machine-related stuff. m_machine.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of Valgrind, a dynamic binary instrumentation
framework.
Copyright (C) 2000-2011 Julian Seward
jseward@acm.org
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#ifdef __powerpc__
# pragma GCC optimize ("-O0")
#endif
#include "pub_core_basics.h"
#include "pub_core_vki.h"
#include "pub_core_libcsetjmp.h" // setjmp facilities
#include "pub_core_threadstate.h"
#include "pub_core_libcassert.h"
#include "pub_core_libcbase.h"
#include "pub_core_libcfile.h"
#include "pub_core_mallocfree.h"
#include "pub_core_machine.h"
#include "pub_core_cpuid.h"
#include "pub_core_libcsignal.h" // for ppc32 messing with SIGILL and SIGFPE
#include "pub_core_debuglog.h"
#define INSTR_PTR(regs) ((regs).vex.VG_INSTR_PTR)
#define STACK_PTR(regs) ((regs).vex.VG_STACK_PTR)
#define FRAME_PTR(regs) ((regs).vex.VG_FRAME_PTR)
Addr VG_(get_IP) ( ThreadId tid ) {
return INSTR_PTR( VG_(threads)[tid].arch );
}
Addr VG_(get_SP) ( ThreadId tid ) {
return STACK_PTR( VG_(threads)[tid].arch );
}
Addr VG_(get_FP) ( ThreadId tid ) {
return FRAME_PTR( VG_(threads)[tid].arch );
}
void VG_(set_IP) ( ThreadId tid, Addr ip ) {
INSTR_PTR( VG_(threads)[tid].arch ) = ip;
}
void VG_(set_SP) ( ThreadId tid, Addr sp ) {
STACK_PTR( VG_(threads)[tid].arch ) = sp;
}
void VG_(get_UnwindStartRegs) ( /*OUT*/UnwindStartRegs* regs,
ThreadId tid )
{
# if defined(VGA_x86)
regs->r_pc = (ULong)VG_(threads)[tid].arch.vex.guest_EIP;
regs->r_sp = (ULong)VG_(threads)[tid].arch.vex.guest_ESP;
regs->misc.X86.r_ebp
= VG_(threads)[tid].arch.vex.guest_EBP;
# elif defined(VGA_amd64)
regs->r_pc = VG_(threads)[tid].arch.vex.guest_RIP;
regs->r_sp = VG_(threads)[tid].arch.vex.guest_RSP;
regs->misc.AMD64.r_rbp
= VG_(threads)[tid].arch.vex.guest_RBP;
# elif defined(VGA_ppc32)
regs->r_pc = (ULong)VG_(threads)[tid].arch.vex.guest_CIA;
regs->r_sp = (ULong)VG_(threads)[tid].arch.vex.guest_GPR1;
regs->misc.PPC32.r_lr
= VG_(threads)[tid].arch.vex.guest_LR;
# elif defined(VGA_ppc64)
regs->r_pc = VG_(threads)[tid].arch.vex.guest_CIA;
regs->r_sp = VG_(threads)[tid].arch.vex.guest_GPR1;
regs->misc.PPC64.r_lr
= VG_(threads)[tid].arch.vex.guest_LR;
# elif defined(VGA_arm)
regs->r_pc = (ULong)VG_(threads)[tid].arch.vex.guest_R15T;
regs->r_sp = (ULong)VG_(threads)[tid].arch.vex.guest_R13;
regs->misc.ARM.r14
= VG_(threads)[tid].arch.vex.guest_R14;
regs->misc.ARM.r12
= VG_(threads)[tid].arch.vex.guest_R12;
regs->misc.ARM.r11
= VG_(threads)[tid].arch.vex.guest_R11;
regs->misc.ARM.r7
= VG_(threads)[tid].arch.vex.guest_R7;
# elif defined(VGA_s390x)
regs->r_pc = (ULong)VG_(threads)[tid].arch.vex.guest_IA;
regs->r_sp = (ULong)VG_(threads)[tid].arch.vex.guest_SP;
regs->misc.S390X.r_fp
= VG_(threads)[tid].arch.vex.guest_r11;
regs->misc.S390X.r_lr
= VG_(threads)[tid].arch.vex.guest_r14;
# else
# error "Unknown arch"
# endif
}
void VG_(set_syscall_return_shadows) ( ThreadId tid,
/* shadow vals for the result */
UWord s1res, UWord s2res,
/* shadow vals for the error val */
UWord s1err, UWord s2err )
{
# if defined(VGP_x86_linux)
VG_(threads)[tid].arch.vex_shadow1.guest_EAX = s1res;
VG_(threads)[tid].arch.vex_shadow2.guest_EAX = s2res;
# elif defined(VGP_amd64_linux)
VG_(threads)[tid].arch.vex_shadow1.guest_RAX = s1res;
VG_(threads)[tid].arch.vex_shadow2.guest_RAX = s2res;
# elif defined(VGP_ppc32_linux) || defined(VGP_ppc64_linux)
VG_(threads)[tid].arch.vex_shadow1.guest_GPR3 = s1res;
VG_(threads)[tid].arch.vex_shadow2.guest_GPR3 = s2res;
# elif defined(VGP_arm_linux)
VG_(threads)[tid].arch.vex_shadow1.guest_R0 = s1res;
VG_(threads)[tid].arch.vex_shadow2.guest_R0 = s2res;
# elif defined(VGO_darwin)
// GrP fixme darwin syscalls may return more values (2 registers plus error)
# elif defined(VGP_s390x_linux)
VG_(threads)[tid].arch.vex_shadow1.guest_r2 = s1res;
VG_(threads)[tid].arch.vex_shadow2.guest_r2 = s2res;
# else
# error "Unknown plat"
# endif
}
void
VG_(get_shadow_regs_area) ( ThreadId tid,
/*DST*/UChar* dst,
/*SRC*/Int shadowNo, PtrdiffT offset, SizeT size )
{
void* src;
ThreadState* tst;
vg_assert(shadowNo == 0 || shadowNo == 1 || shadowNo == 2);
vg_assert(VG_(is_valid_tid)(tid));
// Bounds check
vg_assert(0 <= offset && offset < sizeof(VexGuestArchState));
vg_assert(offset + size <= sizeof(VexGuestArchState));
// Copy
tst = & VG_(threads)[tid];
src = NULL;
switch (shadowNo) {
case 0: src = (void*)(((Addr)&(tst->arch.vex)) + offset); break;
case 1: src = (void*)(((Addr)&(tst->arch.vex_shadow1)) + offset); break;
case 2: src = (void*)(((Addr)&(tst->arch.vex_shadow2)) + offset); break;
}
tl_assert(src != NULL);
VG_(memcpy)( dst, src, size);
}
void
VG_(set_shadow_regs_area) ( ThreadId tid,
/*DST*/Int shadowNo, PtrdiffT offset, SizeT size,
/*SRC*/const UChar* src )
{
void* dst;
ThreadState* tst;
vg_assert(shadowNo == 0 || shadowNo == 1 || shadowNo == 2);
vg_assert(VG_(is_valid_tid)(tid));
// Bounds check
vg_assert(0 <= offset && offset < sizeof(VexGuestArchState));
vg_assert(offset + size <= sizeof(VexGuestArchState));
// Copy
tst = & VG_(threads)[tid];
dst = NULL;
switch (shadowNo) {
case 0: dst = (void*)(((Addr)&(tst->arch.vex)) + offset); break;
case 1: dst = (void*)(((Addr)&(tst->arch.vex_shadow1)) + offset); break;
case 2: dst = (void*)(((Addr)&(tst->arch.vex_shadow2)) + offset); break;
}
tl_assert(dst != NULL);
VG_(memcpy)( dst, src, size);
}
static void apply_to_GPs_of_tid(VexGuestArchState* vex, void (*f)(Addr))
{
#if defined(VGA_x86)
(*f)(vex->guest_EAX);
(*f)(vex->guest_ECX);
(*f)(vex->guest_EDX);
(*f)(vex->guest_EBX);
(*f)(vex->guest_ESI);
(*f)(vex->guest_EDI);
(*f)(vex->guest_ESP);
(*f)(vex->guest_EBP);
#elif defined(VGA_amd64)
(*f)(vex->guest_RAX);
(*f)(vex->guest_RCX);
(*f)(vex->guest_RDX);
(*f)(vex->guest_RBX);
(*f)(vex->guest_RSI);
(*f)(vex->guest_RDI);
(*f)(vex->guest_RSP);
(*f)(vex->guest_RBP);
(*f)(vex->guest_R8);
(*f)(vex->guest_R9);
(*f)(vex->guest_R10);
(*f)(vex->guest_R11);
(*f)(vex->guest_R12);
(*f)(vex->guest_R13);
(*f)(vex->guest_R14);
(*f)(vex->guest_R15);
#elif defined(VGA_ppc32) || defined(VGA_ppc64)
(*f)(vex->guest_GPR0);
(*f)(vex->guest_GPR1);
(*f)(vex->guest_GPR2);
(*f)(vex->guest_GPR3);
(*f)(vex->guest_GPR4);
(*f)(vex->guest_GPR5);
(*f)(vex->guest_GPR6);
(*f)(vex->guest_GPR7);
(*f)(vex->guest_GPR8);
(*f)(vex->guest_GPR9);
(*f)(vex->guest_GPR10);
(*f)(vex->guest_GPR11);
(*f)(vex->guest_GPR12);
(*f)(vex->guest_GPR13);
(*f)(vex->guest_GPR14);
(*f)(vex->guest_GPR15);
(*f)(vex->guest_GPR16);
(*f)(vex->guest_GPR17);
(*f)(vex->guest_GPR18);
(*f)(vex->guest_GPR19);
(*f)(vex->guest_GPR20);
(*f)(vex->guest_GPR21);
(*f)(vex->guest_GPR22);
(*f)(vex->guest_GPR23);
(*f)(vex->guest_GPR24);
(*f)(vex->guest_GPR25);
(*f)(vex->guest_GPR26);
(*f)(vex->guest_GPR27);
(*f)(vex->guest_GPR28);
(*f)(vex->guest_GPR29);
(*f)(vex->guest_GPR30);
(*f)(vex->guest_GPR31);
(*f)(vex->guest_CTR);
(*f)(vex->guest_LR);
#elif defined(VGA_arm)
(*f)(vex->guest_R0);
(*f)(vex->guest_R1);
(*f)(vex->guest_R2);
(*f)(vex->guest_R3);
(*f)(vex->guest_R4);
(*f)(vex->guest_R5);
(*f)(vex->guest_R6);
(*f)(vex->guest_R8);
(*f)(vex->guest_R9);
(*f)(vex->guest_R10);
(*f)(vex->guest_R11);
(*f)(vex->guest_R12);
(*f)(vex->guest_R13);
(*f)(vex->guest_R14);
#elif defined(VGA_s390x)
(*f)(vex->guest_r0);
(*f)(vex->guest_r1);
(*f)(vex->guest_r2);
(*f)(vex->guest_r3);
(*f)(vex->guest_r4);
(*f)(vex->guest_r5);
(*f)(vex->guest_r6);
(*f)(vex->guest_r7);
(*f)(vex->guest_r8);
(*f)(vex->guest_r9);
(*f)(vex->guest_r10);
(*f)(vex->guest_r11);
(*f)(vex->guest_r12);
(*f)(vex->guest_r13);
(*f)(vex->guest_r14);
(*f)(vex->guest_r15);
#else
# error Unknown arch
#endif
}
void VG_(apply_to_GP_regs)(void (*f)(UWord))
{
ThreadId tid;
for (tid = 1; tid < VG_N_THREADS; tid++) {
if (VG_(is_valid_tid)(tid)) {
ThreadState* tst = VG_(get_ThreadState)(tid);
apply_to_GPs_of_tid(&(tst->arch.vex), f);
}
}
}
void VG_(thread_stack_reset_iter)(/*OUT*/ThreadId* tid)
{
*tid = (ThreadId)(-1);
}
Bool VG_(thread_stack_next)(/*MOD*/ThreadId* tid,
/*OUT*/Addr* stack_min,
/*OUT*/Addr* stack_max)
{
ThreadId i;
for (i = (*tid)+1; i < VG_N_THREADS; i++) {
if (i == VG_INVALID_THREADID)
continue;
if (VG_(threads)[i].status != VgTs_Empty) {
*tid = i;
*stack_min = VG_(get_SP)(i);
*stack_max = VG_(threads)[i].client_stack_highest_word;
return True;
}
}
return False;
}
Addr VG_(thread_get_stack_max)(ThreadId tid)
{
vg_assert(0 <= tid && tid < VG_N_THREADS && tid != VG_INVALID_THREADID);
vg_assert(VG_(threads)[tid].status != VgTs_Empty);
return VG_(threads)[tid].client_stack_highest_word;
}
SizeT VG_(thread_get_stack_size)(ThreadId tid)
{
vg_assert(0 <= tid && tid < VG_N_THREADS && tid != VG_INVALID_THREADID);
vg_assert(VG_(threads)[tid].status != VgTs_Empty);
return VG_(threads)[tid].client_stack_szB;
}
Addr VG_(thread_get_altstack_min)(ThreadId tid)
{
vg_assert(0 <= tid && tid < VG_N_THREADS && tid != VG_INVALID_THREADID);
vg_assert(VG_(threads)[tid].status != VgTs_Empty);
return (Addr)VG_(threads)[tid].altstack.ss_sp;
}
SizeT VG_(thread_get_altstack_size)(ThreadId tid)
{
vg_assert(0 <= tid && tid < VG_N_THREADS && tid != VG_INVALID_THREADID);
vg_assert(VG_(threads)[tid].status != VgTs_Empty);
return VG_(threads)[tid].altstack.ss_size;
}
//-------------------------------------------------------------
/* Details about the capabilities of the underlying (host) CPU. These
details are acquired by (1) enquiring with the CPU at startup, or
(2) from the AT_SYSINFO entries the kernel gave us (ppc32 cache
line size). It's a bit nasty in the sense that there's no obvious
way to stop uses of some of this info before it's ready to go.
Current dependencies are:
x86: initially: call VG_(machine_get_hwcaps)
then safe to use VG_(machine_get_VexArchInfo)
and VG_(machine_x86_have_mxcsr)
-------------
amd64: initially: call VG_(machine_get_hwcaps)
then safe to use VG_(machine_get_VexArchInfo)
-------------
ppc32: initially: call VG_(machine_get_hwcaps)
call VG_(machine_ppc32_set_clszB)
then safe to use VG_(machine_get_VexArchInfo)
and VG_(machine_ppc32_has_FP)
and VG_(machine_ppc32_has_VMX)
-------------
ppc64: initially: call VG_(machine_get_hwcaps)
call VG_(machine_ppc64_set_clszB)
then safe to use VG_(machine_get_VexArchInfo)
and VG_(machine_ppc64_has_VMX)
-------------
s390x: initially: call VG_(machine_get_hwcaps)
then safe to use VG_(machine_get_VexArchInfo)
VG_(machine_get_hwcaps) may use signals (although it attempts to
leave signal state unchanged) and therefore should only be
called before m_main sets up the client's signal state.
*/
/* --------- State --------- */
static Bool hwcaps_done = False;
/* --- all archs --- */
static VexArch va;
static VexArchInfo vai;
#if defined(VGA_x86)
UInt VG_(machine_x86_have_mxcsr) = 0;
#endif
#if defined(VGA_ppc32)
UInt VG_(machine_ppc32_has_FP) = 0;
UInt VG_(machine_ppc32_has_VMX) = 0;
#endif
#if defined(VGA_ppc64)
ULong VG_(machine_ppc64_has_VMX) = 0;
#endif
#if defined(VGA_arm)
Int VG_(machine_arm_archlevel) = 4;
#endif
/* fixs390: anything for s390x here ? */
/* For hwcaps detection on ppc32/64, s390x, and arm we'll need to do SIGILL
testing, so we need a VG_MINIMAL_JMP_BUF. */
#if defined(VGA_ppc32) || defined(VGA_ppc64) \
|| defined(VGA_arm) || defined(VGA_s390x)
#include "pub_tool_libcsetjmp.h"
static VG_MINIMAL_JMP_BUF(env_unsup_insn);
static void handler_unsup_insn ( Int x ) {
VG_MINIMAL_LONGJMP(env_unsup_insn);
}
#endif
/* Helper function for VG_(machine_get_hwcaps), assumes the SIGILL/etc
* handlers are installed. Determines the the sizes affected by dcbz
* and dcbzl instructions and updates the given VexArchInfo structure
* accordingly.
*
* Not very defensive: assumes that as long as the dcbz/dcbzl
* instructions don't raise a SIGILL, that they will zero an aligned,
* contiguous block of memory of a sensible size. */
#if defined(VGA_ppc32) || defined(VGA_ppc64)
static void find_ppc_dcbz_sz(VexArchInfo *arch_info)
{
Int dcbz_szB = 0;
Int dcbzl_szB;
# define MAX_DCBZL_SZB (128) /* largest known effect of dcbzl */
char test_block[4*MAX_DCBZL_SZB];
char *aligned = test_block;
Int i;
/* round up to next max block size, assumes MAX_DCBZL_SZB is pof2 */
aligned = (char *)(((HWord)aligned + MAX_DCBZL_SZB) & ~(MAX_DCBZL_SZB - 1));
vg_assert((aligned + MAX_DCBZL_SZB) <= &test_block[sizeof(test_block)]);
/* dcbz often clears 32B, although sometimes whatever the native cache
* block size is */
VG_(memset)(test_block, 0xff, sizeof(test_block));
__asm__ __volatile__("dcbz 0,%0"
: /*out*/
: "r" (aligned) /*in*/
: "memory" /*clobber*/);
for (dcbz_szB = 0, i = 0; i < sizeof(test_block); ++i) {
if (!test_block[i])
++dcbz_szB;
}
vg_assert(dcbz_szB == 32 || dcbz_szB == 64 || dcbz_szB == 128);
/* dcbzl clears 128B on G5/PPC970, and usually 32B on other platforms */
if (VG_MINIMAL_SETJMP(env_unsup_insn)) {
dcbzl_szB = 0; /* indicates unsupported */
}
else {
VG_(memset)(test_block, 0xff, sizeof(test_block));
/* some older assemblers won't understand the dcbzl instruction
* variant, so we directly emit the instruction ourselves */
__asm__ __volatile__("mr 9, %0 ; .long 0x7C204FEC" /*dcbzl 0,9*/
: /*out*/
: "r" (aligned) /*in*/
: "memory", "r9" /*clobber*/);
for (dcbzl_szB = 0, i = 0; i < sizeof(test_block); ++i) {
if (!test_block[i])
++dcbzl_szB;
}
vg_assert(dcbzl_szB == 32 || dcbzl_szB == 64 || dcbzl_szB == 128);
}
arch_info->ppc_dcbz_szB = dcbz_szB;
arch_info->ppc_dcbzl_szB = dcbzl_szB;
VG_(debugLog)(1, "machine", "dcbz_szB=%d dcbzl_szB=%d\n",
dcbz_szB, dcbzl_szB);
# undef MAX_DCBZL_SZB
}
#endif /* defined(VGA_ppc32) || defined(VGA_ppc64) */
#ifdef VGA_s390x
/* Read /proc/cpuinfo. Look for lines like these
processor 0: version = FF, identification = 0117C9, machine = 2064
and return the machine model or VEX_S390X_MODEL_INVALID on error. */
static UInt VG_(get_machine_model)(void)
{
static struct model_map {
HChar name[5];
UInt id;
} model_map[] = {
{ "2064", VEX_S390X_MODEL_Z900 },
{ "2066", VEX_S390X_MODEL_Z800 },
{ "2084", VEX_S390X_MODEL_Z990 },
{ "2086", VEX_S390X_MODEL_Z890 },
{ "2094", VEX_S390X_MODEL_Z9_EC },
{ "2096", VEX_S390X_MODEL_Z9_BC },
{ "2097", VEX_S390X_MODEL_Z10_EC },
{ "2098", VEX_S390X_MODEL_Z10_BC },
{ "2817", VEX_S390X_MODEL_Z196 },
{ "2818", VEX_S390X_MODEL_Z114 },
};
Int model, n, fh;
SysRes fd;
SizeT num_bytes, file_buf_size;
HChar *p, *m, *model_name, *file_buf;
/* Slurp contents of /proc/cpuinfo into FILE_BUF */
fd = VG_(open)( "/proc/cpuinfo", 0, VKI_S_IRUSR );
if ( sr_isError(fd) ) return VEX_S390X_MODEL_INVALID;
fh = sr_Res(fd);
/* Determine the size of /proc/cpuinfo.
Work around broken-ness in /proc file system implementation.
fstat returns a zero size for /proc/cpuinfo although it is
claimed to be a regular file. */
num_bytes = 0;
file_buf_size = 1000;
file_buf = VG_(malloc)("cpuinfo", file_buf_size + 1);
while (42) {
n = VG_(read)(fh, file_buf, file_buf_size);
if (n < 0) break;
num_bytes += n;
if (n < file_buf_size) break; /* reached EOF */
}
if (n < 0) num_bytes = 0; /* read error; ignore contents */
if (num_bytes > file_buf_size) {
VG_(free)( file_buf );
VG_(lseek)( fh, 0, VKI_SEEK_SET );
file_buf = VG_(malloc)( "cpuinfo", num_bytes + 1 );
n = VG_(read)( fh, file_buf, num_bytes );
if (n < 0) num_bytes = 0;
}
file_buf[num_bytes] = '\0';
VG_(close)(fh);
/* Parse file */
model = VEX_S390X_MODEL_INVALID;
for (p = file_buf; *p; ++p) {
/* Beginning of line */
if (VG_(strncmp)( p, "processor", sizeof "processor" - 1 ) != 0) continue;
m = VG_(strstr)( p, "machine" );
if (m == NULL) continue;
p = m + sizeof "machine" - 1;
while ( VG_(isspace)( *p ) || *p == '=') {
if (*p == '\n') goto next_line;
++p;
}
model_name = p;
for (n = 0; n < sizeof model_map / sizeof model_map[0]; ++n) {
struct model_map *mm = model_map + n;
SizeT len = VG_(strlen)( mm->name );
if ( VG_(strncmp)( mm->name, model_name, len ) == 0 &&
VG_(isspace)( model_name[len] )) {
if (mm->id < model) model = mm->id;
p = model_name + len;
break;
}
}
/* Skip until end-of-line */
while (*p != '\n')
++p;
next_line: ;
}
VG_(free)( file_buf );
VG_(debugLog)(1, "machine", "model = %s\n",
model == VEX_S390X_MODEL_INVALID ? "UNKNOWN"
: model_map[model].name);
return model;
}
#endif /* VGA_s390x */
/* Determine what insn set and insn set variant the host has, and
record it. To be called once at system startup. Returns False if
this a CPU incapable of running Valgrind. */
Bool VG_(machine_get_hwcaps)( void )
{
vg_assert(hwcaps_done == False);
hwcaps_done = True;
// Whack default settings into vai, so that we only need to fill in
// any interesting bits.
LibVEX_default_VexArchInfo(&vai);
#if defined(VGA_x86)
{ Bool have_sse1, have_sse2, have_cx8, have_lzcnt;
UInt eax, ebx, ecx, edx, max_extended;
UChar vstr[13];
vstr[0] = 0;
if (!VG_(has_cpuid)())
/* we can't do cpuid at all. Give up. */
return False;
VG_(cpuid)(0, 0, &eax, &ebx, &ecx, &edx);
if (eax < 1)
/* we can't ask for cpuid(x) for x > 0. Give up. */
return False;
/* Get processor ID string, and max basic/extended index
values. */
VG_(memcpy)(&vstr[0], &ebx, 4);
VG_(memcpy)(&vstr[4], &edx, 4);
VG_(memcpy)(&vstr[8], &ecx, 4);
vstr[12] = 0;
VG_(cpuid)(0x80000000, 0, &eax, &ebx, &ecx, &edx);
max_extended = eax;
/* get capabilities bits into edx */
VG_(cpuid)(1, 0, &eax, &ebx, &ecx, &edx);
have_sse1 = (edx & (1<<25)) != 0; /* True => have sse insns */
have_sse2 = (edx & (1<<26)) != 0; /* True => have sse2 insns */
/* cmpxchg8b is a minimum requirement now; if we don't have it we
must simply give up. But all CPUs since Pentium-I have it, so
that doesn't seem like much of a restriction. */
have_cx8 = (edx & (1<<8)) != 0; /* True => have cmpxchg8b */
if (!have_cx8)
return False;
/* Figure out if this is an AMD that can do LZCNT. */
have_lzcnt = False;
if (0 == VG_(strcmp)(vstr, "AuthenticAMD")
&& max_extended >= 0x80000001) {
VG_(cpuid)(0x80000001, 0, &eax, &ebx, &ecx, &edx);
have_lzcnt = (ecx & (1<<5)) != 0; /* True => have LZCNT */
}
if (have_sse2 && have_sse1) {
va = VexArchX86;
vai.hwcaps = VEX_HWCAPS_X86_SSE1;
vai.hwcaps |= VEX_HWCAPS_X86_SSE2;
if (have_lzcnt)
vai.hwcaps |= VEX_HWCAPS_X86_LZCNT;
VG_(machine_x86_have_mxcsr) = 1;
return True;
}
if (have_sse1) {
va = VexArchX86;
vai.hwcaps = VEX_HWCAPS_X86_SSE1;
VG_(machine_x86_have_mxcsr) = 1;
return True;
}
va = VexArchX86;
vai.hwcaps = 0; /*baseline - no sse at all*/
VG_(machine_x86_have_mxcsr) = 0;
return True;
}
#elif defined(VGA_amd64)
{ Bool have_sse3, have_cx8, have_cx16;
Bool have_lzcnt;
UInt eax, ebx, ecx, edx, max_extended;
UChar vstr[13];
vstr[0] = 0;
if (!VG_(has_cpuid)())
/* we can't do cpuid at all. Give up. */
return False;
VG_(cpuid)(0, 0, &eax, &ebx, &ecx, &edx);
if (eax < 1)
/* we can't ask for cpuid(x) for x > 0. Give up. */
return False;
/* Get processor ID string, and max basic/extended index
values. */
VG_(memcpy)(&vstr[0], &ebx, 4);
VG_(memcpy)(&vstr[4], &edx, 4);
VG_(memcpy)(&vstr[8], &ecx, 4);
vstr[12] = 0;
VG_(cpuid)(0x80000000, 0, &eax, &ebx, &ecx, &edx);
max_extended = eax;
/* get capabilities bits into edx */
VG_(cpuid)(1, 0, &eax, &ebx, &ecx, &edx);
// we assume that SSE1 and SSE2 are available by default
have_sse3 = (ecx & (1<<0)) != 0; /* True => have sse3 insns */
// ssse3 is ecx:9
// sse41 is ecx:19
// sse42 is ecx:20
/* cmpxchg8b is a minimum requirement now; if we don't have it we
must simply give up. But all CPUs since Pentium-I have it, so
that doesn't seem like much of a restriction. */
have_cx8 = (edx & (1<<8)) != 0; /* True => have cmpxchg8b */
if (!have_cx8)
return False;
/* on amd64 we tolerate older cpus, which don't have cmpxchg16b */
have_cx16 = (ecx & (1<<13)) != 0; /* True => have cmpxchg16b */
/* Figure out if this is an AMD that can do LZCNT. */
have_lzcnt = False;
if (0 == VG_(strcmp)(vstr, "AuthenticAMD")
&& max_extended >= 0x80000001) {
VG_(cpuid)(0x80000001, 0, &eax, &ebx, &ecx, &edx);
have_lzcnt = (ecx & (1<<5)) != 0; /* True => have LZCNT */
}
va = VexArchAMD64;
vai.hwcaps = (have_sse3 ? VEX_HWCAPS_AMD64_SSE3 : 0)
| (have_cx16 ? VEX_HWCAPS_AMD64_CX16 : 0)
| (have_lzcnt ? VEX_HWCAPS_AMD64_LZCNT : 0);
return True;
}
#elif defined(VGA_ppc32)
{
/* Find out which subset of the ppc32 instruction set is supported by
verifying whether various ppc32 instructions generate a SIGILL
or a SIGFPE. An alternative approach is to check the AT_HWCAP and
AT_PLATFORM entries in the ELF auxiliary table -- see also
the_iifii.client_auxv in m_main.c.
*/
vki_sigset_t saved_set, tmp_set;
vki_sigaction_fromK_t saved_sigill_act, saved_sigfpe_act;
vki_sigaction_toK_t tmp_sigill_act, tmp_sigfpe_act;
volatile Bool have_F, have_V, have_FX, have_GX, have_VX;
Int r;
/* This is a kludge. Really we ought to back-convert saved_act
into a toK_t using VG_(convert_sigaction_fromK_to_toK), but
since that's a no-op on all ppc32 platforms so far supported,
it's not worth the typing effort. At least include most basic
sanity check: */
vg_assert(sizeof(vki_sigaction_fromK_t) == sizeof(vki_sigaction_toK_t));
VG_(sigemptyset)(&tmp_set);
VG_(sigaddset)(&tmp_set, VKI_SIGILL);
VG_(sigaddset)(&tmp_set, VKI_SIGFPE);
r = VG_(sigprocmask)(VKI_SIG_UNBLOCK, &tmp_set, &saved_set);
vg_assert(r == 0);
r = VG_(sigaction)(VKI_SIGILL, NULL, &saved_sigill_act);
vg_assert(r == 0);
tmp_sigill_act = saved_sigill_act;
r = VG_(sigaction)(VKI_SIGFPE, NULL, &saved_sigfpe_act);
vg_assert(r == 0);
tmp_sigfpe_act = saved_sigfpe_act;
/* NODEFER: signal handler does not return (from the kernel's point of
view), hence if it is to successfully catch a signal more than once,
we need the NODEFER flag. */
tmp_sigill_act.sa_flags &= ~VKI_SA_RESETHAND;
tmp_sigill_act.sa_flags &= ~VKI_SA_SIGINFO;
tmp_sigill_act.sa_flags |= VKI_SA_NODEFER;
tmp_sigill_act.ksa_handler = handler_unsup_insn;
r = VG_(sigaction)(VKI_SIGILL, &tmp_sigill_act, NULL);
vg_assert(r == 0);
tmp_sigfpe_act.sa_flags &= ~VKI_SA_RESETHAND;
tmp_sigfpe_act.sa_flags &= ~VKI_SA_SIGINFO;
tmp_sigfpe_act.sa_flags |= VKI_SA_NODEFER;
tmp_sigfpe_act.ksa_handler = handler_unsup_insn;
r = VG_(sigaction)(VKI_SIGFPE, &tmp_sigfpe_act, NULL);
vg_assert(r == 0);
/* standard FP insns */
have_F = True;
if (VG_MINIMAL_SETJMP(env_unsup_insn)) {
have_F = False;
} else {
__asm__ __volatile__(".long 0xFC000090"); /*fmr 0,0 */
}
/* Altivec insns */
have_V = True;
if (VG_MINIMAL_SETJMP(env_unsup_insn)) {
have_V = False;
} else {
/* Unfortunately some older assemblers don't speak Altivec (or
choose not to), so to be safe we directly emit the 32-bit
word corresponding to "vor 0,0,0". This fixes a build
problem that happens on Debian 3.1 (ppc32), and probably
various other places. */
__asm__ __volatile__(".long 0x10000484"); /*vor 0,0,0*/
}
/* General-Purpose optional (fsqrt, fsqrts) */
have_FX = True;
if (VG_MINIMAL_SETJMP(env_unsup_insn)) {
have_FX = False;
} else {
__asm__ __volatile__(".long 0xFC00002C"); /*fsqrt 0,0 */
}
/* Graphics optional (stfiwx, fres, frsqrte, fsel) */
have_GX = True;
if (VG_MINIMAL_SETJMP(env_unsup_insn)) {
have_GX = False;
} else {
__asm__ __volatile__(".long 0xFC000034"); /* frsqrte 0,0 */
}
/* VSX support implies Power ISA 2.06 */
have_VX = True;
if (VG_MINIMAL_SETJMP(env_unsup_insn)) {
have_VX = False;
} else {
__asm__ __volatile__(".long 0xf0000564"); /* xsabsdp XT,XB */
}
/* determine dcbz/dcbzl sizes while we still have the signal
* handlers registered */
find_ppc_dcbz_sz(&vai);
r = VG_(sigaction)(VKI_SIGILL, &saved_sigill_act, NULL);
vg_assert(r == 0);
r = VG_(sigaction)(VKI_SIGFPE, &saved_sigfpe_act, NULL);
vg_assert(r == 0);
r = VG_(sigprocmask)(VKI_SIG_SETMASK, &saved_set, NULL);
vg_assert(r == 0);
VG_(debugLog)(1, "machine", "F %d V %d FX %d GX %d VX %d\n",
(Int)have_F, (Int)have_V, (Int)have_FX,
(Int)have_GX, (Int)have_VX);
/* Make FP a prerequisite for VMX (bogusly so), and for FX and GX. */
if (have_V && !have_F)
have_V = False;
if (have_FX && !have_F)
have_FX = False;
if (have_GX && !have_F)
have_GX = False;
VG_(machine_ppc32_has_FP) = have_F ? 1 : 0;
VG_(machine_ppc32_has_VMX) = have_V ? 1 : 0;
va = VexArchPPC32;
vai.hwcaps = 0;
if (have_F) vai.hwcaps |= VEX_HWCAPS_PPC32_F;
if (have_V) vai.hwcaps |= VEX_HWCAPS_PPC32_V;
if (have_FX) vai.hwcaps |= VEX_HWCAPS_PPC32_FX;
if (have_GX) vai.hwcaps |= VEX_HWCAPS_PPC32_GX;
if (have_VX) vai.hwcaps |= VEX_HWCAPS_PPC32_VX;
/* But we're not done yet: VG_(machine_ppc32_set_clszB) must be
called before we're ready to go. */
return True;
}
#elif defined(VGA_ppc64)
{
/* Same instruction set detection algorithm as for ppc32. */
vki_sigset_t saved_set, tmp_set;
vki_sigaction_fromK_t saved_sigill_act, saved_sigfpe_act;
vki_sigaction_toK_t tmp_sigill_act, tmp_sigfpe_act;
volatile Bool have_F, have_V, have_FX, have_GX, have_VX;
Int r;
/* This is a kludge. Really we ought to back-convert saved_act
into a toK_t using VG_(convert_sigaction_fromK_to_toK), but
since that's a no-op on all ppc64 platforms so far supported,
it's not worth the typing effort. At least include most basic
sanity check: */
vg_assert(sizeof(vki_sigaction_fromK_t) == sizeof(vki_sigaction_toK_t));
VG_(sigemptyset)(&tmp_set);
VG_(sigaddset)(&tmp_set, VKI_SIGILL);
VG_(sigaddset)(&tmp_set, VKI_SIGFPE);
r = VG_(sigprocmask)(VKI_SIG_UNBLOCK, &tmp_set, &saved_set);
vg_assert(r == 0);
r = VG_(sigaction)(VKI_SIGILL, NULL, &saved_sigill_act);
vg_assert(r == 0);
tmp_sigill_act = saved_sigill_act;
VG_(sigaction)(VKI_SIGFPE, NULL, &saved_sigfpe_act);
tmp_sigfpe_act = saved_sigfpe_act;
/* NODEFER: signal handler does not return (from the kernel's point of
view), hence if it is to successfully catch a signal more than once,
we need the NODEFER flag. */
tmp_sigill_act.sa_flags &= ~VKI_SA_RESETHAND;
tmp_sigill_act.sa_flags &= ~VKI_SA_SIGINFO;
tmp_sigill_act.sa_flags |= VKI_SA_NODEFER;
tmp_sigill_act.ksa_handler = handler_unsup_insn;
VG_(sigaction)(VKI_SIGILL, &tmp_sigill_act, NULL);
tmp_sigfpe_act.sa_flags &= ~VKI_SA_RESETHAND;
tmp_sigfpe_act.sa_flags &= ~VKI_SA_SIGINFO;
tmp_sigfpe_act.sa_flags |= VKI_SA_NODEFER;
tmp_sigfpe_act.ksa_handler = handler_unsup_insn;
VG_(sigaction)(VKI_SIGFPE, &tmp_sigfpe_act, NULL);
/* standard FP insns */
have_F = True;
if (VG_MINIMAL_SETJMP(env_unsup_insn)) {
have_F = False;
} else {
__asm__ __volatile__("fmr 0,0");
}
/* Altivec insns */
have_V = True;
if (VG_MINIMAL_SETJMP(env_unsup_insn)) {
have_V = False;
} else {
__asm__ __volatile__(".long 0x10000484"); /*vor 0,0,0*/
}
/* General-Purpose optional (fsqrt, fsqrts) */
have_FX = True;
if (VG_MINIMAL_SETJMP(env_unsup_insn)) {
have_FX = False;
} else {
__asm__ __volatile__(".long 0xFC00002C"); /*fsqrt 0,0*/
}
/* Graphics optional (stfiwx, fres, frsqrte, fsel) */
have_GX = True;
if (VG_MINIMAL_SETJMP(env_unsup_insn)) {
have_GX = False;
} else {
__asm__ __volatile__(".long 0xFC000034"); /*frsqrte 0,0*/
}
/* VSX support implies Power ISA 2.06 */
have_VX = True;
if (VG_MINIMAL_SETJMP(env_unsup_insn)) {
have_VX = False;
} else {
__asm__ __volatile__(".long 0xf0000564"); /* xsabsdp XT,XB */
}
/* determine dcbz/dcbzl sizes while we still have the signal
* handlers registered */
find_ppc_dcbz_sz(&vai);
VG_(sigaction)(VKI_SIGILL, &saved_sigill_act, NULL);
VG_(sigaction)(VKI_SIGFPE, &saved_sigfpe_act, NULL);
VG_(sigprocmask)(VKI_SIG_SETMASK, &saved_set, NULL);
VG_(debugLog)(1, "machine", "F %d V %d FX %d GX %d VX %d\n",
(Int)have_F, (Int)have_V, (Int)have_FX,
(Int)have_GX, (Int)have_VX);
/* on ppc64, if we don't even have FP, just give up. */
if (!have_F)
return False;
VG_(machine_ppc64_has_VMX) = have_V ? 1 : 0;
va = VexArchPPC64;
vai.hwcaps = 0;
if (have_V) vai.hwcaps |= VEX_HWCAPS_PPC64_V;
if (have_FX) vai.hwcaps |= VEX_HWCAPS_PPC64_FX;
if (have_GX) vai.hwcaps |= VEX_HWCAPS_PPC64_GX;
if (have_VX) vai.hwcaps |= VEX_HWCAPS_PPC64_VX;
/* But we're not done yet: VG_(machine_ppc64_set_clszB) must be
called before we're ready to go. */
return True;
}
#elif defined(VGA_s390x)
{
/* Instruction set detection code borrowed from ppc above. */
vki_sigset_t saved_set, tmp_set;
vki_sigaction_fromK_t saved_sigill_act;
vki_sigaction_toK_t tmp_sigill_act;
volatile Bool have_LDISP, have_EIMM, have_GIE, have_DFP, have_FGX;
Int r, model;
/* Unblock SIGILL and stash away the old action for that signal */
VG_(sigemptyset)(&tmp_set);
VG_(sigaddset)(&tmp_set, VKI_SIGILL);
r = VG_(sigprocmask)(VKI_SIG_UNBLOCK, &tmp_set, &saved_set);
vg_assert(r == 0);
r = VG_(sigaction)(VKI_SIGILL, NULL, &saved_sigill_act);
vg_assert(r == 0);
tmp_sigill_act = saved_sigill_act;
/* NODEFER: signal handler does not return (from the kernel's point of
view), hence if it is to successfully catch a signal more than once,
we need the NODEFER flag. */
tmp_sigill_act.sa_flags &= ~VKI_SA_RESETHAND;
tmp_sigill_act.sa_flags &= ~VKI_SA_SIGINFO;
tmp_sigill_act.sa_flags |= VKI_SA_NODEFER;
tmp_sigill_act.ksa_handler = handler_unsup_insn;
VG_(sigaction)(VKI_SIGILL, &tmp_sigill_act, NULL);
/* Determine hwcaps. Note, we cannot use the stfle insn because it
is not supported on z900. */
have_LDISP = True;
if (VG_MINIMAL_SETJMP(env_unsup_insn)) {
have_LDISP = False;
} else {
/* BASR loads the address of the next insn into r1. Needed to avoid
a segfault in XY. */
__asm__ __volatile__("basr %%r1,%%r0\n\t"
".long 0xe3001000\n\t" /* XY 0,0(%r1) */
".short 0x0057" : : : "r0", "r1", "cc", "memory");
}
have_EIMM = True;
if (VG_MINIMAL_SETJMP(env_unsup_insn)) {
have_EIMM = False;
} else {
__asm__ __volatile__(".long 0xc0090000\n\t" /* iilf r0,0 */
".short 0x0000" : : : "r0", "memory");
}
have_GIE = True;
if (VG_MINIMAL_SETJMP(env_unsup_insn)) {
have_GIE = False;
} else {
__asm__ __volatile__(".long 0xc2010000\n\t" /* msfi r0,0 */
".short 0x0000" : : : "r0", "memory");
}
have_DFP = True;
if (VG_MINIMAL_SETJMP(env_unsup_insn)) {
have_DFP = False;
} else {
__asm__ __volatile__(".long 0xb3d20000"
: : : "r0", "cc", "memory"); /* adtr r0,r0,r0 */
}
have_FGX = True;
if (VG_MINIMAL_SETJMP(env_unsup_insn)) {
have_FGX = False;
} else {
__asm__ __volatile__(".long 0xb3cd0000" : : : "r0"); /* lgdr r0,f0 */
}
/* Restore signals */
r = VG_(sigaction)(VKI_SIGILL, &saved_sigill_act, NULL);
vg_assert(r == 0);
r = VG_(sigprocmask)(VKI_SIG_SETMASK, &saved_set, NULL);
vg_assert(r == 0);
va = VexArchS390X;
model = VG_(get_machine_model)();
VG_(debugLog)(1, "machine", "machine %d LDISP %d EIMM %d GIE %d DFP %d "
"FGX %d\n", model, have_LDISP, have_EIMM, have_GIE,
have_DFP, have_FGX);
if (model == VEX_S390X_MODEL_INVALID) return False;
vai.hwcaps = model;
if (have_LDISP) {
/* Use long displacement only on machines >= z990. For all other machines
it is millicoded and therefore slow. */
if (model >= VEX_S390X_MODEL_Z990)
vai.hwcaps |= VEX_HWCAPS_S390X_LDISP;
}
if (have_EIMM) vai.hwcaps |= VEX_HWCAPS_S390X_EIMM;
if (have_GIE) vai.hwcaps |= VEX_HWCAPS_S390X_GIE;
if (have_DFP) vai.hwcaps |= VEX_HWCAPS_S390X_DFP;
if (have_FGX) vai.hwcaps |= VEX_HWCAPS_S390X_FGX;
VG_(debugLog)(1, "machine", "hwcaps = 0x%x\n", vai.hwcaps);
return True;
}
#elif defined(VGA_arm)
{
/* Same instruction set detection algorithm as for ppc32. */
vki_sigset_t saved_set, tmp_set;
vki_sigaction_fromK_t saved_sigill_act, saved_sigfpe_act;
vki_sigaction_toK_t tmp_sigill_act, tmp_sigfpe_act;
volatile Bool have_VFP, have_VFP2, have_VFP3, have_NEON;
volatile Int archlevel;
Int r;
/* This is a kludge. Really we ought to back-convert saved_act
into a toK_t using VG_(convert_sigaction_fromK_to_toK), but
since that's a no-op on all ppc64 platforms so far supported,
it's not worth the typing effort. At least include most basic
sanity check: */
vg_assert(sizeof(vki_sigaction_fromK_t) == sizeof(vki_sigaction_toK_t));
VG_(sigemptyset)(&tmp_set);
VG_(sigaddset)(&tmp_set, VKI_SIGILL);
VG_(sigaddset)(&tmp_set, VKI_SIGFPE);
r = VG_(sigprocmask)(VKI_SIG_UNBLOCK, &tmp_set, &saved_set);
vg_assert(r == 0);
r = VG_(sigaction)(VKI_SIGILL, NULL, &saved_sigill_act);
vg_assert(r == 0);
tmp_sigill_act = saved_sigill_act;
VG_(sigaction)(VKI_SIGFPE, NULL, &saved_sigfpe_act);
tmp_sigfpe_act = saved_sigfpe_act;
/* NODEFER: signal handler does not return (from the kernel's point of
view), hence if it is to successfully catch a signal more than once,
we need the NODEFER flag. */
tmp_sigill_act.sa_flags &= ~VKI_SA_RESETHAND;
tmp_sigill_act.sa_flags &= ~VKI_SA_SIGINFO;
tmp_sigill_act.sa_flags |= VKI_SA_NODEFER;
tmp_sigill_act.ksa_handler = handler_unsup_insn;
VG_(sigaction)(VKI_SIGILL, &tmp_sigill_act, NULL);
tmp_sigfpe_act.sa_flags &= ~VKI_SA_RESETHAND;
tmp_sigfpe_act.sa_flags &= ~VKI_SA_SIGINFO;
tmp_sigfpe_act.sa_flags |= VKI_SA_NODEFER;
tmp_sigfpe_act.ksa_handler = handler_unsup_insn;
VG_(sigaction)(VKI_SIGFPE, &tmp_sigfpe_act, NULL);
/* VFP insns */
have_VFP = True;
if (VG_MINIMAL_SETJMP(env_unsup_insn)) {
have_VFP = False;
} else {
__asm__ __volatile__(".word 0xEEB02B42"); /* VMOV.F64 d2, d2 */
}
/* There are several generation of VFP extension but they differs very
little so for now we will not distinguish them. */
have_VFP2 = have_VFP;
have_VFP3 = have_VFP;
/* NEON insns */
have_NEON = True;
if (VG_MINIMAL_SETJMP(env_unsup_insn)) {
have_NEON = False;
} else {
__asm__ __volatile__(".word 0xF2244154"); /* VMOV q2, q2 */
}
/* ARM architecture level */
archlevel = 5; /* v5 will be base level */
if (archlevel < 7) {
archlevel = 7;
if (VG_MINIMAL_SETJMP(env_unsup_insn)) {
archlevel = 5;
} else {
__asm__ __volatile__(".word 0xF45FF000"); /* PLI [PC,#-0] */
}
}
if (archlevel < 6) {
archlevel = 6;
if (VG_MINIMAL_SETJMP(env_unsup_insn)) {
archlevel = 5;
} else {
__asm__ __volatile__(".word 0xE6822012"); /* PKHBT r2, r2, r2 */
}
}
VG_(convert_sigaction_fromK_to_toK)(&saved_sigill_act, &tmp_sigill_act);
VG_(convert_sigaction_fromK_to_toK)(&saved_sigfpe_act, &tmp_sigfpe_act);
VG_(sigaction)(VKI_SIGILL, &tmp_sigill_act, NULL);
VG_(sigaction)(VKI_SIGFPE, &tmp_sigfpe_act, NULL);
VG_(sigprocmask)(VKI_SIG_SETMASK, &saved_set, NULL);
VG_(debugLog)(1, "machine", "ARMv%d VFP %d VFP2 %d VFP3 %d NEON %d\n",
archlevel, (Int)have_VFP, (Int)have_VFP2, (Int)have_VFP3,
(Int)have_NEON);
VG_(machine_arm_archlevel) = archlevel;
va = VexArchARM;
vai.hwcaps = VEX_ARM_ARCHLEVEL(archlevel);
if (have_VFP3) vai.hwcaps |= VEX_HWCAPS_ARM_VFP3;
if (have_VFP2) vai.hwcaps |= VEX_HWCAPS_ARM_VFP2;
if (have_VFP) vai.hwcaps |= VEX_HWCAPS_ARM_VFP;
if (have_NEON) vai.hwcaps |= VEX_HWCAPS_ARM_NEON;
return True;
}
#else
# error "Unknown arch"
#endif
}
/* Notify host cpu cache line size. */
#if defined(VGA_ppc32)
void VG_(machine_ppc32_set_clszB)( Int szB )
{
vg_assert(hwcaps_done);
/* Either the value must not have been set yet (zero) or we can
tolerate it being set to the same value multiple times, as the
stack scanning logic in m_main is a bit stupid. */
vg_assert(vai.ppc_cache_line_szB == 0
|| vai.ppc_cache_line_szB == szB);
vg_assert(szB == 32 || szB == 64 || szB == 128);
vai.ppc_cache_line_szB = szB;
}
#endif
/* Notify host cpu cache line size. */
#if defined(VGA_ppc64)
void VG_(machine_ppc64_set_clszB)( Int szB )
{
vg_assert(hwcaps_done);
/* Either the value must not have been set yet (zero) or we can
tolerate it being set to the same value multiple times, as the
stack scanning logic in m_main is a bit stupid. */
vg_assert(vai.ppc_cache_line_szB == 0
|| vai.ppc_cache_line_szB == szB);
vg_assert(szB == 32 || szB == 64 || szB == 128);
vai.ppc_cache_line_szB = szB;
}
#endif
/* Notify host's ability to handle NEON instructions. */
#if defined(VGA_arm)
void VG_(machine_arm_set_has_NEON)( Bool has_neon )
{
vg_assert(hwcaps_done);
/* There's nothing else we can sanity check. */
if (has_neon) {
vai.hwcaps |= VEX_HWCAPS_ARM_NEON;
} else {
vai.hwcaps &= ~VEX_HWCAPS_ARM_NEON;
}
}
#endif
/* Fetch host cpu info, once established. */
void VG_(machine_get_VexArchInfo)( /*OUT*/VexArch* pVa,
/*OUT*/VexArchInfo* pVai )
{
vg_assert(hwcaps_done);
if (pVa) *pVa = va;
if (pVai) *pVai = vai;
}
// Given a pointer to a function as obtained by "& functionname" in C,
// produce a pointer to the actual entry point for the function.
void* VG_(fnptr_to_fnentry)( void* f )
{
# if defined(VGP_x86_linux) || defined(VGP_amd64_linux) \
|| defined(VGP_arm_linux) \
|| defined(VGP_ppc32_linux) || defined(VGO_darwin) \
|| defined(VGP_s390x_linux)
return f;
# elif defined(VGP_ppc64_linux)
/* ppc64-linux uses the AIX scheme, in which f is a pointer to a
3-word function descriptor, of which the first word is the entry
address. */
UWord* descr = (UWord*)f;
return (void*)(descr[0]);
# else
# error "Unknown platform"
# endif
}
/*--------------------------------------------------------------------*/
/*--- end ---*/
/*--------------------------------------------------------------------*/
|