File: host_x86_isel.c

package info (click to toggle)
valgrind 1%3A3.14.0-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 156,980 kB
  • sloc: ansic: 728,128; exp: 26,134; xml: 22,268; cpp: 7,638; asm: 7,312; makefile: 6,102; perl: 5,910; sh: 5,717
file content (4521 lines) | stat: -rw-r--r-- 164,986 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521

/*---------------------------------------------------------------*/
/*--- begin                                   host_x86_isel.c ---*/
/*---------------------------------------------------------------*/

/*
   This file is part of Valgrind, a dynamic binary instrumentation
   framework.

   Copyright (C) 2004-2017 OpenWorks LLP
      info@open-works.net

   This program is free software; you can redistribute it and/or
   modify it under the terms of the GNU General Public License as
   published by the Free Software Foundation; either version 2 of the
   License, or (at your option) any later version.

   This program is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
   02110-1301, USA.

   The GNU General Public License is contained in the file COPYING.

   Neither the names of the U.S. Department of Energy nor the
   University of California nor the names of its contributors may be
   used to endorse or promote products derived from this software
   without prior written permission.
*/

#include "libvex_basictypes.h"
#include "libvex_ir.h"
#include "libvex.h"

#include "ir_match.h"
#include "main_util.h"
#include "main_globals.h"
#include "host_generic_regs.h"
#include "host_generic_simd64.h"
#include "host_generic_simd128.h"
#include "host_x86_defs.h"

/* TODO 21 Apr 2005:

   -- (Really an assembler issue) don't emit CMov32 as a cmov
      insn, since that's expensive on P4 and conditional branch
      is cheaper if (as we expect) the condition is highly predictable

   -- preserve xmm registers across function calls (by declaring them
      as trashed by call insns)

   -- preserve x87 ST stack discipline across function calls.  Sigh.

   -- Check doHelperCall: if a call is conditional, we cannot safely
      compute any regparm args directly to registers.  Hence, the
      fast-regparm marshalling should be restricted to unconditional
      calls only.
*/

/*---------------------------------------------------------*/
/*--- x87 control word stuff                            ---*/
/*---------------------------------------------------------*/

/* Vex-generated code expects to run with the FPU set as follows: all
   exceptions masked, round-to-nearest, precision = 53 bits.  This
   corresponds to a FPU control word value of 0x027F.

   Similarly the SSE control word (%mxcsr) should be 0x1F80.

   %fpucw and %mxcsr should have these values on entry to
   Vex-generated code, and should those values should be
   unchanged at exit.
*/

#define DEFAULT_FPUCW 0x027F

/* debugging only, do not use */
/* define DEFAULT_FPUCW 0x037F */


/*---------------------------------------------------------*/
/*--- misc helpers                                      ---*/
/*---------------------------------------------------------*/

/* These are duplicated in guest-x86/toIR.c */
static IRExpr* unop ( IROp op, IRExpr* a )
{
   return IRExpr_Unop(op, a);
}

static IRExpr* binop ( IROp op, IRExpr* a1, IRExpr* a2 )
{
   return IRExpr_Binop(op, a1, a2);
}

static IRExpr* bind ( Int binder )
{
   return IRExpr_Binder(binder);
}

static Bool isZeroU8 ( IRExpr* e )
{
   return e->tag == Iex_Const
          && e->Iex.Const.con->tag == Ico_U8
          && e->Iex.Const.con->Ico.U8 == 0;
}

static Bool isZeroU32 ( IRExpr* e )
{
   return e->tag == Iex_Const
          && e->Iex.Const.con->tag == Ico_U32
          && e->Iex.Const.con->Ico.U32 == 0;
}

//static Bool isZeroU64 ( IRExpr* e )
//{
//   return e->tag == Iex_Const
//          && e->Iex.Const.con->tag == Ico_U64
//          && e->Iex.Const.con->Ico.U64 == 0ULL;
//}


/*---------------------------------------------------------*/
/*--- ISelEnv                                           ---*/
/*---------------------------------------------------------*/

/* This carries around:

   - A mapping from IRTemp to IRType, giving the type of any IRTemp we
     might encounter.  This is computed before insn selection starts,
     and does not change.

   - A mapping from IRTemp to HReg.  This tells the insn selector
     which virtual register(s) are associated with each IRTemp
     temporary.  This is computed before insn selection starts, and
     does not change.  We expect this mapping to map precisely the
     same set of IRTemps as the type mapping does.

        - vregmap   holds the primary register for the IRTemp.
        - vregmapHI is only used for 64-bit integer-typed
             IRTemps.  It holds the identity of a second
             32-bit virtual HReg, which holds the high half
             of the value.

   - The code array, that is, the insns selected so far.

   - A counter, for generating new virtual registers.

   - The host subarchitecture we are selecting insns for.  
     This is set at the start and does not change.

   - A Bool for indicating whether we may generate chain-me
     instructions for control flow transfers, or whether we must use
     XAssisted.

   - The maximum guest address of any guest insn in this block.
     Actually, the address of the highest-addressed byte from any insn
     in this block.  Is set at the start and does not change.  This is
     used for detecting jumps which are definitely forward-edges from
     this block, and therefore can be made (chained) to the fast entry
     point of the destination, thereby avoiding the destination's
     event check.

   Note, this is all (well, mostly) host-independent.
*/

typedef
   struct {
      /* Constant -- are set at the start and do not change. */
      IRTypeEnv*   type_env;

      HReg*        vregmap;
      HReg*        vregmapHI;
      Int          n_vregmap;

      UInt         hwcaps;

      Bool         chainingAllowed;
      Addr32       max_ga;

      /* These are modified as we go along. */
      HInstrArray* code;
      Int          vreg_ctr;
   }
   ISelEnv;


static HReg lookupIRTemp ( ISelEnv* env, IRTemp tmp )
{
   vassert(tmp >= 0);
   vassert(tmp < env->n_vregmap);
   return env->vregmap[tmp];
}

static void lookupIRTemp64 ( HReg* vrHI, HReg* vrLO, ISelEnv* env, IRTemp tmp )
{
   vassert(tmp >= 0);
   vassert(tmp < env->n_vregmap);
   vassert(! hregIsInvalid(env->vregmapHI[tmp]));
   *vrLO = env->vregmap[tmp];
   *vrHI = env->vregmapHI[tmp];
}

static void addInstr ( ISelEnv* env, X86Instr* instr )
{
   addHInstr(env->code, instr);
   if (vex_traceflags & VEX_TRACE_VCODE) {
      ppX86Instr(instr, False);
      vex_printf("\n");
   }
}

static HReg newVRegI ( ISelEnv* env )
{
   HReg reg = mkHReg(True/*virtual reg*/, HRcInt32, 0/*enc*/, env->vreg_ctr);
   env->vreg_ctr++;
   return reg;
}

static HReg newVRegF ( ISelEnv* env )
{
   HReg reg = mkHReg(True/*virtual reg*/, HRcFlt64, 0/*enc*/, env->vreg_ctr);
   env->vreg_ctr++;
   return reg;
}

static HReg newVRegV ( ISelEnv* env )
{
   HReg reg = mkHReg(True/*virtual reg*/, HRcVec128, 0/*enc*/, env->vreg_ctr);
   env->vreg_ctr++;
   return reg;
}


/*---------------------------------------------------------*/
/*--- ISEL: Forward declarations                        ---*/
/*---------------------------------------------------------*/

/* These are organised as iselXXX and iselXXX_wrk pairs.  The
   iselXXX_wrk do the real work, but are not to be called directly.
   For each XXX, iselXXX calls its iselXXX_wrk counterpart, then
   checks that all returned registers are virtual.  You should not
   call the _wrk version directly.
*/
static X86RMI*     iselIntExpr_RMI_wrk ( ISelEnv* env, const IRExpr* e );
static X86RMI*     iselIntExpr_RMI     ( ISelEnv* env, const IRExpr* e );

static X86RI*      iselIntExpr_RI_wrk ( ISelEnv* env, const IRExpr* e );
static X86RI*      iselIntExpr_RI     ( ISelEnv* env, const IRExpr* e );

static X86RM*      iselIntExpr_RM_wrk ( ISelEnv* env, const IRExpr* e );
static X86RM*      iselIntExpr_RM     ( ISelEnv* env, const IRExpr* e );

static HReg        iselIntExpr_R_wrk ( ISelEnv* env, const IRExpr* e );
static HReg        iselIntExpr_R     ( ISelEnv* env, const IRExpr* e );

static X86AMode*   iselIntExpr_AMode_wrk ( ISelEnv* env, const IRExpr* e );
static X86AMode*   iselIntExpr_AMode     ( ISelEnv* env, const IRExpr* e );

static void        iselInt64Expr_wrk ( HReg* rHi, HReg* rLo, 
                                       ISelEnv* env, const IRExpr* e );
static void        iselInt64Expr     ( HReg* rHi, HReg* rLo, 
                                       ISelEnv* env, const IRExpr* e );

static X86CondCode iselCondCode_wrk ( ISelEnv* env, const IRExpr* e );
static X86CondCode iselCondCode     ( ISelEnv* env, const IRExpr* e );

static HReg        iselDblExpr_wrk ( ISelEnv* env, const IRExpr* e );
static HReg        iselDblExpr     ( ISelEnv* env, const IRExpr* e );

static HReg        iselFltExpr_wrk ( ISelEnv* env, const IRExpr* e );
static HReg        iselFltExpr     ( ISelEnv* env, const IRExpr* e );

static HReg        iselVecExpr_wrk ( ISelEnv* env, const IRExpr* e );
static HReg        iselVecExpr     ( ISelEnv* env, const IRExpr* e );


/*---------------------------------------------------------*/
/*--- ISEL: Misc helpers                                ---*/
/*---------------------------------------------------------*/

/* Make a int reg-reg move. */

static X86Instr* mk_iMOVsd_RR ( HReg src, HReg dst )
{
   vassert(hregClass(src) == HRcInt32);
   vassert(hregClass(dst) == HRcInt32);
   return X86Instr_Alu32R(Xalu_MOV, X86RMI_Reg(src), dst);
}


/* Make a vector reg-reg move. */

static X86Instr* mk_vMOVsd_RR ( HReg src, HReg dst )
{
   vassert(hregClass(src) == HRcVec128);
   vassert(hregClass(dst) == HRcVec128);
   return X86Instr_SseReRg(Xsse_MOV, src, dst);
}

/* Advance/retreat %esp by n. */

static void add_to_esp ( ISelEnv* env, Int n )
{
   vassert(n > 0 && n < 256 && (n%4) == 0);
   addInstr(env, 
            X86Instr_Alu32R(Xalu_ADD, X86RMI_Imm(n), hregX86_ESP()));
}

static void sub_from_esp ( ISelEnv* env, Int n )
{
   vassert(n > 0 && n < 256 && (n%4) == 0);
   addInstr(env, 
            X86Instr_Alu32R(Xalu_SUB, X86RMI_Imm(n), hregX86_ESP()));
}


/* Given an amode, return one which references 4 bytes further
   along. */

static X86AMode* advance4 ( X86AMode* am )
{
   X86AMode* am4 = dopyX86AMode(am);
   switch (am4->tag) {
      case Xam_IRRS:
         am4->Xam.IRRS.imm += 4; break;
      case Xam_IR:
         am4->Xam.IR.imm += 4; break;
      default:
         vpanic("advance4(x86,host)");
   }
   return am4;
}


/* Push an arg onto the host stack, in preparation for a call to a
   helper function of some kind.  Returns the number of 32-bit words
   pushed.  If we encounter an IRExpr_VECRET() then we expect that
   r_vecRetAddr will be a valid register, that holds the relevant
   address. 
*/
static Int pushArg ( ISelEnv* env, IRExpr* arg, HReg r_vecRetAddr )
{
   if (UNLIKELY(arg->tag == Iex_VECRET)) {
      vassert(0); //ATC
      vassert(!hregIsInvalid(r_vecRetAddr));
      addInstr(env, X86Instr_Push(X86RMI_Reg(r_vecRetAddr)));
      return 1;
   }
   if (UNLIKELY(arg->tag == Iex_GSPTR)) {
      addInstr(env, X86Instr_Push(X86RMI_Reg(hregX86_EBP())));
      return 1;
   }
   /* Else it's a "normal" expression. */
   IRType arg_ty = typeOfIRExpr(env->type_env, arg);
   if (arg_ty == Ity_I32) {
      addInstr(env, X86Instr_Push(iselIntExpr_RMI(env, arg)));
      return 1;
   } else 
   if (arg_ty == Ity_I64) {
      HReg rHi, rLo;
      iselInt64Expr(&rHi, &rLo, env, arg);
      addInstr(env, X86Instr_Push(X86RMI_Reg(rHi)));
      addInstr(env, X86Instr_Push(X86RMI_Reg(rLo)));
      return 2;
   }
   ppIRExpr(arg);
   vpanic("pushArg(x86): can't handle arg of this type");
}


/* Complete the call to a helper function, by calling the 
   helper and clearing the args off the stack. */

static 
void callHelperAndClearArgs ( ISelEnv* env, X86CondCode cc, 
                              IRCallee* cee, Int n_arg_ws,
                              RetLoc rloc )
{
   /* Complication.  Need to decide which reg to use as the fn address
      pointer, in a way that doesn't trash regparm-passed
      parameters. */
   vassert(sizeof(void*) == 4);

   addInstr(env, X86Instr_Call( cc, (Addr)cee->addr,
                                cee->regparms, rloc));
   if (n_arg_ws > 0)
      add_to_esp(env, 4*n_arg_ws);
}


/* Used only in doHelperCall.  See big comment in doHelperCall re
   handling of regparm args.  This function figures out whether
   evaluation of an expression might require use of a fixed register.
   If in doubt return True (safe but suboptimal).  
*/
static
Bool mightRequireFixedRegs ( IRExpr* e )
{
   if (UNLIKELY(is_IRExpr_VECRET_or_GSPTR(e))) {
      // These are always "safe" -- either a copy of %esp in some
      // arbitrary vreg, or a copy of %ebp, respectively.
      return False;
   }
   /* Else it's a "normal" expression. */
   switch (e->tag) {
      case Iex_RdTmp: case Iex_Const: case Iex_Get: 
         return False;
      default:
         return True;
   }
}


/* Do a complete function call.  |guard| is a Ity_Bit expression
   indicating whether or not the call happens.  If guard==NULL, the
   call is unconditional.  |retloc| is set to indicate where the
   return value is after the call.  The caller (of this fn) must
   generate code to add |stackAdjustAfterCall| to the stack pointer
   after the call is done. */

static
void doHelperCall ( /*OUT*/UInt*   stackAdjustAfterCall,
                    /*OUT*/RetLoc* retloc,
                    ISelEnv* env,
                    IRExpr* guard,
                    IRCallee* cee, IRType retTy, IRExpr** args )
{
   X86CondCode cc;
   HReg        argregs[3];
   HReg        tmpregs[3];
   Bool        danger;
   Int         not_done_yet, n_args, n_arg_ws, stack_limit, 
               i, argreg, argregX;

   /* Set default returns.  We'll update them later if needed. */
   *stackAdjustAfterCall = 0;
   *retloc               = mk_RetLoc_INVALID();

   /* These are used for cross-checking that IR-level constraints on
      the use of Iex_VECRET and Iex_GSPTR are observed. */
   UInt nVECRETs = 0;
   UInt nGSPTRs  = 0;

   /* Marshal args for a call, do the call, and clear the stack.
      Complexities to consider:

      * The return type can be I{64,32,16,8} or V128.  In the V128
        case, it is expected that |args| will contain the special
        node IRExpr_VECRET(), in which case this routine generates
        code to allocate space on the stack for the vector return
        value.  Since we are not passing any scalars on the stack, it
        is enough to preallocate the return space before marshalling
        any arguments, in this case.

        |args| may also contain IRExpr_GSPTR(), in which case the
        value in %ebp is passed as the corresponding argument.

      * If the callee claims regparmness of 1, 2 or 3, we must pass the
        first 1, 2 or 3 args in registers (EAX, EDX, and ECX
        respectively).  To keep things relatively simple, only args of
        type I32 may be passed as regparms -- just bomb out if anything
        else turns up.  Clearly this depends on the front ends not
        trying to pass any other types as regparms.  
   */

   /* 16 Nov 2004: the regparm handling is complicated by the
      following problem.

      Consider a call two a function with two regparm parameters:
      f(e1,e2).  We need to compute e1 into %eax and e2 into %edx.
      Suppose code is first generated to compute e1 into %eax.  Then,
      code is generated to compute e2 into %edx.  Unfortunately, if
      the latter code sequence uses %eax, it will trash the value of
      e1 computed by the former sequence.  This could happen if (for
      example) e2 itself involved a function call.  In the code below,
      args are evaluated right-to-left, not left-to-right, but the
      principle and the problem are the same.

      One solution is to compute all regparm-bound args into vregs
      first, and once they are all done, move them to the relevant
      real regs.  This always gives correct code, but it also gives
      a bunch of vreg-to-rreg moves which are usually redundant but 
      are hard for the register allocator to get rid of.

      A compromise is to first examine all regparm'd argument 
      expressions.  If they are all so simple that it is clear 
      they will be evaluated without use of any fixed registers,
      use the old compute-directly-to-fixed-target scheme.  If not,
      be safe and use the via-vregs scheme.

      Note this requires being able to examine an expression and
      determine whether or not evaluation of it might use a fixed
      register.  That requires knowledge of how the rest of this
      insn selector works.  Currently just the following 3 are 
      regarded as safe -- hopefully they cover the majority of
      arguments in practice: IRExpr_Tmp IRExpr_Const IRExpr_Get.
   */
   vassert(cee->regparms >= 0 && cee->regparms <= 3);

   /* Count the number of args and also the VECRETs */
   n_args = n_arg_ws = 0;
   while (args[n_args]) {
      IRExpr* arg = args[n_args];
      n_args++;
      if (UNLIKELY(arg->tag == Iex_VECRET)) {
         nVECRETs++;
      } else if (UNLIKELY(arg->tag == Iex_GSPTR)) {
         nGSPTRs++;
      }
   }

   /* If this fails, the IR is ill-formed */
   vassert(nGSPTRs == 0 || nGSPTRs == 1);

   /* If we have a VECRET, allocate space on the stack for the return
      value, and record the stack pointer after that. */
   HReg r_vecRetAddr = INVALID_HREG;
   if (nVECRETs == 1) {
      vassert(retTy == Ity_V128 || retTy == Ity_V256);
      vassert(retTy != Ity_V256); // we don't handle that yet (if ever)
      r_vecRetAddr = newVRegI(env);
      sub_from_esp(env, 16);
      addInstr(env, mk_iMOVsd_RR( hregX86_ESP(), r_vecRetAddr ));
   } else {
      // If either of these fail, the IR is ill-formed
      vassert(retTy != Ity_V128 && retTy != Ity_V256);
      vassert(nVECRETs == 0);
   }

   not_done_yet = n_args;

   stack_limit = cee->regparms;

   /* ------ BEGIN marshall all arguments ------ */

   /* Push (R to L) the stack-passed args, [n_args-1 .. stack_limit] */
   for (i = n_args-1; i >= stack_limit; i--) {
      n_arg_ws += pushArg(env, args[i], r_vecRetAddr);
      not_done_yet--;
   }

   /* args [stack_limit-1 .. 0] and possibly %ebp are to be passed in
      registers. */

   if (cee->regparms > 0) {

      /* ------ BEGIN deal with regparms ------ */

      /* deal with regparms, not forgetting %ebp if needed. */
      argregs[0] = hregX86_EAX();
      argregs[1] = hregX86_EDX();
      argregs[2] = hregX86_ECX();
      tmpregs[0] = tmpregs[1] = tmpregs[2] = INVALID_HREG;

      argreg = cee->regparms;

      /* In keeping with big comment above, detect potential danger
         and use the via-vregs scheme if needed. */
      danger = False;
      for (i = stack_limit-1; i >= 0; i--) {
         if (mightRequireFixedRegs(args[i])) {
            danger = True;
            break;
         }
      }

      if (danger) {

         /* Move via temporaries */
         argregX = argreg;
         for (i = stack_limit-1; i >= 0; i--) {

            if (0) {
               vex_printf("x86 host: register param is complex: ");
               ppIRExpr(args[i]);
               vex_printf("\n");
            }

            IRExpr* arg = args[i];
            argreg--;
            vassert(argreg >= 0);
            if (UNLIKELY(arg->tag == Iex_VECRET)) {
               vassert(0); //ATC
            }
            else if (UNLIKELY(arg->tag == Iex_GSPTR)) {
               vassert(0); //ATC
            } else {
               vassert(typeOfIRExpr(env->type_env, arg) == Ity_I32);
               tmpregs[argreg] = iselIntExpr_R(env, arg);
            }
            not_done_yet--;
         }
         for (i = stack_limit-1; i >= 0; i--) {
            argregX--;
            vassert(argregX >= 0);
            addInstr( env, mk_iMOVsd_RR( tmpregs[argregX], argregs[argregX] ) );
         }

      } else {
         /* It's safe to compute all regparm args directly into their
            target registers. */
         for (i = stack_limit-1; i >= 0; i--) {
            IRExpr* arg = args[i];
            argreg--;
            vassert(argreg >= 0);
            if (UNLIKELY(arg->tag == Iex_VECRET)) {
               vassert(!hregIsInvalid(r_vecRetAddr));
               addInstr(env, X86Instr_Alu32R(Xalu_MOV,
                                             X86RMI_Reg(r_vecRetAddr),
                                             argregs[argreg]));
            }
            else if (UNLIKELY(arg->tag == Iex_GSPTR)) {
               vassert(0); //ATC
            } else {
               vassert(typeOfIRExpr(env->type_env, arg) == Ity_I32);
               addInstr(env, X86Instr_Alu32R(Xalu_MOV, 
                                             iselIntExpr_RMI(env, arg),
                                             argregs[argreg]));
            }
            not_done_yet--;
         }

      }

      /* ------ END deal with regparms ------ */

   }

   vassert(not_done_yet == 0);

   /* ------ END marshall all arguments ------ */

   /* Now we can compute the condition.  We can't do it earlier
      because the argument computations could trash the condition
      codes.  Be a bit clever to handle the common case where the
      guard is 1:Bit. */
   cc = Xcc_ALWAYS;
   if (guard) {
      if (guard->tag == Iex_Const 
          && guard->Iex.Const.con->tag == Ico_U1
          && guard->Iex.Const.con->Ico.U1 == True) {
         /* unconditional -- do nothing */
      } else {
         cc = iselCondCode( env, guard );
      }
   }

   /* Do final checks, set the return values, and generate the call
      instruction proper. */
   vassert(*stackAdjustAfterCall == 0);
   vassert(is_RetLoc_INVALID(*retloc));
   switch (retTy) {
         case Ity_INVALID:
            /* Function doesn't return a value. */
            *retloc = mk_RetLoc_simple(RLPri_None);
            break;
         case Ity_I64:
            *retloc = mk_RetLoc_simple(RLPri_2Int);
            break;
         case Ity_I32: case Ity_I16: case Ity_I8:
            *retloc = mk_RetLoc_simple(RLPri_Int);
            break;
         case Ity_V128:
            *retloc = mk_RetLoc_spRel(RLPri_V128SpRel, 0);
            *stackAdjustAfterCall = 16;
            break;
         case Ity_V256:
            vassert(0); // ATC
            *retloc = mk_RetLoc_spRel(RLPri_V256SpRel, 0);
            *stackAdjustAfterCall = 32;
            break;
         default:
            /* IR can denote other possible return types, but we don't
               handle those here. */
           vassert(0);
   }

   /* Finally, generate the call itself.  This needs the *retloc value
      set in the switch above, which is why it's at the end. */
   callHelperAndClearArgs( env, cc, cee, n_arg_ws, *retloc );
}


/* Given a guest-state array descriptor, an index expression and a
   bias, generate an X86AMode holding the relevant guest state
   offset. */

static
X86AMode* genGuestArrayOffset ( ISelEnv* env, IRRegArray* descr, 
                                IRExpr* off, Int bias )
{
   HReg tmp, roff;
   Int  elemSz = sizeofIRType(descr->elemTy);
   Int  nElems = descr->nElems;
   Int  shift  = 0;

   /* throw out any cases not generated by an x86 front end.  In
      theory there might be a day where we need to handle them -- if
      we ever run non-x86-guest on x86 host. */

   if (nElems != 8) 
      vpanic("genGuestArrayOffset(x86 host)(1)");

   switch (elemSz) {
      case 1:  shift = 0; break;
      case 4:  shift = 2; break;
      case 8:  shift = 3; break;
      default: vpanic("genGuestArrayOffset(x86 host)(2)");
   }

   /* Compute off into a reg, %off.  Then return:

         movl %off, %tmp
         addl $bias, %tmp  (if bias != 0)
         andl %tmp, 7
         ... base(%ebp, %tmp, shift) ...
   */
   tmp  = newVRegI(env);
   roff = iselIntExpr_R(env, off);
   addInstr(env, mk_iMOVsd_RR(roff, tmp));
   if (bias != 0) {
      addInstr(env, 
               X86Instr_Alu32R(Xalu_ADD, X86RMI_Imm(bias), tmp));
   }
   addInstr(env, 
            X86Instr_Alu32R(Xalu_AND, X86RMI_Imm(7), tmp));
   return
      X86AMode_IRRS( descr->base, hregX86_EBP(), tmp, shift );
}


/* Mess with the FPU's rounding mode: set to the default rounding mode
   (DEFAULT_FPUCW). */
static 
void set_FPU_rounding_default ( ISelEnv* env )
{
   /* pushl $DEFAULT_FPUCW
      fldcw 0(%esp)
      addl $4, %esp 
   */
   X86AMode* zero_esp = X86AMode_IR(0, hregX86_ESP());
   addInstr(env, X86Instr_Push(X86RMI_Imm(DEFAULT_FPUCW)));
   addInstr(env, X86Instr_FpLdCW(zero_esp));
   add_to_esp(env, 4);
}


/* Mess with the FPU's rounding mode: 'mode' is an I32-typed
   expression denoting a value in the range 0 .. 3, indicating a round
   mode encoded as per type IRRoundingMode.  Set the x87 FPU to have
   the same rounding.
*/
static
void set_FPU_rounding_mode ( ISelEnv* env, IRExpr* mode )
{
   HReg rrm  = iselIntExpr_R(env, mode);
   HReg rrm2 = newVRegI(env);
   X86AMode* zero_esp = X86AMode_IR(0, hregX86_ESP());

   /* movl  %rrm, %rrm2
      andl  $3, %rrm2   -- shouldn't be needed; paranoia
      shll  $10, %rrm2
      orl   $DEFAULT_FPUCW, %rrm2
      pushl %rrm2
      fldcw 0(%esp)
      addl  $4, %esp
   */
   addInstr(env, mk_iMOVsd_RR(rrm, rrm2));
   addInstr(env, X86Instr_Alu32R(Xalu_AND, X86RMI_Imm(3), rrm2));
   addInstr(env, X86Instr_Sh32(Xsh_SHL, 10, rrm2));
   addInstr(env, X86Instr_Alu32R(Xalu_OR, X86RMI_Imm(DEFAULT_FPUCW), rrm2));
   addInstr(env, X86Instr_Push(X86RMI_Reg(rrm2)));
   addInstr(env, X86Instr_FpLdCW(zero_esp));
   add_to_esp(env, 4);
}


/* Generate !src into a new vector register, and be sure that the code
   is SSE1 compatible.  Amazing that Intel doesn't offer a less crappy
   way to do this. 
*/
static HReg do_sse_Not128 ( ISelEnv* env, HReg src )
{
   HReg dst = newVRegV(env);
   /* Set dst to zero.  If dst contains a NaN then all hell might
      break loose after the comparison.  So, first zero it. */
   addInstr(env, X86Instr_SseReRg(Xsse_XOR, dst, dst));
   /* And now make it all 1s ... */
   addInstr(env, X86Instr_Sse32Fx4(Xsse_CMPEQF, dst, dst));
   /* Finally, xor 'src' into it. */
   addInstr(env, X86Instr_SseReRg(Xsse_XOR, src, dst));
   /* Doesn't that just totally suck? */
   return dst;
}


/* Round an x87 FPU value to 53-bit-mantissa precision, to be used
   after most non-simple FPU operations (simple = +, -, *, / and
   sqrt).

   This could be done a lot more efficiently if needed, by loading
   zero and adding it to the value to be rounded (fldz ; faddp?).
*/
static void roundToF64 ( ISelEnv* env, HReg reg )
{
   X86AMode* zero_esp = X86AMode_IR(0, hregX86_ESP());
   sub_from_esp(env, 8);
   addInstr(env, X86Instr_FpLdSt(False/*store*/, 8, reg, zero_esp));
   addInstr(env, X86Instr_FpLdSt(True/*load*/, 8, reg, zero_esp));
   add_to_esp(env, 8);
}


/*---------------------------------------------------------*/
/*--- ISEL: Integer expressions (32/16/8 bit)           ---*/
/*---------------------------------------------------------*/

/* Select insns for an integer-typed expression, and add them to the
   code list.  Return a reg holding the result.  This reg will be a
   virtual register.  THE RETURNED REG MUST NOT BE MODIFIED.  If you
   want to modify it, ask for a new vreg, copy it in there, and modify
   the copy.  The register allocator will do its best to map both
   vregs to the same real register, so the copies will often disappear
   later in the game.

   This should handle expressions of 32, 16 and 8-bit type.  All
   results are returned in a 32-bit register.  For 16- and 8-bit
   expressions, the upper 16/24 bits are arbitrary, so you should mask
   or sign extend partial values if necessary.
*/

static HReg iselIntExpr_R ( ISelEnv* env, const IRExpr* e )
{
   HReg r = iselIntExpr_R_wrk(env, e);
   /* sanity checks ... */
#  if 0
   vex_printf("\n"); ppIRExpr(e); vex_printf("\n");
#  endif
   vassert(hregClass(r) == HRcInt32);
   vassert(hregIsVirtual(r));
   return r;
}

/* DO NOT CALL THIS DIRECTLY ! */
static HReg iselIntExpr_R_wrk ( ISelEnv* env, const IRExpr* e )
{
   MatchInfo mi;

   IRType ty = typeOfIRExpr(env->type_env,e);
   vassert(ty == Ity_I32 || ty == Ity_I16 || ty == Ity_I8);

   switch (e->tag) {

   /* --------- TEMP --------- */
   case Iex_RdTmp: {
      return lookupIRTemp(env, e->Iex.RdTmp.tmp);
   }

   /* --------- LOAD --------- */
   case Iex_Load: {
      HReg dst = newVRegI(env);
      X86AMode* amode = iselIntExpr_AMode ( env, e->Iex.Load.addr );

      /* We can't handle big-endian loads, nor load-linked. */
      if (e->Iex.Load.end != Iend_LE)
         goto irreducible;

      if (ty == Ity_I32) {
         addInstr(env, X86Instr_Alu32R(Xalu_MOV,
                                       X86RMI_Mem(amode), dst) );
         return dst;
      }
      if (ty == Ity_I16) {
         addInstr(env, X86Instr_LoadEX(2,False,amode,dst));
         return dst;
      }
      if (ty == Ity_I8) {
         addInstr(env, X86Instr_LoadEX(1,False,amode,dst));
         return dst;
      }
      break;
   }

   /* --------- TERNARY OP --------- */
   case Iex_Triop: {
      IRTriop *triop = e->Iex.Triop.details;
      /* C3210 flags following FPU partial remainder (fprem), both
         IEEE compliant (PREM1) and non-IEEE compliant (PREM). */
      if (triop->op == Iop_PRemC3210F64
          || triop->op == Iop_PRem1C3210F64) {
         HReg junk = newVRegF(env);
         HReg dst  = newVRegI(env);
         HReg srcL = iselDblExpr(env, triop->arg2);
         HReg srcR = iselDblExpr(env, triop->arg3);
         /* XXXROUNDINGFIXME */
         /* set roundingmode here */
         addInstr(env, X86Instr_FpBinary(
                           e->Iex.Binop.op==Iop_PRemC3210F64 
                              ? Xfp_PREM : Xfp_PREM1,
                           srcL,srcR,junk
                 ));
         /* The previous pseudo-insn will have left the FPU's C3210
            flags set correctly.  So bag them. */
         addInstr(env, X86Instr_FpStSW_AX());
         addInstr(env, mk_iMOVsd_RR(hregX86_EAX(), dst));
         addInstr(env, X86Instr_Alu32R(Xalu_AND, X86RMI_Imm(0x4700), dst));
         return dst;
      }

      break;
   }

   /* --------- BINARY OP --------- */
   case Iex_Binop: {
      X86AluOp   aluOp;
      X86ShiftOp shOp;

      /* Pattern: Sub32(0,x) */
      if (e->Iex.Binop.op == Iop_Sub32 && isZeroU32(e->Iex.Binop.arg1)) {
         HReg dst = newVRegI(env);
         HReg reg = iselIntExpr_R(env, e->Iex.Binop.arg2);
         addInstr(env, mk_iMOVsd_RR(reg,dst));
         addInstr(env, X86Instr_Unary32(Xun_NEG,dst));
         return dst;
      }

      /* Is it an addition or logical style op? */
      switch (e->Iex.Binop.op) {
         case Iop_Add8: case Iop_Add16: case Iop_Add32:
            aluOp = Xalu_ADD; break;
         case Iop_Sub8: case Iop_Sub16: case Iop_Sub32: 
            aluOp = Xalu_SUB; break;
         case Iop_And8: case Iop_And16: case Iop_And32: 
            aluOp = Xalu_AND; break;
         case Iop_Or8: case Iop_Or16: case Iop_Or32:  
            aluOp = Xalu_OR; break;
         case Iop_Xor8: case Iop_Xor16: case Iop_Xor32: 
            aluOp = Xalu_XOR; break;
         case Iop_Mul16: case Iop_Mul32: 
            aluOp = Xalu_MUL; break;
         default:
            aluOp = Xalu_INVALID; break;
      }
      /* For commutative ops we assume any literal
         values are on the second operand. */
      if (aluOp != Xalu_INVALID) {
         HReg dst    = newVRegI(env);
         HReg reg    = iselIntExpr_R(env, e->Iex.Binop.arg1);
         X86RMI* rmi = iselIntExpr_RMI(env, e->Iex.Binop.arg2);
         addInstr(env, mk_iMOVsd_RR(reg,dst));
         addInstr(env, X86Instr_Alu32R(aluOp, rmi, dst));
         return dst;
      }
      /* Could do better here; forcing the first arg into a reg
         isn't always clever.
         -- t70 = Xor32(And32(Xor32(LDle:I32(Add32(t41,0xFFFFFFA0:I32)),
                        LDle:I32(Add32(t41,0xFFFFFFA4:I32))),LDle:I32(Add32(
                        t41,0xFFFFFFA8:I32))),LDle:I32(Add32(t41,0xFFFFFFA0:I32)))
            movl 0xFFFFFFA0(%vr41),%vr107
            movl 0xFFFFFFA4(%vr41),%vr108
            movl %vr107,%vr106
            xorl %vr108,%vr106
            movl 0xFFFFFFA8(%vr41),%vr109
            movl %vr106,%vr105
            andl %vr109,%vr105
            movl 0xFFFFFFA0(%vr41),%vr110
            movl %vr105,%vr104
            xorl %vr110,%vr104
            movl %vr104,%vr70
      */

      /* Perhaps a shift op? */
      switch (e->Iex.Binop.op) {
         case Iop_Shl32: case Iop_Shl16: case Iop_Shl8:
            shOp = Xsh_SHL; break;
         case Iop_Shr32: case Iop_Shr16: case Iop_Shr8: 
            shOp = Xsh_SHR; break;
         case Iop_Sar32: case Iop_Sar16: case Iop_Sar8: 
            shOp = Xsh_SAR; break;
         default:
            shOp = Xsh_INVALID; break;
      }
      if (shOp != Xsh_INVALID) {
         HReg dst = newVRegI(env);

         /* regL = the value to be shifted */
         HReg regL   = iselIntExpr_R(env, e->Iex.Binop.arg1);
         addInstr(env, mk_iMOVsd_RR(regL,dst));

         /* Do any necessary widening for 16/8 bit operands */
         switch (e->Iex.Binop.op) {
            case Iop_Shr8:
               addInstr(env, X86Instr_Alu32R(
                                Xalu_AND, X86RMI_Imm(0xFF), dst));
               break;
            case Iop_Shr16:
               addInstr(env, X86Instr_Alu32R(
                                Xalu_AND, X86RMI_Imm(0xFFFF), dst));
               break;
            case Iop_Sar8:
               addInstr(env, X86Instr_Sh32(Xsh_SHL, 24, dst));
               addInstr(env, X86Instr_Sh32(Xsh_SAR, 24, dst));
               break;
            case Iop_Sar16:
               addInstr(env, X86Instr_Sh32(Xsh_SHL, 16, dst));
               addInstr(env, X86Instr_Sh32(Xsh_SAR, 16, dst));
               break;
            default: break;
         }

         /* Now consider the shift amount.  If it's a literal, we
            can do a much better job than the general case. */
         if (e->Iex.Binop.arg2->tag == Iex_Const) {
            /* assert that the IR is well-typed */
            Int nshift;
            vassert(e->Iex.Binop.arg2->Iex.Const.con->tag == Ico_U8);
            nshift = e->Iex.Binop.arg2->Iex.Const.con->Ico.U8;
	    vassert(nshift >= 0);
	    if (nshift > 0)
               /* Can't allow nshift==0 since that means %cl */
               addInstr(env, X86Instr_Sh32( shOp, nshift, dst ));
         } else {
            /* General case; we have to force the amount into %cl. */
            HReg regR = iselIntExpr_R(env, e->Iex.Binop.arg2);
            addInstr(env, mk_iMOVsd_RR(regR,hregX86_ECX()));
            addInstr(env, X86Instr_Sh32(shOp, 0/* %cl */, dst));
         }
         return dst;
      }

      /* Handle misc other ops. */

      if (e->Iex.Binop.op == Iop_Max32U) {
         HReg src1 = iselIntExpr_R(env, e->Iex.Binop.arg1);
         HReg dst  = newVRegI(env);
         HReg src2 = iselIntExpr_R(env, e->Iex.Binop.arg2);
         addInstr(env, mk_iMOVsd_RR(src1,dst));
         addInstr(env, X86Instr_Alu32R(Xalu_CMP, X86RMI_Reg(src2), dst));
         addInstr(env, X86Instr_CMov32(Xcc_B, X86RM_Reg(src2), dst));
         return dst;
      }

      if (e->Iex.Binop.op == Iop_8HLto16) {
         HReg hi8  = newVRegI(env);
         HReg lo8  = newVRegI(env);
         HReg hi8s = iselIntExpr_R(env, e->Iex.Binop.arg1);
         HReg lo8s = iselIntExpr_R(env, e->Iex.Binop.arg2);
         addInstr(env, mk_iMOVsd_RR(hi8s, hi8));
         addInstr(env, mk_iMOVsd_RR(lo8s, lo8));
         addInstr(env, X86Instr_Sh32(Xsh_SHL, 8, hi8));
         addInstr(env, X86Instr_Alu32R(Xalu_AND, X86RMI_Imm(0xFF), lo8));
         addInstr(env, X86Instr_Alu32R(Xalu_OR, X86RMI_Reg(lo8), hi8));
         return hi8;
      }

      if (e->Iex.Binop.op == Iop_16HLto32) {
         HReg hi16  = newVRegI(env);
         HReg lo16  = newVRegI(env);
         HReg hi16s = iselIntExpr_R(env, e->Iex.Binop.arg1);
         HReg lo16s = iselIntExpr_R(env, e->Iex.Binop.arg2);
         addInstr(env, mk_iMOVsd_RR(hi16s, hi16));
         addInstr(env, mk_iMOVsd_RR(lo16s, lo16));
         addInstr(env, X86Instr_Sh32(Xsh_SHL, 16, hi16));
         addInstr(env, X86Instr_Alu32R(Xalu_AND, X86RMI_Imm(0xFFFF), lo16));
         addInstr(env, X86Instr_Alu32R(Xalu_OR, X86RMI_Reg(lo16), hi16));
         return hi16;
      }

      if (e->Iex.Binop.op == Iop_MullS16 || e->Iex.Binop.op == Iop_MullS8
          || e->Iex.Binop.op == Iop_MullU16 || e->Iex.Binop.op == Iop_MullU8) {
         HReg a16   = newVRegI(env);
         HReg b16   = newVRegI(env);
         HReg a16s  = iselIntExpr_R(env, e->Iex.Binop.arg1);
         HReg b16s  = iselIntExpr_R(env, e->Iex.Binop.arg2);
         Int  shift = (e->Iex.Binop.op == Iop_MullS8 
                       || e->Iex.Binop.op == Iop_MullU8)
                         ? 24 : 16;
         X86ShiftOp shr_op = (e->Iex.Binop.op == Iop_MullS8 
                              || e->Iex.Binop.op == Iop_MullS16)
                                ? Xsh_SAR : Xsh_SHR;

         addInstr(env, mk_iMOVsd_RR(a16s, a16));
         addInstr(env, mk_iMOVsd_RR(b16s, b16));
         addInstr(env, X86Instr_Sh32(Xsh_SHL, shift, a16));
         addInstr(env, X86Instr_Sh32(Xsh_SHL, shift, b16));
         addInstr(env, X86Instr_Sh32(shr_op,  shift, a16));
         addInstr(env, X86Instr_Sh32(shr_op,  shift, b16));
         addInstr(env, X86Instr_Alu32R(Xalu_MUL, X86RMI_Reg(a16), b16));
         return b16;
      }

      if (e->Iex.Binop.op == Iop_CmpF64) {
         HReg fL = iselDblExpr(env, e->Iex.Binop.arg1);
         HReg fR = iselDblExpr(env, e->Iex.Binop.arg2);
         HReg dst = newVRegI(env);
         addInstr(env, X86Instr_FpCmp(fL,fR,dst));
         /* shift this right 8 bits so as to conform to CmpF64
            definition. */
         addInstr(env, X86Instr_Sh32(Xsh_SHR, 8, dst));
         return dst;
      }

      if (e->Iex.Binop.op == Iop_F64toI32S
          || e->Iex.Binop.op == Iop_F64toI16S) {
         Int  sz  = e->Iex.Binop.op == Iop_F64toI16S ? 2 : 4;
         HReg rf  = iselDblExpr(env, e->Iex.Binop.arg2);
         HReg dst = newVRegI(env);

         /* Used several times ... */
         X86AMode* zero_esp = X86AMode_IR(0, hregX86_ESP());

	 /* rf now holds the value to be converted, and rrm holds the
	    rounding mode value, encoded as per the IRRoundingMode
	    enum.  The first thing to do is set the FPU's rounding
	    mode accordingly. */

         /* Create a space for the format conversion. */
         /* subl $4, %esp */
         sub_from_esp(env, 4);

	 /* Set host rounding mode */
	 set_FPU_rounding_mode( env, e->Iex.Binop.arg1 );

         /* gistw/l %rf, 0(%esp) */
         addInstr(env, X86Instr_FpLdStI(False/*store*/, 
                                        toUChar(sz), rf, zero_esp));

         if (sz == 2) {
            /* movzwl 0(%esp), %dst */
            addInstr(env, X86Instr_LoadEX(2,False,zero_esp,dst));
         } else {
            /* movl 0(%esp), %dst */
            vassert(sz == 4);
            addInstr(env, X86Instr_Alu32R(
                             Xalu_MOV, X86RMI_Mem(zero_esp), dst));
         }

	 /* Restore default FPU rounding. */
         set_FPU_rounding_default( env );

         /* addl $4, %esp */
	 add_to_esp(env, 4);
         return dst;
      }

      break;
   }

   /* --------- UNARY OP --------- */
   case Iex_Unop: {

      /* 1Uto8(32to1(expr32)) */
      if (e->Iex.Unop.op == Iop_1Uto8) { 
         DECLARE_PATTERN(p_32to1_then_1Uto8);
         DEFINE_PATTERN(p_32to1_then_1Uto8,
                        unop(Iop_1Uto8,unop(Iop_32to1,bind(0))));
         if (matchIRExpr(&mi,p_32to1_then_1Uto8,e)) {
            const IRExpr* expr32 = mi.bindee[0];
            HReg dst = newVRegI(env);
            HReg src = iselIntExpr_R(env, expr32);
            addInstr(env, mk_iMOVsd_RR(src,dst) );
            addInstr(env, X86Instr_Alu32R(Xalu_AND,
                                          X86RMI_Imm(1), dst));
            return dst;
         }
      }

      /* 8Uto32(LDle(expr32)) */
      if (e->Iex.Unop.op == Iop_8Uto32) {
         DECLARE_PATTERN(p_LDle8_then_8Uto32);
         DEFINE_PATTERN(p_LDle8_then_8Uto32,
                        unop(Iop_8Uto32,
                             IRExpr_Load(Iend_LE,Ity_I8,bind(0))) );
         if (matchIRExpr(&mi,p_LDle8_then_8Uto32,e)) {
            HReg dst = newVRegI(env);
            X86AMode* amode = iselIntExpr_AMode ( env, mi.bindee[0] );
            addInstr(env, X86Instr_LoadEX(1,False,amode,dst));
            return dst;
         }
      }

      /* 8Sto32(LDle(expr32)) */
      if (e->Iex.Unop.op == Iop_8Sto32) {
         DECLARE_PATTERN(p_LDle8_then_8Sto32);
         DEFINE_PATTERN(p_LDle8_then_8Sto32,
                        unop(Iop_8Sto32,
                             IRExpr_Load(Iend_LE,Ity_I8,bind(0))) );
         if (matchIRExpr(&mi,p_LDle8_then_8Sto32,e)) {
            HReg dst = newVRegI(env);
            X86AMode* amode = iselIntExpr_AMode ( env, mi.bindee[0] );
            addInstr(env, X86Instr_LoadEX(1,True,amode,dst));
            return dst;
         }
      }

      /* 16Uto32(LDle(expr32)) */
      if (e->Iex.Unop.op == Iop_16Uto32) {
         DECLARE_PATTERN(p_LDle16_then_16Uto32);
         DEFINE_PATTERN(p_LDle16_then_16Uto32,
                        unop(Iop_16Uto32,
                             IRExpr_Load(Iend_LE,Ity_I16,bind(0))) );
         if (matchIRExpr(&mi,p_LDle16_then_16Uto32,e)) {
            HReg dst = newVRegI(env);
            X86AMode* amode = iselIntExpr_AMode ( env, mi.bindee[0] );
            addInstr(env, X86Instr_LoadEX(2,False,amode,dst));
            return dst;
         }
      }

      /* 8Uto32(GET:I8) */
      if (e->Iex.Unop.op == Iop_8Uto32) {
         if (e->Iex.Unop.arg->tag == Iex_Get) {
            HReg      dst;
            X86AMode* amode;
            vassert(e->Iex.Unop.arg->Iex.Get.ty == Ity_I8);
            dst = newVRegI(env);
            amode = X86AMode_IR(e->Iex.Unop.arg->Iex.Get.offset,
                                hregX86_EBP());
            addInstr(env, X86Instr_LoadEX(1,False,amode,dst));
            return dst;
         }
      }

      /* 16to32(GET:I16) */
      if (e->Iex.Unop.op == Iop_16Uto32) {
         if (e->Iex.Unop.arg->tag == Iex_Get) {
            HReg      dst;
            X86AMode* amode;
            vassert(e->Iex.Unop.arg->Iex.Get.ty == Ity_I16);
            dst = newVRegI(env);
            amode = X86AMode_IR(e->Iex.Unop.arg->Iex.Get.offset,
                                hregX86_EBP());
            addInstr(env, X86Instr_LoadEX(2,False,amode,dst));
            return dst;
         }
      }

      switch (e->Iex.Unop.op) {
         case Iop_8Uto16:
         case Iop_8Uto32:
         case Iop_16Uto32: {
            HReg dst = newVRegI(env);
            HReg src = iselIntExpr_R(env, e->Iex.Unop.arg);
            UInt mask = e->Iex.Unop.op==Iop_16Uto32 ? 0xFFFF : 0xFF;
            addInstr(env, mk_iMOVsd_RR(src,dst) );
            addInstr(env, X86Instr_Alu32R(Xalu_AND,
                                          X86RMI_Imm(mask), dst));
            return dst;
         }
         case Iop_8Sto16:
         case Iop_8Sto32:
         case Iop_16Sto32: {
            HReg dst = newVRegI(env);
            HReg src = iselIntExpr_R(env, e->Iex.Unop.arg);
            UInt amt = e->Iex.Unop.op==Iop_16Sto32 ? 16 : 24;
            addInstr(env, mk_iMOVsd_RR(src,dst) );
            addInstr(env, X86Instr_Sh32(Xsh_SHL, amt, dst));
            addInstr(env, X86Instr_Sh32(Xsh_SAR, amt, dst));
            return dst;
         }
	 case Iop_Not8:
	 case Iop_Not16:
         case Iop_Not32: {
            HReg dst = newVRegI(env);
            HReg src = iselIntExpr_R(env, e->Iex.Unop.arg);
            addInstr(env, mk_iMOVsd_RR(src,dst) );
            addInstr(env, X86Instr_Unary32(Xun_NOT,dst));
            return dst;
         }
         case Iop_64HIto32: {
            HReg rHi, rLo;
            iselInt64Expr(&rHi,&rLo, env, e->Iex.Unop.arg);
            return rHi; /* and abandon rLo .. poor wee thing :-) */
         }
         case Iop_64to32: {
            HReg rHi, rLo;
            iselInt64Expr(&rHi,&rLo, env, e->Iex.Unop.arg);
            return rLo; /* similar stupid comment to the above ... */
         }
         case Iop_16HIto8:
         case Iop_32HIto16: {
            HReg dst  = newVRegI(env);
            HReg src  = iselIntExpr_R(env, e->Iex.Unop.arg);
            Int shift = e->Iex.Unop.op == Iop_16HIto8 ? 8 : 16;
            addInstr(env, mk_iMOVsd_RR(src,dst) );
            addInstr(env, X86Instr_Sh32(Xsh_SHR, shift, dst));
            return dst;
         }
         case Iop_1Uto32:
         case Iop_1Uto8: {
            HReg dst         = newVRegI(env);
            X86CondCode cond = iselCondCode(env, e->Iex.Unop.arg);
            addInstr(env, X86Instr_Set32(cond,dst));
            return dst;
         }
         case Iop_1Sto8:
         case Iop_1Sto16:
         case Iop_1Sto32: {
            /* could do better than this, but for now ... */
            HReg dst         = newVRegI(env);
            X86CondCode cond = iselCondCode(env, e->Iex.Unop.arg);
            addInstr(env, X86Instr_Set32(cond,dst));
            addInstr(env, X86Instr_Sh32(Xsh_SHL, 31, dst));
            addInstr(env, X86Instr_Sh32(Xsh_SAR, 31, dst));
            return dst;
         }
         case Iop_Ctz32: {
            /* Count trailing zeroes, implemented by x86 'bsfl' */
            HReg dst = newVRegI(env);
            HReg src = iselIntExpr_R(env, e->Iex.Unop.arg);
            addInstr(env, X86Instr_Bsfr32(True,src,dst));
            return dst;
         }
         case Iop_Clz32: {
            /* Count leading zeroes.  Do 'bsrl' to establish the index
               of the highest set bit, and subtract that value from
               31. */
            HReg tmp = newVRegI(env);
            HReg dst = newVRegI(env);
            HReg src = iselIntExpr_R(env, e->Iex.Unop.arg);
            addInstr(env, X86Instr_Bsfr32(False,src,tmp));
            addInstr(env, X86Instr_Alu32R(Xalu_MOV, 
                                          X86RMI_Imm(31), dst));
            addInstr(env, X86Instr_Alu32R(Xalu_SUB,
                                          X86RMI_Reg(tmp), dst));
            return dst;
         }

         case Iop_CmpwNEZ32: {
            HReg dst = newVRegI(env);
            HReg src = iselIntExpr_R(env, e->Iex.Unop.arg);
            addInstr(env, mk_iMOVsd_RR(src,dst));
            addInstr(env, X86Instr_Unary32(Xun_NEG,dst));
            addInstr(env, X86Instr_Alu32R(Xalu_OR,
                                          X86RMI_Reg(src), dst));
            addInstr(env, X86Instr_Sh32(Xsh_SAR, 31, dst));
            return dst;
         }
         case Iop_Left8:
         case Iop_Left16:
         case Iop_Left32: {
            HReg dst = newVRegI(env);
            HReg src = iselIntExpr_R(env, e->Iex.Unop.arg);
            addInstr(env, mk_iMOVsd_RR(src, dst));
            addInstr(env, X86Instr_Unary32(Xun_NEG, dst));
            addInstr(env, X86Instr_Alu32R(Xalu_OR, X86RMI_Reg(src), dst));
            return dst;
         }

         case Iop_V128to32: {
            HReg      dst  = newVRegI(env);
            HReg      vec  = iselVecExpr(env, e->Iex.Unop.arg);
            X86AMode* esp0 = X86AMode_IR(0, hregX86_ESP());
            sub_from_esp(env, 16);
            addInstr(env, X86Instr_SseLdSt(False/*store*/, vec, esp0));
            addInstr(env, X86Instr_Alu32R( Xalu_MOV, X86RMI_Mem(esp0), dst ));
            add_to_esp(env, 16);
            return dst;
         }

         /* ReinterpF32asI32(e) */
         /* Given an IEEE754 single, produce an I32 with the same bit
            pattern.  Keep stack 8-aligned even though only using 4
            bytes. */
         case Iop_ReinterpF32asI32: {
            HReg rf   = iselFltExpr(env, e->Iex.Unop.arg);
            HReg dst  = newVRegI(env);
            X86AMode* zero_esp = X86AMode_IR(0, hregX86_ESP());
            /* paranoia */
            set_FPU_rounding_default(env);
            /* subl $8, %esp */
            sub_from_esp(env, 8);
            /* gstF %rf, 0(%esp) */
            addInstr(env,
                     X86Instr_FpLdSt(False/*store*/, 4, rf, zero_esp));
            /* movl 0(%esp), %dst */
            addInstr(env, 
                     X86Instr_Alu32R(Xalu_MOV, X86RMI_Mem(zero_esp), dst));
            /* addl $8, %esp */
            add_to_esp(env, 8);
            return dst;
         }

         case Iop_16to8:
         case Iop_32to8:
         case Iop_32to16:
            /* These are no-ops. */
            return iselIntExpr_R(env, e->Iex.Unop.arg);

         case Iop_GetMSBs8x8: {
            /* Note: the following assumes the helper is of
               signature
                  UInt fn ( ULong ), and is not a regparm fn.
            */
            HReg  xLo, xHi;
            HReg  dst = newVRegI(env);
            Addr fn = (Addr)h_generic_calc_GetMSBs8x8;
            iselInt64Expr(&xHi, &xLo, env, e->Iex.Unop.arg);
            addInstr(env, X86Instr_Push(X86RMI_Reg(xHi)));
            addInstr(env, X86Instr_Push(X86RMI_Reg(xLo)));
            addInstr(env, X86Instr_Call( Xcc_ALWAYS, (Addr32)fn,
                                         0, mk_RetLoc_simple(RLPri_Int) ));
            add_to_esp(env, 2*4);
            addInstr(env, mk_iMOVsd_RR(hregX86_EAX(), dst));
            return dst;
         }

         default: 
            break;
      }
      break;
   }

   /* --------- GET --------- */
   case Iex_Get: {
      if (ty == Ity_I32) {
         HReg dst = newVRegI(env);
         addInstr(env, X86Instr_Alu32R(
                          Xalu_MOV, 
                          X86RMI_Mem(X86AMode_IR(e->Iex.Get.offset,
                                                 hregX86_EBP())),
                          dst));
         return dst;
      }
      if (ty == Ity_I8 || ty == Ity_I16) {
         HReg dst = newVRegI(env);
         addInstr(env, X86Instr_LoadEX(
                          toUChar(ty==Ity_I8 ? 1 : 2),
                          False,
                          X86AMode_IR(e->Iex.Get.offset,hregX86_EBP()),
                          dst));
         return dst;
      }
      break;
   }

   case Iex_GetI: {
      X86AMode* am 
         = genGuestArrayOffset(
              env, e->Iex.GetI.descr, 
                   e->Iex.GetI.ix, e->Iex.GetI.bias );
      HReg dst = newVRegI(env);
      if (ty == Ity_I8) {
         addInstr(env, X86Instr_LoadEX( 1, False, am, dst ));
         return dst;
      }
      if (ty == Ity_I32) {
         addInstr(env, X86Instr_Alu32R(Xalu_MOV, X86RMI_Mem(am), dst));
         return dst;
      }
      break;
   }

   /* --------- CCALL --------- */
   case Iex_CCall: {
      HReg    dst = newVRegI(env);
      vassert(ty == e->Iex.CCall.retty);

      /* be very restrictive for now.  Only 32/64-bit ints allowed for
         args, and 32 bits for return type.  Don't forget to change
         the RetLoc if more return types are allowed in future. */
      if (e->Iex.CCall.retty != Ity_I32)
         goto irreducible;

      /* Marshal args, do the call, clear stack. */
      UInt   addToSp = 0;
      RetLoc rloc    = mk_RetLoc_INVALID();
      doHelperCall( &addToSp, &rloc, env, NULL/*guard*/,
                    e->Iex.CCall.cee, e->Iex.CCall.retty, e->Iex.CCall.args );
      vassert(is_sane_RetLoc(rloc));
      vassert(rloc.pri == RLPri_Int);
      vassert(addToSp == 0);

      addInstr(env, mk_iMOVsd_RR(hregX86_EAX(), dst));
      return dst;
   }

   /* --------- LITERAL --------- */
   /* 32/16/8-bit literals */
   case Iex_Const: {
      X86RMI* rmi = iselIntExpr_RMI ( env, e );
      HReg    r   = newVRegI(env);
      addInstr(env, X86Instr_Alu32R(Xalu_MOV, rmi, r));
      return r;
   }

   /* --------- MULTIPLEX --------- */
   case Iex_ITE: { // VFD
     if ((ty == Ity_I32 || ty == Ity_I16 || ty == Ity_I8)
         && typeOfIRExpr(env->type_env,e->Iex.ITE.cond) == Ity_I1) {
        HReg   r1  = iselIntExpr_R(env, e->Iex.ITE.iftrue);
        X86RM* r0  = iselIntExpr_RM(env, e->Iex.ITE.iffalse);
        HReg   dst = newVRegI(env);
        addInstr(env, mk_iMOVsd_RR(r1,dst));
        X86CondCode cc = iselCondCode(env, e->Iex.ITE.cond);
        addInstr(env, X86Instr_CMov32(cc ^ 1, r0, dst));
        return dst;
      }
      break;
   }

   default: 
   break;
   } /* switch (e->tag) */

   /* We get here if no pattern matched. */
  irreducible:
   ppIRExpr(e);
   vpanic("iselIntExpr_R: cannot reduce tree");
}


/*---------------------------------------------------------*/
/*--- ISEL: Integer expression auxiliaries              ---*/
/*---------------------------------------------------------*/

/* --------------------- AMODEs --------------------- */

/* Return an AMode which computes the value of the specified
   expression, possibly also adding insns to the code list as a
   result.  The expression may only be a 32-bit one.
*/

static Bool sane_AMode ( X86AMode* am )
{
   switch (am->tag) {
      case Xam_IR:
         return 
            toBool( hregClass(am->Xam.IR.reg) == HRcInt32
                    && (hregIsVirtual(am->Xam.IR.reg)
                        || sameHReg(am->Xam.IR.reg, hregX86_EBP())) );
      case Xam_IRRS:
         return 
            toBool( hregClass(am->Xam.IRRS.base) == HRcInt32
                    && hregIsVirtual(am->Xam.IRRS.base)
                    && hregClass(am->Xam.IRRS.index) == HRcInt32
                    && hregIsVirtual(am->Xam.IRRS.index) );
      default:
        vpanic("sane_AMode: unknown x86 amode tag");
   }
}

static X86AMode* iselIntExpr_AMode ( ISelEnv* env, const IRExpr* e )
{
   X86AMode* am = iselIntExpr_AMode_wrk(env, e);
   vassert(sane_AMode(am));
   return am;
}

/* DO NOT CALL THIS DIRECTLY ! */
static X86AMode* iselIntExpr_AMode_wrk ( ISelEnv* env, const IRExpr* e )
{
   IRType ty = typeOfIRExpr(env->type_env,e);
   vassert(ty == Ity_I32);

   /* Add32( Add32(expr1, Shl32(expr2, simm)), imm32 ) */
   if (e->tag == Iex_Binop
       && e->Iex.Binop.op == Iop_Add32
       && e->Iex.Binop.arg2->tag == Iex_Const
       && e->Iex.Binop.arg2->Iex.Const.con->tag == Ico_U32
       && e->Iex.Binop.arg1->tag == Iex_Binop
       && e->Iex.Binop.arg1->Iex.Binop.op == Iop_Add32
       && e->Iex.Binop.arg1->Iex.Binop.arg2->tag == Iex_Binop
       && e->Iex.Binop.arg1->Iex.Binop.arg2->Iex.Binop.op == Iop_Shl32
       && e->Iex.Binop.arg1
           ->Iex.Binop.arg2->Iex.Binop.arg2->tag == Iex_Const
       && e->Iex.Binop.arg1
           ->Iex.Binop.arg2->Iex.Binop.arg2->Iex.Const.con->tag == Ico_U8) {
      UInt shift = e->Iex.Binop.arg1
                    ->Iex.Binop.arg2->Iex.Binop.arg2->Iex.Const.con->Ico.U8;
      UInt imm32 = e->Iex.Binop.arg2->Iex.Const.con->Ico.U32;
      if (shift == 1 || shift == 2 || shift == 3) {
         HReg r1 = iselIntExpr_R(env, e->Iex.Binop.arg1->Iex.Binop.arg1);
         HReg r2 = iselIntExpr_R(env, e->Iex.Binop.arg1
                                       ->Iex.Binop.arg2->Iex.Binop.arg1 );
         return X86AMode_IRRS(imm32, r1, r2, shift);
      }
   }

   /* Add32(expr1, Shl32(expr2, imm)) */
   if (e->tag == Iex_Binop
       && e->Iex.Binop.op == Iop_Add32
       && e->Iex.Binop.arg2->tag == Iex_Binop
       && e->Iex.Binop.arg2->Iex.Binop.op == Iop_Shl32
       && e->Iex.Binop.arg2->Iex.Binop.arg2->tag == Iex_Const
       && e->Iex.Binop.arg2->Iex.Binop.arg2->Iex.Const.con->tag == Ico_U8) {
      UInt shift = e->Iex.Binop.arg2->Iex.Binop.arg2->Iex.Const.con->Ico.U8;
      if (shift == 1 || shift == 2 || shift == 3) {
         HReg r1 = iselIntExpr_R(env, e->Iex.Binop.arg1);
         HReg r2 = iselIntExpr_R(env, e->Iex.Binop.arg2->Iex.Binop.arg1 );
         return X86AMode_IRRS(0, r1, r2, shift);
      }
   }

   /* Add32(expr,i) */
   if (e->tag == Iex_Binop 
       && e->Iex.Binop.op == Iop_Add32
       && e->Iex.Binop.arg2->tag == Iex_Const
       && e->Iex.Binop.arg2->Iex.Const.con->tag == Ico_U32) {
      HReg r1 = iselIntExpr_R(env,  e->Iex.Binop.arg1);
      return X86AMode_IR(e->Iex.Binop.arg2->Iex.Const.con->Ico.U32, r1);
   }

   /* Doesn't match anything in particular.  Generate it into
      a register and use that. */
   {
      HReg r1 = iselIntExpr_R(env, e);
      return X86AMode_IR(0, r1);
   }
}


/* --------------------- RMIs --------------------- */

/* Similarly, calculate an expression into an X86RMI operand.  As with
   iselIntExpr_R, the expression can have type 32, 16 or 8 bits.  */

static X86RMI* iselIntExpr_RMI ( ISelEnv* env, const IRExpr* e )
{
   X86RMI* rmi = iselIntExpr_RMI_wrk(env, e);
   /* sanity checks ... */
   switch (rmi->tag) {
      case Xrmi_Imm:
         return rmi;
      case Xrmi_Reg:
         vassert(hregClass(rmi->Xrmi.Reg.reg) == HRcInt32);
         vassert(hregIsVirtual(rmi->Xrmi.Reg.reg));
         return rmi;
      case Xrmi_Mem:
         vassert(sane_AMode(rmi->Xrmi.Mem.am));
         return rmi;
      default:
         vpanic("iselIntExpr_RMI: unknown x86 RMI tag");
   }
}

/* DO NOT CALL THIS DIRECTLY ! */
static X86RMI* iselIntExpr_RMI_wrk ( ISelEnv* env, const IRExpr* e )
{
   IRType ty = typeOfIRExpr(env->type_env,e);
   vassert(ty == Ity_I32 || ty == Ity_I16 || ty == Ity_I8);

   /* special case: immediate */
   if (e->tag == Iex_Const) {
      UInt u;
      switch (e->Iex.Const.con->tag) {
         case Ico_U32: u = e->Iex.Const.con->Ico.U32; break;
         case Ico_U16: u = 0xFFFF & (e->Iex.Const.con->Ico.U16); break;
         case Ico_U8:  u = 0xFF   & (e->Iex.Const.con->Ico.U8); break;
         default: vpanic("iselIntExpr_RMI.Iex_Const(x86h)");
      }
      return X86RMI_Imm(u);
   }

   /* special case: 32-bit GET */
   if (e->tag == Iex_Get && ty == Ity_I32) {
      return X86RMI_Mem(X86AMode_IR(e->Iex.Get.offset,
                                    hregX86_EBP()));
   }

   /* special case: 32-bit load from memory */
   if (e->tag == Iex_Load && ty == Ity_I32 
       && e->Iex.Load.end == Iend_LE) {
      X86AMode* am = iselIntExpr_AMode(env, e->Iex.Load.addr);
      return X86RMI_Mem(am);
   }

   /* default case: calculate into a register and return that */
   {
      HReg r = iselIntExpr_R ( env, e );
      return X86RMI_Reg(r);
   }
}


/* --------------------- RIs --------------------- */

/* Calculate an expression into an X86RI operand.  As with
   iselIntExpr_R, the expression can have type 32, 16 or 8 bits. */

static X86RI* iselIntExpr_RI ( ISelEnv* env, const IRExpr* e )
{
   X86RI* ri = iselIntExpr_RI_wrk(env, e);
   /* sanity checks ... */
   switch (ri->tag) {
      case Xri_Imm:
         return ri;
      case Xri_Reg:
         vassert(hregClass(ri->Xri.Reg.reg) == HRcInt32);
         vassert(hregIsVirtual(ri->Xri.Reg.reg));
         return ri;
      default:
         vpanic("iselIntExpr_RI: unknown x86 RI tag");
   }
}

/* DO NOT CALL THIS DIRECTLY ! */
static X86RI* iselIntExpr_RI_wrk ( ISelEnv* env, const IRExpr* e )
{
   IRType ty = typeOfIRExpr(env->type_env,e);
   vassert(ty == Ity_I32 || ty == Ity_I16 || ty == Ity_I8);

   /* special case: immediate */
   if (e->tag == Iex_Const) {
      UInt u;
      switch (e->Iex.Const.con->tag) {
         case Ico_U32: u = e->Iex.Const.con->Ico.U32; break;
         case Ico_U16: u = 0xFFFF & (e->Iex.Const.con->Ico.U16); break;
         case Ico_U8:  u = 0xFF   & (e->Iex.Const.con->Ico.U8); break;
         default: vpanic("iselIntExpr_RMI.Iex_Const(x86h)");
      }
      return X86RI_Imm(u);
   }

   /* default case: calculate into a register and return that */
   {
      HReg r = iselIntExpr_R ( env, e );
      return X86RI_Reg(r);
   }
}


/* --------------------- RMs --------------------- */

/* Similarly, calculate an expression into an X86RM operand.  As with
   iselIntExpr_R, the expression can have type 32, 16 or 8 bits.  */

static X86RM* iselIntExpr_RM ( ISelEnv* env, const IRExpr* e )
{
   X86RM* rm = iselIntExpr_RM_wrk(env, e);
   /* sanity checks ... */
   switch (rm->tag) {
      case Xrm_Reg:
         vassert(hregClass(rm->Xrm.Reg.reg) == HRcInt32);
         vassert(hregIsVirtual(rm->Xrm.Reg.reg));
         return rm;
      case Xrm_Mem:
         vassert(sane_AMode(rm->Xrm.Mem.am));
         return rm;
      default:
         vpanic("iselIntExpr_RM: unknown x86 RM tag");
   }
}

/* DO NOT CALL THIS DIRECTLY ! */
static X86RM* iselIntExpr_RM_wrk ( ISelEnv* env, const IRExpr* e )
{
   IRType ty = typeOfIRExpr(env->type_env,e);
   vassert(ty == Ity_I32 || ty == Ity_I16 || ty == Ity_I8);

   /* special case: 32-bit GET */
   if (e->tag == Iex_Get && ty == Ity_I32) {
      return X86RM_Mem(X86AMode_IR(e->Iex.Get.offset,
                                   hregX86_EBP()));
   }

   /* special case: load from memory */

   /* default case: calculate into a register and return that */
   {
      HReg r = iselIntExpr_R ( env, e );
      return X86RM_Reg(r);
   }
}


/* --------------------- CONDCODE --------------------- */

/* Generate code to evaluated a bit-typed expression, returning the
   condition code which would correspond when the expression would
   notionally have returned 1. */

static X86CondCode iselCondCode ( ISelEnv* env, const IRExpr* e )
{
   /* Uh, there's nothing we can sanity check here, unfortunately. */
   return iselCondCode_wrk(env,e);
}

/* DO NOT CALL THIS DIRECTLY ! */
static X86CondCode iselCondCode_wrk ( ISelEnv* env, const IRExpr* e )
{
   MatchInfo mi;

   vassert(e);
   vassert(typeOfIRExpr(env->type_env,e) == Ity_I1);

   /* var */
   if (e->tag == Iex_RdTmp) {
      HReg r32 = lookupIRTemp(env, e->Iex.RdTmp.tmp);
      /* Test32 doesn't modify r32; so this is OK. */
      addInstr(env, X86Instr_Test32(1,X86RM_Reg(r32)));
      return Xcc_NZ;
   }

   /* Constant 1:Bit */
   if (e->tag == Iex_Const) {
      HReg r;
      vassert(e->Iex.Const.con->tag == Ico_U1);
      vassert(e->Iex.Const.con->Ico.U1 == True 
              || e->Iex.Const.con->Ico.U1 == False);
      r = newVRegI(env);
      addInstr(env, X86Instr_Alu32R(Xalu_MOV,X86RMI_Imm(0),r));
      addInstr(env, X86Instr_Alu32R(Xalu_XOR,X86RMI_Reg(r),r));
      return e->Iex.Const.con->Ico.U1 ? Xcc_Z : Xcc_NZ;
   }

   /* Not1(e) */
   if (e->tag == Iex_Unop && e->Iex.Unop.op == Iop_Not1) {
      /* Generate code for the arg, and negate the test condition */
      return 1 ^ iselCondCode(env, e->Iex.Unop.arg);
   }

   /* --- patterns rooted at: 32to1 --- */

   if (e->tag == Iex_Unop
       && e->Iex.Unop.op == Iop_32to1) {
      X86RM* rm = iselIntExpr_RM(env, e->Iex.Unop.arg);
      addInstr(env, X86Instr_Test32(1,rm));
      return Xcc_NZ;
   }

   /* --- patterns rooted at: CmpNEZ8 --- */

   /* CmpNEZ8(x) */
   if (e->tag == Iex_Unop 
       && e->Iex.Unop.op == Iop_CmpNEZ8) {
      X86RM* rm = iselIntExpr_RM(env, e->Iex.Unop.arg);
      addInstr(env, X86Instr_Test32(0xFF,rm));
      return Xcc_NZ;
   }

   /* --- patterns rooted at: CmpNEZ16 --- */

   /* CmpNEZ16(x) */
   if (e->tag == Iex_Unop 
       && e->Iex.Unop.op == Iop_CmpNEZ16) {
      X86RM* rm = iselIntExpr_RM(env, e->Iex.Unop.arg);
      addInstr(env, X86Instr_Test32(0xFFFF,rm));
      return Xcc_NZ;
   }

   /* --- patterns rooted at: CmpNEZ32 --- */

   /* CmpNEZ32(And32(x,y)) */
   {
      DECLARE_PATTERN(p_CmpNEZ32_And32);
      DEFINE_PATTERN(p_CmpNEZ32_And32,
                     unop(Iop_CmpNEZ32, binop(Iop_And32, bind(0), bind(1))));
      if (matchIRExpr(&mi, p_CmpNEZ32_And32, e)) {
         HReg    r0   = iselIntExpr_R(env, mi.bindee[0]);
         X86RMI* rmi1 = iselIntExpr_RMI(env, mi.bindee[1]);
         HReg    tmp  = newVRegI(env);
         addInstr(env, mk_iMOVsd_RR(r0, tmp));
         addInstr(env, X86Instr_Alu32R(Xalu_AND,rmi1,tmp));
         return Xcc_NZ;
      }
   }

   /* CmpNEZ32(Or32(x,y)) */
   {
      DECLARE_PATTERN(p_CmpNEZ32_Or32);
      DEFINE_PATTERN(p_CmpNEZ32_Or32,
                     unop(Iop_CmpNEZ32, binop(Iop_Or32, bind(0), bind(1))));
      if (matchIRExpr(&mi, p_CmpNEZ32_Or32, e)) {
         HReg    r0   = iselIntExpr_R(env, mi.bindee[0]);
         X86RMI* rmi1 = iselIntExpr_RMI(env, mi.bindee[1]);
         HReg    tmp  = newVRegI(env);
         addInstr(env, mk_iMOVsd_RR(r0, tmp));
         addInstr(env, X86Instr_Alu32R(Xalu_OR,rmi1,tmp));
         return Xcc_NZ;
      }
   }

   /* CmpNEZ32(GET(..):I32) */
   if (e->tag == Iex_Unop 
       && e->Iex.Unop.op == Iop_CmpNEZ32
       && e->Iex.Unop.arg->tag == Iex_Get) {
      X86AMode* am = X86AMode_IR(e->Iex.Unop.arg->Iex.Get.offset, 
                                 hregX86_EBP());
      addInstr(env, X86Instr_Alu32M(Xalu_CMP, X86RI_Imm(0), am));
      return Xcc_NZ;
   }

   /* CmpNEZ32(x) */
   if (e->tag == Iex_Unop 
       && e->Iex.Unop.op == Iop_CmpNEZ32) {
      HReg    r1   = iselIntExpr_R(env, e->Iex.Unop.arg);
      X86RMI* rmi2 = X86RMI_Imm(0);
      addInstr(env, X86Instr_Alu32R(Xalu_CMP,rmi2,r1));
      return Xcc_NZ;
   }

   /* --- patterns rooted at: CmpNEZ64 --- */

   /* CmpNEZ64(Or64(x,y)) */
   {
      DECLARE_PATTERN(p_CmpNEZ64_Or64);
      DEFINE_PATTERN(p_CmpNEZ64_Or64,
                     unop(Iop_CmpNEZ64, binop(Iop_Or64, bind(0), bind(1))));
      if (matchIRExpr(&mi, p_CmpNEZ64_Or64, e)) {
         HReg    hi1, lo1, hi2, lo2;
         HReg    tmp  = newVRegI(env);
         iselInt64Expr( &hi1, &lo1, env, mi.bindee[0] );
         addInstr(env, mk_iMOVsd_RR(hi1, tmp));
         addInstr(env, X86Instr_Alu32R(Xalu_OR,X86RMI_Reg(lo1),tmp));
         iselInt64Expr( &hi2, &lo2, env, mi.bindee[1] );
         addInstr(env, X86Instr_Alu32R(Xalu_OR,X86RMI_Reg(hi2),tmp));
         addInstr(env, X86Instr_Alu32R(Xalu_OR,X86RMI_Reg(lo2),tmp));
         return Xcc_NZ;
      }
   }

   /* CmpNEZ64(x) */
   if (e->tag == Iex_Unop 
       && e->Iex.Unop.op == Iop_CmpNEZ64) {
      HReg hi, lo;
      HReg tmp = newVRegI(env);
      iselInt64Expr( &hi, &lo, env, e->Iex.Unop.arg );
      addInstr(env, mk_iMOVsd_RR(hi, tmp));
      addInstr(env, X86Instr_Alu32R(Xalu_OR,X86RMI_Reg(lo), tmp));
      return Xcc_NZ;
   }

   /* --- patterns rooted at: Cmp{EQ,NE}{8,16} --- */

   /* CmpEQ8 / CmpNE8 */
   if (e->tag == Iex_Binop 
       && (e->Iex.Binop.op == Iop_CmpEQ8
           || e->Iex.Binop.op == Iop_CmpNE8
           || e->Iex.Binop.op == Iop_CasCmpEQ8
           || e->Iex.Binop.op == Iop_CasCmpNE8)) {
      if (isZeroU8(e->Iex.Binop.arg2)) {
         HReg    r1   = iselIntExpr_R(env, e->Iex.Binop.arg1);
         addInstr(env, X86Instr_Test32(0xFF,X86RM_Reg(r1)));
         switch (e->Iex.Binop.op) {
            case Iop_CmpEQ8: case Iop_CasCmpEQ8: return Xcc_Z;
            case Iop_CmpNE8: case Iop_CasCmpNE8: return Xcc_NZ;
            default: vpanic("iselCondCode(x86): CmpXX8(expr,0:I8)");
         }
      } else {
         HReg    r1   = iselIntExpr_R(env, e->Iex.Binop.arg1);
         X86RMI* rmi2 = iselIntExpr_RMI(env, e->Iex.Binop.arg2);
         HReg    r    = newVRegI(env);
         addInstr(env, mk_iMOVsd_RR(r1,r));
         addInstr(env, X86Instr_Alu32R(Xalu_XOR,rmi2,r));
         addInstr(env, X86Instr_Test32(0xFF,X86RM_Reg(r)));
         switch (e->Iex.Binop.op) {
            case Iop_CmpEQ8: case Iop_CasCmpEQ8: return Xcc_Z;
            case Iop_CmpNE8: case Iop_CasCmpNE8: return Xcc_NZ;
            default: vpanic("iselCondCode(x86): CmpXX8(expr,expr)");
         }
      }
   }

   /* CmpEQ16 / CmpNE16 */
   if (e->tag == Iex_Binop 
       && (e->Iex.Binop.op == Iop_CmpEQ16
           || e->Iex.Binop.op == Iop_CmpNE16
           || e->Iex.Binop.op == Iop_CasCmpEQ16
           || e->Iex.Binop.op == Iop_CasCmpNE16
           || e->Iex.Binop.op == Iop_ExpCmpNE16)) {
      HReg    r1   = iselIntExpr_R(env, e->Iex.Binop.arg1);
      X86RMI* rmi2 = iselIntExpr_RMI(env, e->Iex.Binop.arg2);
      HReg    r    = newVRegI(env);
      addInstr(env, mk_iMOVsd_RR(r1,r));
      addInstr(env, X86Instr_Alu32R(Xalu_XOR,rmi2,r));
      addInstr(env, X86Instr_Test32(0xFFFF,X86RM_Reg(r)));
      switch (e->Iex.Binop.op) {
         case Iop_CmpEQ16: case Iop_CasCmpEQ16:
            return Xcc_Z;
         case Iop_CmpNE16: case Iop_CasCmpNE16: case Iop_ExpCmpNE16:
            return Xcc_NZ;
         default:
            vpanic("iselCondCode(x86): CmpXX16");
      }
   }

   /* CmpNE32(ccall, 32-bit constant) (--smc-check=all optimisation).
      Saves a "movl %eax, %tmp" compared to the default route. */
   if (e->tag == Iex_Binop 
       && e->Iex.Binop.op == Iop_CmpNE32
       && e->Iex.Binop.arg1->tag == Iex_CCall
       && e->Iex.Binop.arg2->tag == Iex_Const) {
      IRExpr* cal = e->Iex.Binop.arg1;
      IRExpr* con = e->Iex.Binop.arg2;
      /* clone & partial-eval of generic Iex_CCall and Iex_Const cases */
      vassert(cal->Iex.CCall.retty == Ity_I32); /* else ill-typed IR */
      vassert(con->Iex.Const.con->tag == Ico_U32);
      /* Marshal args, do the call. */
      UInt   addToSp = 0;
      RetLoc rloc    = mk_RetLoc_INVALID();
      doHelperCall( &addToSp, &rloc, env, NULL/*guard*/,
                    cal->Iex.CCall.cee,
                    cal->Iex.CCall.retty, cal->Iex.CCall.args );
      vassert(is_sane_RetLoc(rloc));
      vassert(rloc.pri == RLPri_Int);
      vassert(addToSp == 0);
      /* */
      addInstr(env, X86Instr_Alu32R(Xalu_CMP,
                                    X86RMI_Imm(con->Iex.Const.con->Ico.U32),
                                    hregX86_EAX()));
      return Xcc_NZ;
   }

   /* Cmp*32*(x,y) */
   if (e->tag == Iex_Binop 
       && (e->Iex.Binop.op == Iop_CmpEQ32
           || e->Iex.Binop.op == Iop_CmpNE32
           || e->Iex.Binop.op == Iop_CmpLT32S
           || e->Iex.Binop.op == Iop_CmpLT32U
           || e->Iex.Binop.op == Iop_CmpLE32S
           || e->Iex.Binop.op == Iop_CmpLE32U
           || e->Iex.Binop.op == Iop_CasCmpEQ32
           || e->Iex.Binop.op == Iop_CasCmpNE32
           || e->Iex.Binop.op == Iop_ExpCmpNE32)) {
      HReg    r1   = iselIntExpr_R(env, e->Iex.Binop.arg1);
      X86RMI* rmi2 = iselIntExpr_RMI(env, e->Iex.Binop.arg2);
      addInstr(env, X86Instr_Alu32R(Xalu_CMP,rmi2,r1));
      switch (e->Iex.Binop.op) {
         case Iop_CmpEQ32: case Iop_CasCmpEQ32: return Xcc_Z;
         case Iop_CmpNE32:
         case Iop_CasCmpNE32: case Iop_ExpCmpNE32: return Xcc_NZ;
         case Iop_CmpLT32S: return Xcc_L;
         case Iop_CmpLT32U: return Xcc_B;
         case Iop_CmpLE32S: return Xcc_LE;
         case Iop_CmpLE32U: return Xcc_BE;
         default: vpanic("iselCondCode(x86): CmpXX32");
      }
   }

   /* CmpNE64 */
   if (e->tag == Iex_Binop 
       && (e->Iex.Binop.op == Iop_CmpNE64
           || e->Iex.Binop.op == Iop_CmpEQ64)) {
      HReg hi1, hi2, lo1, lo2;
      HReg tHi = newVRegI(env);
      HReg tLo = newVRegI(env);
      iselInt64Expr( &hi1, &lo1, env, e->Iex.Binop.arg1 );
      iselInt64Expr( &hi2, &lo2, env, e->Iex.Binop.arg2 );
      addInstr(env, mk_iMOVsd_RR(hi1, tHi));
      addInstr(env, X86Instr_Alu32R(Xalu_XOR,X86RMI_Reg(hi2), tHi));
      addInstr(env, mk_iMOVsd_RR(lo1, tLo));
      addInstr(env, X86Instr_Alu32R(Xalu_XOR,X86RMI_Reg(lo2), tLo));
      addInstr(env, X86Instr_Alu32R(Xalu_OR,X86RMI_Reg(tHi), tLo));
      switch (e->Iex.Binop.op) {
         case Iop_CmpNE64: return Xcc_NZ;
         case Iop_CmpEQ64: return Xcc_Z;
         default: vpanic("iselCondCode(x86): CmpXX64");
      }
   }

   ppIRExpr(e);
   vpanic("iselCondCode");
}


/*---------------------------------------------------------*/
/*--- ISEL: Integer expressions (64 bit)                ---*/
/*---------------------------------------------------------*/

/* Compute a 64-bit value into a register pair, which is returned as
   the first two parameters.  As with iselIntExpr_R, these may be
   either real or virtual regs; in any case they must not be changed
   by subsequent code emitted by the caller.  */

static void iselInt64Expr ( HReg* rHi, HReg* rLo, ISelEnv* env,
                            const IRExpr* e )
{
   iselInt64Expr_wrk(rHi, rLo, env, e);
#  if 0
   vex_printf("\n"); ppIRExpr(e); vex_printf("\n");
#  endif
   vassert(hregClass(*rHi) == HRcInt32);
   vassert(hregIsVirtual(*rHi));
   vassert(hregClass(*rLo) == HRcInt32);
   vassert(hregIsVirtual(*rLo));
}

/* DO NOT CALL THIS DIRECTLY ! */
static void iselInt64Expr_wrk ( HReg* rHi, HReg* rLo, ISelEnv* env,
                                const IRExpr* e )
{
   MatchInfo mi;
   HWord fn = 0; /* helper fn for most SIMD64 stuff */
   vassert(e);
   vassert(typeOfIRExpr(env->type_env,e) == Ity_I64);

   /* 64-bit literal */
   if (e->tag == Iex_Const) {
      ULong w64 = e->Iex.Const.con->Ico.U64;
      UInt  wHi = toUInt(w64 >> 32);
      UInt  wLo = toUInt(w64);
      HReg  tLo = newVRegI(env);
      HReg  tHi = newVRegI(env);
      vassert(e->Iex.Const.con->tag == Ico_U64);
      if (wLo == wHi) {
         /* Save a precious Int register in this special case. */
         addInstr(env, X86Instr_Alu32R(Xalu_MOV, X86RMI_Imm(wLo), tLo));
         *rHi = tLo;
         *rLo = tLo;
      } else {
         addInstr(env, X86Instr_Alu32R(Xalu_MOV, X86RMI_Imm(wHi), tHi));
         addInstr(env, X86Instr_Alu32R(Xalu_MOV, X86RMI_Imm(wLo), tLo));
         *rHi = tHi;
         *rLo = tLo;
      }
      return;
   }

   /* read 64-bit IRTemp */
   if (e->tag == Iex_RdTmp) {
      lookupIRTemp64( rHi, rLo, env, e->Iex.RdTmp.tmp);
      return;
   }

   /* 64-bit load */
   if (e->tag == Iex_Load && e->Iex.Load.end == Iend_LE) {
      HReg     tLo, tHi;
      X86AMode *am0, *am4;
      vassert(e->Iex.Load.ty == Ity_I64);
      tLo = newVRegI(env);
      tHi = newVRegI(env);
      am0 = iselIntExpr_AMode(env, e->Iex.Load.addr);
      am4 = advance4(am0);
      addInstr(env, X86Instr_Alu32R( Xalu_MOV, X86RMI_Mem(am0), tLo ));
      addInstr(env, X86Instr_Alu32R( Xalu_MOV, X86RMI_Mem(am4), tHi ));
      *rHi = tHi;
      *rLo = tLo;
      return;
   }

   /* 64-bit GET */
   if (e->tag == Iex_Get) {
      X86AMode* am  = X86AMode_IR(e->Iex.Get.offset, hregX86_EBP());
      X86AMode* am4 = advance4(am);
      HReg tLo = newVRegI(env);
      HReg tHi = newVRegI(env);
      addInstr(env, X86Instr_Alu32R( Xalu_MOV, X86RMI_Mem(am), tLo ));
      addInstr(env, X86Instr_Alu32R( Xalu_MOV, X86RMI_Mem(am4), tHi ));
      *rHi = tHi;
      *rLo = tLo;
      return;
   }

   /* 64-bit GETI */
   if (e->tag == Iex_GetI) {
      X86AMode* am 
         = genGuestArrayOffset( env, e->Iex.GetI.descr, 
                                     e->Iex.GetI.ix, e->Iex.GetI.bias );
      X86AMode* am4 = advance4(am);
      HReg tLo = newVRegI(env);
      HReg tHi = newVRegI(env);
      addInstr(env, X86Instr_Alu32R( Xalu_MOV, X86RMI_Mem(am), tLo ));
      addInstr(env, X86Instr_Alu32R( Xalu_MOV, X86RMI_Mem(am4), tHi ));
      *rHi = tHi;
      *rLo = tLo;
      return;
   }

   /* 64-bit ITE: ITE(g, expr, expr) */ // VFD
   if (e->tag == Iex_ITE) {
      HReg e0Lo, e0Hi, e1Lo, e1Hi;
      HReg tLo = newVRegI(env);
      HReg tHi = newVRegI(env);
      iselInt64Expr(&e0Hi, &e0Lo, env, e->Iex.ITE.iffalse);
      iselInt64Expr(&e1Hi, &e1Lo, env, e->Iex.ITE.iftrue);
      addInstr(env, mk_iMOVsd_RR(e1Hi, tHi));
      addInstr(env, mk_iMOVsd_RR(e1Lo, tLo));
      X86CondCode cc = iselCondCode(env, e->Iex.ITE.cond);
      /* This assumes the first cmov32 doesn't trash the condition
         codes, so they are still available for the second cmov32 */
      addInstr(env, X86Instr_CMov32(cc ^ 1, X86RM_Reg(e0Hi), tHi));
      addInstr(env, X86Instr_CMov32(cc ^ 1, X86RM_Reg(e0Lo), tLo));
      *rHi = tHi;
      *rLo = tLo;
      return;
   }

   /* --------- BINARY ops --------- */
   if (e->tag == Iex_Binop) {
      switch (e->Iex.Binop.op) {
         /* 32 x 32 -> 64 multiply */
         case Iop_MullU32:
         case Iop_MullS32: {
            /* get one operand into %eax, and the other into a R/M.
               Need to make an educated guess about which is better in
               which. */
            HReg   tLo    = newVRegI(env);
            HReg   tHi    = newVRegI(env);
            Bool   syned  = toBool(e->Iex.Binop.op == Iop_MullS32);
            X86RM* rmLeft = iselIntExpr_RM(env, e->Iex.Binop.arg1);
            HReg   rRight = iselIntExpr_R(env, e->Iex.Binop.arg2);
            addInstr(env, mk_iMOVsd_RR(rRight, hregX86_EAX()));
            addInstr(env, X86Instr_MulL(syned, rmLeft));
            /* Result is now in EDX:EAX.  Tell the caller. */
            addInstr(env, mk_iMOVsd_RR(hregX86_EDX(), tHi));
            addInstr(env, mk_iMOVsd_RR(hregX86_EAX(), tLo));
            *rHi = tHi;
            *rLo = tLo;
            return;
         }

         /* 64 x 32 -> (32(rem),32(div)) division */
         case Iop_DivModU64to32:
         case Iop_DivModS64to32: {
            /* Get the 64-bit operand into edx:eax, and the other into
               any old R/M. */
            HReg sHi, sLo;
            HReg   tLo     = newVRegI(env);
            HReg   tHi     = newVRegI(env);
            Bool   syned   = toBool(e->Iex.Binop.op == Iop_DivModS64to32);
            X86RM* rmRight = iselIntExpr_RM(env, e->Iex.Binop.arg2);
            iselInt64Expr(&sHi,&sLo, env, e->Iex.Binop.arg1);
            addInstr(env, mk_iMOVsd_RR(sHi, hregX86_EDX()));
            addInstr(env, mk_iMOVsd_RR(sLo, hregX86_EAX()));
            addInstr(env, X86Instr_Div(syned, rmRight));
            addInstr(env, mk_iMOVsd_RR(hregX86_EDX(), tHi));
            addInstr(env, mk_iMOVsd_RR(hregX86_EAX(), tLo));
            *rHi = tHi;
            *rLo = tLo;
            return;
         }

         /* Or64/And64/Xor64 */
         case Iop_Or64:
         case Iop_And64:
         case Iop_Xor64: {
            HReg xLo, xHi, yLo, yHi;
            HReg tLo = newVRegI(env);
            HReg tHi = newVRegI(env);
            X86AluOp op = e->Iex.Binop.op==Iop_Or64 ? Xalu_OR
                          : e->Iex.Binop.op==Iop_And64 ? Xalu_AND
                          : Xalu_XOR;
            iselInt64Expr(&xHi, &xLo, env, e->Iex.Binop.arg1);
            iselInt64Expr(&yHi, &yLo, env, e->Iex.Binop.arg2);
            addInstr(env, mk_iMOVsd_RR(xHi, tHi));
            addInstr(env, X86Instr_Alu32R(op, X86RMI_Reg(yHi), tHi));
            addInstr(env, mk_iMOVsd_RR(xLo, tLo));
            addInstr(env, X86Instr_Alu32R(op, X86RMI_Reg(yLo), tLo));
            *rHi = tHi;
            *rLo = tLo;
            return;
         }

         /* Add64/Sub64 */
         case Iop_Add64:
            if (e->Iex.Binop.arg2->tag == Iex_Const) {
               /* special case Add64(e, const) */
               ULong w64 = e->Iex.Binop.arg2->Iex.Const.con->Ico.U64;
               UInt  wHi = toUInt(w64 >> 32);
               UInt  wLo = toUInt(w64);
               HReg  tLo = newVRegI(env);
               HReg  tHi = newVRegI(env);
               HReg  xLo, xHi;
               vassert(e->Iex.Binop.arg2->Iex.Const.con->tag == Ico_U64);
               iselInt64Expr(&xHi, &xLo, env, e->Iex.Binop.arg1);
               addInstr(env, mk_iMOVsd_RR(xHi, tHi));
               addInstr(env, mk_iMOVsd_RR(xLo, tLo));
               addInstr(env, X86Instr_Alu32R(Xalu_ADD, X86RMI_Imm(wLo), tLo));
               addInstr(env, X86Instr_Alu32R(Xalu_ADC, X86RMI_Imm(wHi), tHi));
               *rHi = tHi;
               *rLo = tLo;
               return;
            }
            /* else fall through to the generic case */
         case Iop_Sub64: {
            HReg xLo, xHi, yLo, yHi;
            HReg tLo = newVRegI(env);
            HReg tHi = newVRegI(env);
            iselInt64Expr(&xHi, &xLo, env, e->Iex.Binop.arg1);
            addInstr(env, mk_iMOVsd_RR(xHi, tHi));
            addInstr(env, mk_iMOVsd_RR(xLo, tLo));
            iselInt64Expr(&yHi, &yLo, env, e->Iex.Binop.arg2);
            if (e->Iex.Binop.op==Iop_Add64) {
               addInstr(env, X86Instr_Alu32R(Xalu_ADD, X86RMI_Reg(yLo), tLo));
               addInstr(env, X86Instr_Alu32R(Xalu_ADC, X86RMI_Reg(yHi), tHi));
            } else {
               addInstr(env, X86Instr_Alu32R(Xalu_SUB, X86RMI_Reg(yLo), tLo));
               addInstr(env, X86Instr_Alu32R(Xalu_SBB, X86RMI_Reg(yHi), tHi));
            }
            *rHi = tHi;
            *rLo = tLo;
            return;
         }

         /* 32HLto64(e1,e2) */
         case Iop_32HLto64:
            *rHi = iselIntExpr_R(env, e->Iex.Binop.arg1);
            *rLo = iselIntExpr_R(env, e->Iex.Binop.arg2);
            return;

         /* 64-bit shifts */
         case Iop_Shl64: {
            /* We use the same ingenious scheme as gcc.  Put the value
               to be shifted into %hi:%lo, and the shift amount into
               %cl.  Then (dsts on right, a la ATT syntax):
 
               shldl %cl, %lo, %hi   -- make %hi be right for the
                                     -- shift amt %cl % 32
               shll  %cl, %lo        -- make %lo be right for the
                                     -- shift amt %cl % 32

               Now, if (shift amount % 64) is in the range 32 .. 63,
               we have to do a fixup, which puts the result low half
               into the result high half, and zeroes the low half:

               testl $32, %ecx

               cmovnz %lo, %hi
               movl $0, %tmp         -- sigh; need yet another reg
               cmovnz %tmp, %lo 
            */
            HReg rAmt, sHi, sLo, tHi, tLo, tTemp;
            tLo = newVRegI(env);
            tHi = newVRegI(env);
            tTemp = newVRegI(env);
            rAmt = iselIntExpr_R(env, e->Iex.Binop.arg2);
            iselInt64Expr(&sHi,&sLo, env, e->Iex.Binop.arg1);
            addInstr(env, mk_iMOVsd_RR(rAmt, hregX86_ECX()));
            addInstr(env, mk_iMOVsd_RR(sHi, tHi));
            addInstr(env, mk_iMOVsd_RR(sLo, tLo));
            /* Ok.  Now shift amt is in %ecx, and value is in tHi/tLo
               and those regs are legitimately modifiable. */
            addInstr(env, X86Instr_Sh3232(Xsh_SHL, 0/*%cl*/, tLo, tHi));
            addInstr(env, X86Instr_Sh32(Xsh_SHL, 0/*%cl*/, tLo));
            addInstr(env, X86Instr_Test32(32, X86RM_Reg(hregX86_ECX())));
            addInstr(env, X86Instr_CMov32(Xcc_NZ, X86RM_Reg(tLo), tHi));
            addInstr(env, X86Instr_Alu32R(Xalu_MOV, X86RMI_Imm(0), tTemp));
            addInstr(env, X86Instr_CMov32(Xcc_NZ, X86RM_Reg(tTemp), tLo));
            *rHi = tHi;
            *rLo = tLo;
            return;
         }

         case Iop_Shr64: {
            /* We use the same ingenious scheme as gcc.  Put the value
               to be shifted into %hi:%lo, and the shift amount into
               %cl.  Then:
 
               shrdl %cl, %hi, %lo   -- make %lo be right for the
                                     -- shift amt %cl % 32
               shrl  %cl, %hi        -- make %hi be right for the
                                     -- shift amt %cl % 32

               Now, if (shift amount % 64) is in the range 32 .. 63,
               we have to do a fixup, which puts the result high half
               into the result low half, and zeroes the high half:

               testl $32, %ecx

               cmovnz %hi, %lo
               movl $0, %tmp         -- sigh; need yet another reg
               cmovnz %tmp, %hi
            */
            HReg rAmt, sHi, sLo, tHi, tLo, tTemp;
            tLo = newVRegI(env);
            tHi = newVRegI(env);
            tTemp = newVRegI(env);
            rAmt = iselIntExpr_R(env, e->Iex.Binop.arg2);
            iselInt64Expr(&sHi,&sLo, env, e->Iex.Binop.arg1);
            addInstr(env, mk_iMOVsd_RR(rAmt, hregX86_ECX()));
            addInstr(env, mk_iMOVsd_RR(sHi, tHi));
            addInstr(env, mk_iMOVsd_RR(sLo, tLo));
            /* Ok.  Now shift amt is in %ecx, and value is in tHi/tLo
               and those regs are legitimately modifiable. */
            addInstr(env, X86Instr_Sh3232(Xsh_SHR, 0/*%cl*/, tHi, tLo));
            addInstr(env, X86Instr_Sh32(Xsh_SHR, 0/*%cl*/, tHi));
            addInstr(env, X86Instr_Test32(32, X86RM_Reg(hregX86_ECX())));
            addInstr(env, X86Instr_CMov32(Xcc_NZ, X86RM_Reg(tHi), tLo));
            addInstr(env, X86Instr_Alu32R(Xalu_MOV, X86RMI_Imm(0), tTemp));
            addInstr(env, X86Instr_CMov32(Xcc_NZ, X86RM_Reg(tTemp), tHi));
            *rHi = tHi;
            *rLo = tLo;
            return;
         }

         /* F64 -> I64 */
         /* Sigh, this is an almost exact copy of the F64 -> I32/I16
            case.  Unfortunately I see no easy way to avoid the
            duplication. */
         case Iop_F64toI64S: {
            HReg rf  = iselDblExpr(env, e->Iex.Binop.arg2);
            HReg tLo = newVRegI(env);
            HReg tHi = newVRegI(env);

            /* Used several times ... */
            /* Careful ... this sharing is only safe because
	       zero_esp/four_esp do not hold any registers which the
	       register allocator could attempt to swizzle later. */
            X86AMode* zero_esp = X86AMode_IR(0, hregX86_ESP());
            X86AMode* four_esp = X86AMode_IR(4, hregX86_ESP());

            /* rf now holds the value to be converted, and rrm holds
               the rounding mode value, encoded as per the
               IRRoundingMode enum.  The first thing to do is set the
               FPU's rounding mode accordingly. */

            /* Create a space for the format conversion. */
            /* subl $8, %esp */
            sub_from_esp(env, 8);

            /* Set host rounding mode */
            set_FPU_rounding_mode( env, e->Iex.Binop.arg1 );

            /* gistll %rf, 0(%esp) */
            addInstr(env, X86Instr_FpLdStI(False/*store*/, 8, rf, zero_esp));

            /* movl 0(%esp), %dstLo */
            /* movl 4(%esp), %dstHi */
            addInstr(env, X86Instr_Alu32R(
                             Xalu_MOV, X86RMI_Mem(zero_esp), tLo));
            addInstr(env, X86Instr_Alu32R(
                             Xalu_MOV, X86RMI_Mem(four_esp), tHi));

            /* Restore default FPU rounding. */
            set_FPU_rounding_default( env );

            /* addl $8, %esp */
            add_to_esp(env, 8);

            *rHi = tHi;
            *rLo = tLo;
            return;
         }

         case Iop_Add8x8:
            fn = (HWord)h_generic_calc_Add8x8; goto binnish;
         case Iop_Add16x4:
            fn = (HWord)h_generic_calc_Add16x4; goto binnish;
         case Iop_Add32x2:
            fn = (HWord)h_generic_calc_Add32x2; goto binnish;

         case Iop_Avg8Ux8:
            fn = (HWord)h_generic_calc_Avg8Ux8; goto binnish;
         case Iop_Avg16Ux4:
            fn = (HWord)h_generic_calc_Avg16Ux4; goto binnish;

         case Iop_CmpEQ8x8:
            fn = (HWord)h_generic_calc_CmpEQ8x8; goto binnish;
         case Iop_CmpEQ16x4:
            fn = (HWord)h_generic_calc_CmpEQ16x4; goto binnish;
         case Iop_CmpEQ32x2:
            fn = (HWord)h_generic_calc_CmpEQ32x2; goto binnish;

         case Iop_CmpGT8Sx8:
            fn = (HWord)h_generic_calc_CmpGT8Sx8; goto binnish;
         case Iop_CmpGT16Sx4:
            fn = (HWord)h_generic_calc_CmpGT16Sx4; goto binnish;
         case Iop_CmpGT32Sx2:
            fn = (HWord)h_generic_calc_CmpGT32Sx2; goto binnish;

         case Iop_InterleaveHI8x8:
            fn = (HWord)h_generic_calc_InterleaveHI8x8; goto binnish;
         case Iop_InterleaveLO8x8:
            fn = (HWord)h_generic_calc_InterleaveLO8x8; goto binnish;
         case Iop_InterleaveHI16x4:
            fn = (HWord)h_generic_calc_InterleaveHI16x4; goto binnish;
         case Iop_InterleaveLO16x4:
            fn = (HWord)h_generic_calc_InterleaveLO16x4; goto binnish;
         case Iop_InterleaveHI32x2:
            fn = (HWord)h_generic_calc_InterleaveHI32x2; goto binnish;
         case Iop_InterleaveLO32x2:
            fn = (HWord)h_generic_calc_InterleaveLO32x2; goto binnish;
         case Iop_CatOddLanes16x4:
            fn = (HWord)h_generic_calc_CatOddLanes16x4; goto binnish;
         case Iop_CatEvenLanes16x4:
            fn = (HWord)h_generic_calc_CatEvenLanes16x4; goto binnish;
         case Iop_Perm8x8:
            fn = (HWord)h_generic_calc_Perm8x8; goto binnish;

         case Iop_Max8Ux8:
            fn = (HWord)h_generic_calc_Max8Ux8; goto binnish;
         case Iop_Max16Sx4:
            fn = (HWord)h_generic_calc_Max16Sx4; goto binnish;
         case Iop_Min8Ux8:
            fn = (HWord)h_generic_calc_Min8Ux8; goto binnish;
         case Iop_Min16Sx4:
            fn = (HWord)h_generic_calc_Min16Sx4; goto binnish;

         case Iop_Mul16x4:
            fn = (HWord)h_generic_calc_Mul16x4; goto binnish;
         case Iop_Mul32x2:
            fn = (HWord)h_generic_calc_Mul32x2; goto binnish;
         case Iop_MulHi16Sx4:
            fn = (HWord)h_generic_calc_MulHi16Sx4; goto binnish;
         case Iop_MulHi16Ux4:
            fn = (HWord)h_generic_calc_MulHi16Ux4; goto binnish;

         case Iop_QAdd8Sx8:
            fn = (HWord)h_generic_calc_QAdd8Sx8; goto binnish;
         case Iop_QAdd16Sx4:
            fn = (HWord)h_generic_calc_QAdd16Sx4; goto binnish;
         case Iop_QAdd8Ux8:
            fn = (HWord)h_generic_calc_QAdd8Ux8; goto binnish;
         case Iop_QAdd16Ux4:
            fn = (HWord)h_generic_calc_QAdd16Ux4; goto binnish;

         case Iop_QNarrowBin32Sto16Sx4:
            fn = (HWord)h_generic_calc_QNarrowBin32Sto16Sx4; goto binnish;
         case Iop_QNarrowBin16Sto8Sx8:
            fn = (HWord)h_generic_calc_QNarrowBin16Sto8Sx8; goto binnish;
         case Iop_QNarrowBin16Sto8Ux8:
            fn = (HWord)h_generic_calc_QNarrowBin16Sto8Ux8; goto binnish;
         case Iop_NarrowBin16to8x8:
            fn = (HWord)h_generic_calc_NarrowBin16to8x8; goto binnish;
         case Iop_NarrowBin32to16x4:
            fn = (HWord)h_generic_calc_NarrowBin32to16x4; goto binnish;

         case Iop_QSub8Sx8:
            fn = (HWord)h_generic_calc_QSub8Sx8; goto binnish;
         case Iop_QSub16Sx4:
            fn = (HWord)h_generic_calc_QSub16Sx4; goto binnish;
         case Iop_QSub8Ux8:
            fn = (HWord)h_generic_calc_QSub8Ux8; goto binnish;
         case Iop_QSub16Ux4:
            fn = (HWord)h_generic_calc_QSub16Ux4; goto binnish;

         case Iop_Sub8x8:
            fn = (HWord)h_generic_calc_Sub8x8; goto binnish;
         case Iop_Sub16x4:
            fn = (HWord)h_generic_calc_Sub16x4; goto binnish;
         case Iop_Sub32x2:
            fn = (HWord)h_generic_calc_Sub32x2; goto binnish;

         binnish: {
            /* Note: the following assumes all helpers are of
               signature 
                  ULong fn ( ULong, ULong ), and they are
               not marked as regparm functions. 
            */
            HReg xLo, xHi, yLo, yHi;
            HReg tLo = newVRegI(env);
            HReg tHi = newVRegI(env);
            iselInt64Expr(&yHi, &yLo, env, e->Iex.Binop.arg2);
            addInstr(env, X86Instr_Push(X86RMI_Reg(yHi)));
            addInstr(env, X86Instr_Push(X86RMI_Reg(yLo)));
            iselInt64Expr(&xHi, &xLo, env, e->Iex.Binop.arg1);
            addInstr(env, X86Instr_Push(X86RMI_Reg(xHi)));
            addInstr(env, X86Instr_Push(X86RMI_Reg(xLo)));
            addInstr(env, X86Instr_Call( Xcc_ALWAYS, (Addr32)fn,
                                         0, mk_RetLoc_simple(RLPri_2Int) ));
            add_to_esp(env, 4*4);
            addInstr(env, mk_iMOVsd_RR(hregX86_EDX(), tHi));
            addInstr(env, mk_iMOVsd_RR(hregX86_EAX(), tLo));
            *rHi = tHi;
            *rLo = tLo;
            return;
         }

         case Iop_ShlN32x2:
            fn = (HWord)h_generic_calc_ShlN32x2; goto shifty;
         case Iop_ShlN16x4:
            fn = (HWord)h_generic_calc_ShlN16x4; goto shifty;
         case Iop_ShlN8x8:
            fn = (HWord)h_generic_calc_ShlN8x8;  goto shifty;
         case Iop_ShrN32x2:
            fn = (HWord)h_generic_calc_ShrN32x2; goto shifty;
         case Iop_ShrN16x4:
            fn = (HWord)h_generic_calc_ShrN16x4; goto shifty;
         case Iop_SarN32x2:
            fn = (HWord)h_generic_calc_SarN32x2; goto shifty;
         case Iop_SarN16x4:
            fn = (HWord)h_generic_calc_SarN16x4; goto shifty;
         case Iop_SarN8x8:
            fn = (HWord)h_generic_calc_SarN8x8;  goto shifty;
         shifty: {
            /* Note: the following assumes all helpers are of
               signature 
                  ULong fn ( ULong, UInt ), and they are
               not marked as regparm functions. 
            */
            HReg xLo, xHi;
            HReg tLo = newVRegI(env);
            HReg tHi = newVRegI(env);
            X86RMI* y = iselIntExpr_RMI(env, e->Iex.Binop.arg2);
            addInstr(env, X86Instr_Push(y));
            iselInt64Expr(&xHi, &xLo, env, e->Iex.Binop.arg1);
            addInstr(env, X86Instr_Push(X86RMI_Reg(xHi)));
            addInstr(env, X86Instr_Push(X86RMI_Reg(xLo)));
            addInstr(env, X86Instr_Call( Xcc_ALWAYS, (Addr32)fn,
                                         0, mk_RetLoc_simple(RLPri_2Int) ));
            add_to_esp(env, 3*4);
            addInstr(env, mk_iMOVsd_RR(hregX86_EDX(), tHi));
            addInstr(env, mk_iMOVsd_RR(hregX86_EAX(), tLo));
            *rHi = tHi;
            *rLo = tLo;
            return;
         }

         default: 
            break;
      }
   } /* if (e->tag == Iex_Binop) */


   /* --------- UNARY ops --------- */
   if (e->tag == Iex_Unop) {
      switch (e->Iex.Unop.op) {

         /* 32Sto64(e) */
         case Iop_32Sto64: {
            HReg tLo = newVRegI(env);
            HReg tHi = newVRegI(env);
            HReg src = iselIntExpr_R(env, e->Iex.Unop.arg);
            addInstr(env, mk_iMOVsd_RR(src,tHi));
            addInstr(env, mk_iMOVsd_RR(src,tLo));
            addInstr(env, X86Instr_Sh32(Xsh_SAR, 31, tHi));
            *rHi = tHi;
            *rLo = tLo;
            return;
         }

         /* 32Uto64(e) */
         case Iop_32Uto64: {
            HReg tLo = newVRegI(env);
            HReg tHi = newVRegI(env);
            HReg src = iselIntExpr_R(env, e->Iex.Unop.arg);
            addInstr(env, mk_iMOVsd_RR(src,tLo));
            addInstr(env, X86Instr_Alu32R(Xalu_MOV, X86RMI_Imm(0), tHi));
            *rHi = tHi;
            *rLo = tLo;
            return;
         }

         /* 16Uto64(e) */
         case Iop_16Uto64: {
            HReg tLo = newVRegI(env);
            HReg tHi = newVRegI(env);
            HReg src = iselIntExpr_R(env, e->Iex.Unop.arg);
            addInstr(env, mk_iMOVsd_RR(src,tLo));
            addInstr(env, X86Instr_Alu32R(Xalu_AND,
                                          X86RMI_Imm(0xFFFF), tLo));
            addInstr(env, X86Instr_Alu32R(Xalu_MOV, X86RMI_Imm(0), tHi));
            *rHi = tHi;
            *rLo = tLo;
            return;
         }

         /* V128{HI}to64 */
         case Iop_V128HIto64:
         case Iop_V128to64: {
            Int  off = e->Iex.Unop.op==Iop_V128HIto64 ? 8 : 0;
            HReg tLo = newVRegI(env);
            HReg tHi = newVRegI(env);
            HReg vec = iselVecExpr(env, e->Iex.Unop.arg);
            X86AMode* esp0  = X86AMode_IR(0,     hregX86_ESP());
            X86AMode* espLO = X86AMode_IR(off,   hregX86_ESP());
            X86AMode* espHI = X86AMode_IR(off+4, hregX86_ESP());
            sub_from_esp(env, 16);
            addInstr(env, X86Instr_SseLdSt(False/*store*/, vec, esp0));
            addInstr(env, X86Instr_Alu32R( Xalu_MOV, 
                                           X86RMI_Mem(espLO), tLo ));
            addInstr(env, X86Instr_Alu32R( Xalu_MOV, 
                                           X86RMI_Mem(espHI), tHi ));
            add_to_esp(env, 16);
            *rHi = tHi;
            *rLo = tLo;
            return;
         }

         /* could do better than this, but for now ... */
         case Iop_1Sto64: {
            HReg tLo = newVRegI(env);
            HReg tHi = newVRegI(env);
            X86CondCode cond = iselCondCode(env, e->Iex.Unop.arg);
            addInstr(env, X86Instr_Set32(cond,tLo));
            addInstr(env, X86Instr_Sh32(Xsh_SHL, 31, tLo));
            addInstr(env, X86Instr_Sh32(Xsh_SAR, 31, tLo));
            addInstr(env, mk_iMOVsd_RR(tLo, tHi));
            *rHi = tHi;
            *rLo = tLo;
            return;
         }

         /* Not64(e) */
         case Iop_Not64: {
            HReg tLo = newVRegI(env);
            HReg tHi = newVRegI(env);
            HReg sHi, sLo;
            iselInt64Expr(&sHi, &sLo, env, e->Iex.Unop.arg);
            addInstr(env, mk_iMOVsd_RR(sHi, tHi));
            addInstr(env, mk_iMOVsd_RR(sLo, tLo));
            addInstr(env, X86Instr_Unary32(Xun_NOT,tHi));
            addInstr(env, X86Instr_Unary32(Xun_NOT,tLo));
            *rHi = tHi;
            *rLo = tLo;
            return;
         }

         /* Left64(e) */
         case Iop_Left64: {
            HReg yLo, yHi;
            HReg tLo = newVRegI(env);
            HReg tHi = newVRegI(env);
            /* yHi:yLo = arg */
            iselInt64Expr(&yHi, &yLo, env, e->Iex.Unop.arg);
            /* tLo = 0 - yLo, and set carry */
            addInstr(env, X86Instr_Alu32R(Xalu_MOV, X86RMI_Imm(0), tLo));
            addInstr(env, X86Instr_Alu32R(Xalu_SUB, X86RMI_Reg(yLo), tLo));
            /* tHi = 0 - yHi - carry */
            addInstr(env, X86Instr_Alu32R(Xalu_MOV, X86RMI_Imm(0), tHi));
            addInstr(env, X86Instr_Alu32R(Xalu_SBB, X86RMI_Reg(yHi), tHi));
            /* So now we have tHi:tLo = -arg.  To finish off, or 'arg'
               back in, so as to give the final result 
               tHi:tLo = arg | -arg. */
            addInstr(env, X86Instr_Alu32R(Xalu_OR, X86RMI_Reg(yLo), tLo));
            addInstr(env, X86Instr_Alu32R(Xalu_OR, X86RMI_Reg(yHi), tHi));
            *rHi = tHi;
            *rLo = tLo;
            return;
         }

         /* --- patterns rooted at: CmpwNEZ64 --- */

         /* CmpwNEZ64(e) */
         case Iop_CmpwNEZ64: {

         DECLARE_PATTERN(p_CmpwNEZ64_Or64);
         DEFINE_PATTERN(p_CmpwNEZ64_Or64,
                        unop(Iop_CmpwNEZ64,binop(Iop_Or64,bind(0),bind(1))));
         if (matchIRExpr(&mi, p_CmpwNEZ64_Or64, e)) {
            /* CmpwNEZ64(Or64(x,y)) */
            HReg xHi,xLo,yHi,yLo;
            HReg xBoth = newVRegI(env);
            HReg merged = newVRegI(env);
            HReg tmp2 = newVRegI(env);

            iselInt64Expr(&xHi,&xLo, env, mi.bindee[0]);
            addInstr(env, mk_iMOVsd_RR(xHi,xBoth));
            addInstr(env, X86Instr_Alu32R(Xalu_OR,
                                          X86RMI_Reg(xLo),xBoth));

            iselInt64Expr(&yHi,&yLo, env, mi.bindee[1]);
            addInstr(env, mk_iMOVsd_RR(yHi,merged));
            addInstr(env, X86Instr_Alu32R(Xalu_OR,
                                          X86RMI_Reg(yLo),merged));
            addInstr(env, X86Instr_Alu32R(Xalu_OR,
                                             X86RMI_Reg(xBoth),merged));

            /* tmp2 = (merged | -merged) >>s 31 */
            addInstr(env, mk_iMOVsd_RR(merged,tmp2));
            addInstr(env, X86Instr_Unary32(Xun_NEG,tmp2));
            addInstr(env, X86Instr_Alu32R(Xalu_OR,
                                          X86RMI_Reg(merged), tmp2));
            addInstr(env, X86Instr_Sh32(Xsh_SAR, 31, tmp2));
            *rHi = tmp2;
            *rLo = tmp2;
            return;
         } else {
            /* CmpwNEZ64(e) */
            HReg srcLo, srcHi;
            HReg tmp1  = newVRegI(env);
            HReg tmp2  = newVRegI(env);
            /* srcHi:srcLo = arg */
            iselInt64Expr(&srcHi, &srcLo, env, e->Iex.Unop.arg);
            /* tmp1 = srcHi | srcLo */
            addInstr(env, mk_iMOVsd_RR(srcHi,tmp1));
            addInstr(env, X86Instr_Alu32R(Xalu_OR,
                                          X86RMI_Reg(srcLo), tmp1));
            /* tmp2 = (tmp1 | -tmp1) >>s 31 */
            addInstr(env, mk_iMOVsd_RR(tmp1,tmp2));
            addInstr(env, X86Instr_Unary32(Xun_NEG,tmp2));
            addInstr(env, X86Instr_Alu32R(Xalu_OR,
                                          X86RMI_Reg(tmp1), tmp2));
            addInstr(env, X86Instr_Sh32(Xsh_SAR, 31, tmp2));
            *rHi = tmp2;
            *rLo = tmp2;
            return;
         }
         }

         /* ReinterpF64asI64(e) */
         /* Given an IEEE754 double, produce an I64 with the same bit
            pattern. */
         case Iop_ReinterpF64asI64: {
            HReg rf   = iselDblExpr(env, e->Iex.Unop.arg);
            HReg tLo  = newVRegI(env);
            HReg tHi  = newVRegI(env);
            X86AMode* zero_esp = X86AMode_IR(0, hregX86_ESP());
            X86AMode* four_esp = X86AMode_IR(4, hregX86_ESP());
            /* paranoia */
            set_FPU_rounding_default(env);
            /* subl $8, %esp */
            sub_from_esp(env, 8);
            /* gstD %rf, 0(%esp) */
            addInstr(env,
                     X86Instr_FpLdSt(False/*store*/, 8, rf, zero_esp));
            /* movl 0(%esp), %tLo */
            addInstr(env, 
                     X86Instr_Alu32R(Xalu_MOV, X86RMI_Mem(zero_esp), tLo));
            /* movl 4(%esp), %tHi */
            addInstr(env, 
                     X86Instr_Alu32R(Xalu_MOV, X86RMI_Mem(four_esp), tHi));
            /* addl $8, %esp */
            add_to_esp(env, 8);
            *rHi = tHi;
            *rLo = tLo;
            return;
         }

         case Iop_CmpNEZ32x2:
            fn = (HWord)h_generic_calc_CmpNEZ32x2; goto unish;
         case Iop_CmpNEZ16x4:
            fn = (HWord)h_generic_calc_CmpNEZ16x4; goto unish;
         case Iop_CmpNEZ8x8:
            fn = (HWord)h_generic_calc_CmpNEZ8x8; goto unish;
         unish: {
            /* Note: the following assumes all helpers are of
               signature 
                  ULong fn ( ULong ), and they are
               not marked as regparm functions. 
            */
            HReg xLo, xHi;
            HReg tLo = newVRegI(env);
            HReg tHi = newVRegI(env);
            iselInt64Expr(&xHi, &xLo, env, e->Iex.Unop.arg);
            addInstr(env, X86Instr_Push(X86RMI_Reg(xHi)));
            addInstr(env, X86Instr_Push(X86RMI_Reg(xLo)));
            addInstr(env, X86Instr_Call( Xcc_ALWAYS, (Addr32)fn,
                                         0, mk_RetLoc_simple(RLPri_2Int) ));
            add_to_esp(env, 2*4);
            addInstr(env, mk_iMOVsd_RR(hregX86_EDX(), tHi));
            addInstr(env, mk_iMOVsd_RR(hregX86_EAX(), tLo));
            *rHi = tHi;
            *rLo = tLo;
            return;
         }

         default: 
            break;
      }
   } /* if (e->tag == Iex_Unop) */


   /* --------- CCALL --------- */
   if (e->tag == Iex_CCall) {
      HReg tLo = newVRegI(env);
      HReg tHi = newVRegI(env);

      /* Marshal args, do the call, clear stack. */
      UInt   addToSp = 0;
      RetLoc rloc    = mk_RetLoc_INVALID();
      doHelperCall( &addToSp, &rloc, env, NULL/*guard*/,
                    e->Iex.CCall.cee,
                    e->Iex.CCall.retty, e->Iex.CCall.args );
      vassert(is_sane_RetLoc(rloc));
      vassert(rloc.pri == RLPri_2Int);
      vassert(addToSp == 0);
      /* */

      addInstr(env, mk_iMOVsd_RR(hregX86_EDX(), tHi));
      addInstr(env, mk_iMOVsd_RR(hregX86_EAX(), tLo));
      *rHi = tHi;
      *rLo = tLo;
      return;
   }

   ppIRExpr(e);
   vpanic("iselInt64Expr");
}


/*---------------------------------------------------------*/
/*--- ISEL: Floating point expressions (32 bit)         ---*/
/*---------------------------------------------------------*/

/* Nothing interesting here; really just wrappers for
   64-bit stuff. */

static HReg iselFltExpr ( ISelEnv* env, const IRExpr* e )
{
   HReg r = iselFltExpr_wrk( env, e );
#  if 0
   vex_printf("\n"); ppIRExpr(e); vex_printf("\n");
#  endif
   vassert(hregClass(r) == HRcFlt64); /* yes, really Flt64 */
   vassert(hregIsVirtual(r));
   return r;
}

/* DO NOT CALL THIS DIRECTLY */
static HReg iselFltExpr_wrk ( ISelEnv* env, const IRExpr* e )
{
   IRType ty = typeOfIRExpr(env->type_env,e);
   vassert(ty == Ity_F32);

   if (e->tag == Iex_RdTmp) {
      return lookupIRTemp(env, e->Iex.RdTmp.tmp);
   }

   if (e->tag == Iex_Load && e->Iex.Load.end == Iend_LE) {
      X86AMode* am;
      HReg res = newVRegF(env);
      vassert(e->Iex.Load.ty == Ity_F32);
      am = iselIntExpr_AMode(env, e->Iex.Load.addr);
      addInstr(env, X86Instr_FpLdSt(True/*load*/, 4, res, am));
      return res;
   }

   if (e->tag == Iex_Binop
       && e->Iex.Binop.op == Iop_F64toF32) {
      /* Although the result is still held in a standard FPU register,
         we need to round it to reflect the loss of accuracy/range
         entailed in casting it to a 32-bit float. */
      HReg dst = newVRegF(env);
      HReg src = iselDblExpr(env, e->Iex.Binop.arg2);
      set_FPU_rounding_mode( env, e->Iex.Binop.arg1 );
      addInstr(env, X86Instr_Fp64to32(src,dst));
      set_FPU_rounding_default( env );
      return dst;
   }

   if (e->tag == Iex_Get) {
      X86AMode* am = X86AMode_IR( e->Iex.Get.offset,
                                  hregX86_EBP() );
      HReg res = newVRegF(env);
      addInstr(env, X86Instr_FpLdSt( True/*load*/, 4, res, am ));
      return res;
   }

   if (e->tag == Iex_Unop
       && e->Iex.Unop.op == Iop_ReinterpI32asF32) {
       /* Given an I32, produce an IEEE754 float with the same bit
          pattern. */
      HReg    dst = newVRegF(env);
      X86RMI* rmi = iselIntExpr_RMI(env, e->Iex.Unop.arg);
      /* paranoia */
      addInstr(env, X86Instr_Push(rmi));
      addInstr(env, X86Instr_FpLdSt(
                       True/*load*/, 4, dst, 
                       X86AMode_IR(0, hregX86_ESP())));
      add_to_esp(env, 4);
      return dst;
   }

   if (e->tag == Iex_Binop && e->Iex.Binop.op == Iop_RoundF32toInt) {
      HReg rf  = iselFltExpr(env, e->Iex.Binop.arg2);
      HReg dst = newVRegF(env);

      /* rf now holds the value to be rounded.  The first thing to do
         is set the FPU's rounding mode accordingly. */

      /* Set host rounding mode */
      set_FPU_rounding_mode( env, e->Iex.Binop.arg1 );

      /* grndint %rf, %dst */
      addInstr(env, X86Instr_FpUnary(Xfp_ROUND, rf, dst));

      /* Restore default FPU rounding. */
      set_FPU_rounding_default( env );

      return dst;
   }

   ppIRExpr(e);
   vpanic("iselFltExpr_wrk");
}


/*---------------------------------------------------------*/
/*--- ISEL: Floating point expressions (64 bit)         ---*/
/*---------------------------------------------------------*/

/* Compute a 64-bit floating point value into a register, the identity
   of which is returned.  As with iselIntExpr_R, the reg may be either
   real or virtual; in any case it must not be changed by subsequent
   code emitted by the caller.  */

/* IEEE 754 formats.  From http://www.freesoft.org/CIE/RFC/1832/32.htm:

    Type                  S (1 bit)   E (11 bits)   F (52 bits)
    ----                  ---------   -----------   -----------
    signalling NaN        u           2047 (max)    .0uuuuu---u
                                                    (with at least
                                                     one 1 bit)
    quiet NaN             u           2047 (max)    .1uuuuu---u

    negative infinity     1           2047 (max)    .000000---0

    positive infinity     0           2047 (max)    .000000---0

    negative zero         1           0             .000000---0

    positive zero         0           0             .000000---0
*/

static HReg iselDblExpr ( ISelEnv* env, const IRExpr* e )
{
   HReg r = iselDblExpr_wrk( env, e );
#  if 0
   vex_printf("\n"); ppIRExpr(e); vex_printf("\n");
#  endif
   vassert(hregClass(r) == HRcFlt64);
   vassert(hregIsVirtual(r));
   return r;
}

/* DO NOT CALL THIS DIRECTLY */
static HReg iselDblExpr_wrk ( ISelEnv* env, const IRExpr* e )
{
   IRType ty = typeOfIRExpr(env->type_env,e);
   vassert(e);
   vassert(ty == Ity_F64);

   if (e->tag == Iex_RdTmp) {
      return lookupIRTemp(env, e->Iex.RdTmp.tmp);
   }

   if (e->tag == Iex_Const) {
      union { UInt u32x2[2]; ULong u64; Double f64; } u;
      HReg freg = newVRegF(env);
      vassert(sizeof(u) == 8);
      vassert(sizeof(u.u64) == 8);
      vassert(sizeof(u.f64) == 8);
      vassert(sizeof(u.u32x2) == 8);

      if (e->Iex.Const.con->tag == Ico_F64) {
         u.f64 = e->Iex.Const.con->Ico.F64;
      }
      else if (e->Iex.Const.con->tag == Ico_F64i) {
         u.u64 = e->Iex.Const.con->Ico.F64i;
      }
      else
         vpanic("iselDblExpr(x86): const");

      addInstr(env, X86Instr_Push(X86RMI_Imm(u.u32x2[1])));
      addInstr(env, X86Instr_Push(X86RMI_Imm(u.u32x2[0])));
      addInstr(env, X86Instr_FpLdSt(True/*load*/, 8, freg, 
                                    X86AMode_IR(0, hregX86_ESP())));
      add_to_esp(env, 8);
      return freg;
   }

   if (e->tag == Iex_Load && e->Iex.Load.end == Iend_LE) {
      X86AMode* am;
      HReg res = newVRegF(env);
      vassert(e->Iex.Load.ty == Ity_F64);
      am = iselIntExpr_AMode(env, e->Iex.Load.addr);
      addInstr(env, X86Instr_FpLdSt(True/*load*/, 8, res, am));
      return res;
   }

   if (e->tag == Iex_Get) {
      X86AMode* am = X86AMode_IR( e->Iex.Get.offset,
                                  hregX86_EBP() );
      HReg res = newVRegF(env);
      addInstr(env, X86Instr_FpLdSt( True/*load*/, 8, res, am ));
      return res;
   }

   if (e->tag == Iex_GetI) {
      X86AMode* am 
         = genGuestArrayOffset(
              env, e->Iex.GetI.descr, 
                   e->Iex.GetI.ix, e->Iex.GetI.bias );
      HReg res = newVRegF(env);
      addInstr(env, X86Instr_FpLdSt( True/*load*/, 8, res, am ));
      return res;
   }

   if (e->tag == Iex_Triop) {
      X86FpOp fpop = Xfp_INVALID;
      IRTriop *triop = e->Iex.Triop.details;
      switch (triop->op) {
         case Iop_AddF64:    fpop = Xfp_ADD; break;
         case Iop_SubF64:    fpop = Xfp_SUB; break;
         case Iop_MulF64:    fpop = Xfp_MUL; break;
         case Iop_DivF64:    fpop = Xfp_DIV; break;
         case Iop_ScaleF64:  fpop = Xfp_SCALE; break;
         case Iop_Yl2xF64:   fpop = Xfp_YL2X; break;
         case Iop_Yl2xp1F64: fpop = Xfp_YL2XP1; break;
         case Iop_AtanF64:   fpop = Xfp_ATAN; break;
         case Iop_PRemF64:   fpop = Xfp_PREM; break;
         case Iop_PRem1F64:  fpop = Xfp_PREM1; break;
         default: break;
      }
      if (fpop != Xfp_INVALID) {
         HReg res  = newVRegF(env);
         HReg srcL = iselDblExpr(env, triop->arg2);
         HReg srcR = iselDblExpr(env, triop->arg3);
         /* XXXROUNDINGFIXME */
         /* set roundingmode here */
         addInstr(env, X86Instr_FpBinary(fpop,srcL,srcR,res));
	 if (fpop != Xfp_ADD && fpop != Xfp_SUB 
	     && fpop != Xfp_MUL && fpop != Xfp_DIV)
            roundToF64(env, res);
         return res;
      }
   }

   if (e->tag == Iex_Binop && e->Iex.Binop.op == Iop_RoundF64toInt) {
      HReg rf  = iselDblExpr(env, e->Iex.Binop.arg2);
      HReg dst = newVRegF(env);

      /* rf now holds the value to be rounded.  The first thing to do
         is set the FPU's rounding mode accordingly. */

      /* Set host rounding mode */
      set_FPU_rounding_mode( env, e->Iex.Binop.arg1 );

      /* grndint %rf, %dst */
      addInstr(env, X86Instr_FpUnary(Xfp_ROUND, rf, dst));

      /* Restore default FPU rounding. */
      set_FPU_rounding_default( env );

      return dst;
   }

   if (e->tag == Iex_Binop && e->Iex.Binop.op == Iop_I64StoF64) {
      HReg dst = newVRegF(env);
      HReg rHi,rLo;
      iselInt64Expr( &rHi, &rLo, env, e->Iex.Binop.arg2);
      addInstr(env, X86Instr_Push(X86RMI_Reg(rHi)));
      addInstr(env, X86Instr_Push(X86RMI_Reg(rLo)));

      /* Set host rounding mode */
      set_FPU_rounding_mode( env, e->Iex.Binop.arg1 );

      addInstr(env, X86Instr_FpLdStI(
                       True/*load*/, 8, dst, 
                       X86AMode_IR(0, hregX86_ESP())));

      /* Restore default FPU rounding. */
      set_FPU_rounding_default( env );

      add_to_esp(env, 8);
      return dst;
   }

   if (e->tag == Iex_Binop) {
      X86FpOp fpop = Xfp_INVALID;
      switch (e->Iex.Binop.op) {
         case Iop_SinF64:  fpop = Xfp_SIN; break;
         case Iop_CosF64:  fpop = Xfp_COS; break;
         case Iop_TanF64:  fpop = Xfp_TAN; break;
         case Iop_2xm1F64: fpop = Xfp_2XM1; break;
         case Iop_SqrtF64: fpop = Xfp_SQRT; break;
         default: break;
      }
      if (fpop != Xfp_INVALID) {
         HReg res = newVRegF(env);
         HReg src = iselDblExpr(env, e->Iex.Binop.arg2);
         /* XXXROUNDINGFIXME */
         /* set roundingmode here */
         /* Note that X86Instr_FpUnary(Xfp_TAN,..) sets the condition
            codes.  I don't think that matters, since this insn
            selector never generates such an instruction intervening
            between an flag-setting instruction and a flag-using
            instruction. */
         addInstr(env, X86Instr_FpUnary(fpop,src,res));
	 if (fpop != Xfp_SQRT
             && fpop != Xfp_NEG && fpop != Xfp_ABS)
            roundToF64(env, res);
         return res;
      }
   }

   if (e->tag == Iex_Unop) {
      X86FpOp fpop = Xfp_INVALID;
      switch (e->Iex.Unop.op) {
         case Iop_NegF64:  fpop = Xfp_NEG; break;
         case Iop_AbsF64:  fpop = Xfp_ABS; break;
         default: break;
      }
      if (fpop != Xfp_INVALID) {
         HReg res = newVRegF(env);
         HReg src = iselDblExpr(env, e->Iex.Unop.arg);
         addInstr(env, X86Instr_FpUnary(fpop,src,res));
         /* No need to do roundToF64(env,res) for Xfp_NEG or Xfp_ABS,
            but might need to do that for other unary ops. */
         return res;
      }
   }

   if (e->tag == Iex_Unop) {
      switch (e->Iex.Unop.op) {
         case Iop_I32StoF64: {
            HReg dst = newVRegF(env);
            HReg ri  = iselIntExpr_R(env, e->Iex.Unop.arg);
            addInstr(env, X86Instr_Push(X86RMI_Reg(ri)));
            set_FPU_rounding_default(env);
            addInstr(env, X86Instr_FpLdStI(
                             True/*load*/, 4, dst, 
                             X86AMode_IR(0, hregX86_ESP())));
	    add_to_esp(env, 4);
            return dst;
         }
         case Iop_ReinterpI64asF64: {
            /* Given an I64, produce an IEEE754 double with the same
               bit pattern. */
            HReg dst = newVRegF(env);
            HReg rHi, rLo;
	    iselInt64Expr( &rHi, &rLo, env, e->Iex.Unop.arg);
            /* paranoia */
            set_FPU_rounding_default(env);
            addInstr(env, X86Instr_Push(X86RMI_Reg(rHi)));
            addInstr(env, X86Instr_Push(X86RMI_Reg(rLo)));
            addInstr(env, X86Instr_FpLdSt(
                             True/*load*/, 8, dst, 
                             X86AMode_IR(0, hregX86_ESP())));
	    add_to_esp(env, 8);
            return dst;
	 }
         case Iop_F32toF64: {
            /* this is a no-op */
            HReg res = iselFltExpr(env, e->Iex.Unop.arg);
            return res;
	 }
         default: 
            break;
      }
   }

   /* --------- MULTIPLEX --------- */
   if (e->tag == Iex_ITE) { // VFD
     if (ty == Ity_F64
         && typeOfIRExpr(env->type_env,e->Iex.ITE.cond) == Ity_I1) {
        HReg r1  = iselDblExpr(env, e->Iex.ITE.iftrue);
        HReg r0  = iselDblExpr(env, e->Iex.ITE.iffalse);
        HReg dst = newVRegF(env);
        addInstr(env, X86Instr_FpUnary(Xfp_MOV,r1,dst));
        X86CondCode cc = iselCondCode(env, e->Iex.ITE.cond);
        addInstr(env, X86Instr_FpCMov(cc ^ 1, r0, dst));
        return dst;
      }
   }

   ppIRExpr(e);
   vpanic("iselDblExpr_wrk");
}


/*---------------------------------------------------------*/
/*--- ISEL: SIMD (Vector) expressions, 128 bit.         ---*/
/*---------------------------------------------------------*/

static HReg iselVecExpr ( ISelEnv* env, const IRExpr* e )
{
   HReg r = iselVecExpr_wrk( env, e );
#  if 0
   vex_printf("\n"); ppIRExpr(e); vex_printf("\n");
#  endif
   vassert(hregClass(r) == HRcVec128);
   vassert(hregIsVirtual(r));
   return r;
}


/* DO NOT CALL THIS DIRECTLY */
static HReg iselVecExpr_wrk ( ISelEnv* env, const IRExpr* e )
{

#  define REQUIRE_SSE1                                    \
      do { if (env->hwcaps == 0/*baseline, no sse*/       \
               ||  env->hwcaps == VEX_HWCAPS_X86_MMXEXT /*Integer SSE*/) \
              goto vec_fail;                              \
      } while (0)

#  define REQUIRE_SSE2                                    \
      do { if (0 == (env->hwcaps & VEX_HWCAPS_X86_SSE2))  \
              goto vec_fail;                              \
      } while (0)

#  define SSE2_OR_ABOVE                                   \
       (env->hwcaps & VEX_HWCAPS_X86_SSE2)

   HWord     fn = 0; /* address of helper fn, if required */
   MatchInfo mi;
   Bool      arg1isEReg = False;
   X86SseOp  op = Xsse_INVALID;
   IRType    ty = typeOfIRExpr(env->type_env,e);
   vassert(e);
   vassert(ty == Ity_V128);

   REQUIRE_SSE1;

   if (e->tag == Iex_RdTmp) {
      return lookupIRTemp(env, e->Iex.RdTmp.tmp);
   }

   if (e->tag == Iex_Get) {
      HReg dst = newVRegV(env);
      addInstr(env, X86Instr_SseLdSt(
                       True/*load*/, 
                       dst,
                       X86AMode_IR(e->Iex.Get.offset, hregX86_EBP())
                    )
              );
      return dst;
   }

   if (e->tag == Iex_Load && e->Iex.Load.end == Iend_LE) {
      HReg      dst = newVRegV(env);
      X86AMode* am  = iselIntExpr_AMode(env, e->Iex.Load.addr);
      addInstr(env, X86Instr_SseLdSt( True/*load*/, dst, am ));
      return dst;
   }

   if (e->tag == Iex_Const) {
      HReg dst = newVRegV(env);
      vassert(e->Iex.Const.con->tag == Ico_V128);
      addInstr(env, X86Instr_SseConst(e->Iex.Const.con->Ico.V128, dst));
      return dst;
   }

   if (e->tag == Iex_Unop) {

   if (SSE2_OR_ABOVE) { 
      /* 64UtoV128(LDle:I64(addr)) */
      DECLARE_PATTERN(p_zwiden_load64);
      DEFINE_PATTERN(p_zwiden_load64,
                     unop(Iop_64UtoV128, 
                          IRExpr_Load(Iend_LE,Ity_I64,bind(0))));
      if (matchIRExpr(&mi, p_zwiden_load64, e)) {
         X86AMode* am = iselIntExpr_AMode(env, mi.bindee[0]);
         HReg dst = newVRegV(env);
         addInstr(env, X86Instr_SseLdzLO(8, dst, am));
         return dst;
      }
   }

   switch (e->Iex.Unop.op) {

      case Iop_NotV128: {
         HReg arg = iselVecExpr(env, e->Iex.Unop.arg);
         return do_sse_Not128(env, arg);
      }

      case Iop_CmpNEZ64x2: {
         /* We can use SSE2 instructions for this. */
         /* Ideally, we want to do a 64Ix2 comparison against zero of
            the operand.  Problem is no such insn exists.  Solution
            therefore is to do a 32Ix4 comparison instead, and bitwise-
            negate (NOT) the result.  Let a,b,c,d be 32-bit lanes, and 
            let the not'd result of this initial comparison be a:b:c:d.
            What we need to compute is (a|b):(a|b):(c|d):(c|d).  So, use
            pshufd to create a value b:a:d:c, and OR that with a:b:c:d,
            giving the required result.

            The required selection sequence is 2,3,0,1, which
            according to Intel's documentation means the pshufd
            literal value is 0xB1, that is, 
            (2 << 6) | (3 << 4) | (0 << 2) | (1 << 0) 
         */
         HReg arg  = iselVecExpr(env, e->Iex.Unop.arg);
         HReg tmp  = newVRegV(env);
         HReg dst  = newVRegV(env);
         REQUIRE_SSE2;
         addInstr(env, X86Instr_SseReRg(Xsse_XOR, tmp, tmp));
         addInstr(env, X86Instr_SseReRg(Xsse_CMPEQ32, arg, tmp));
         tmp = do_sse_Not128(env, tmp);
         addInstr(env, X86Instr_SseShuf(0xB1, tmp, dst));
         addInstr(env, X86Instr_SseReRg(Xsse_OR, tmp, dst));
         return dst;
      }

      case Iop_CmpNEZ32x4: {
         /* Sigh, we have to generate lousy code since this has to
            work on SSE1 hosts */
         /* basically, the idea is: for each lane:
               movl lane, %r ; negl %r   (now CF = lane==0 ? 0 : 1)
               sbbl %r, %r               (now %r = 1Sto32(CF))
               movl %r, lane
         */
         Int       i;
         X86AMode* am;
         X86AMode* esp0 = X86AMode_IR(0, hregX86_ESP());
         HReg      arg  = iselVecExpr(env, e->Iex.Unop.arg);
         HReg      dst  = newVRegV(env);
         HReg      r32  = newVRegI(env);
         sub_from_esp(env, 16);
         addInstr(env, X86Instr_SseLdSt(False/*store*/, arg, esp0));
         for (i = 0; i < 4; i++) {
            am = X86AMode_IR(i*4, hregX86_ESP());
            addInstr(env, X86Instr_Alu32R(Xalu_MOV, X86RMI_Mem(am), r32));
            addInstr(env, X86Instr_Unary32(Xun_NEG, r32));
            addInstr(env, X86Instr_Alu32R(Xalu_SBB, X86RMI_Reg(r32), r32));
            addInstr(env, X86Instr_Alu32M(Xalu_MOV, X86RI_Reg(r32), am));
         }
         addInstr(env, X86Instr_SseLdSt(True/*load*/, dst, esp0));
         add_to_esp(env, 16);
         return dst;
      }

      case Iop_CmpNEZ8x16:
      case Iop_CmpNEZ16x8: {
         /* We can use SSE2 instructions for this. */
         HReg arg;
         HReg vec0 = newVRegV(env);
         HReg vec1 = newVRegV(env);
         HReg dst  = newVRegV(env);
         X86SseOp cmpOp 
            = e->Iex.Unop.op==Iop_CmpNEZ16x8 ? Xsse_CMPEQ16
                                             : Xsse_CMPEQ8;
         REQUIRE_SSE2;
         addInstr(env, X86Instr_SseReRg(Xsse_XOR, vec0, vec0));
         addInstr(env, mk_vMOVsd_RR(vec0, vec1));
         addInstr(env, X86Instr_Sse32Fx4(Xsse_CMPEQF, vec1, vec1));
         /* defer arg computation to here so as to give CMPEQF as long
            as possible to complete */
         arg = iselVecExpr(env, e->Iex.Unop.arg);
         /* vec0 is all 0s; vec1 is all 1s */
         addInstr(env, mk_vMOVsd_RR(arg, dst));
         /* 16x8 or 8x16 comparison == */
         addInstr(env, X86Instr_SseReRg(cmpOp, vec0, dst));
         /* invert result */
         addInstr(env, X86Instr_SseReRg(Xsse_XOR, vec1, dst));
         return dst;
      }

      case Iop_RecipEst32Fx4: op = Xsse_RCPF;   goto do_32Fx4_unary;
      case Iop_RSqrtEst32Fx4: op = Xsse_RSQRTF; goto do_32Fx4_unary;
      do_32Fx4_unary:
      {
         HReg arg = iselVecExpr(env, e->Iex.Unop.arg);
         HReg dst = newVRegV(env);
         addInstr(env, X86Instr_Sse32Fx4(op, arg, dst));
         return dst;
      }

      case Iop_RecipEst32F0x4: op = Xsse_RCPF;   goto do_32F0x4_unary;
      case Iop_RSqrtEst32F0x4: op = Xsse_RSQRTF; goto do_32F0x4_unary;
      case Iop_Sqrt32F0x4:     op = Xsse_SQRTF;  goto do_32F0x4_unary;
      do_32F0x4_unary:
      {
         /* A bit subtle.  We have to copy the arg to the result
            register first, because actually doing the SSE scalar insn
            leaves the upper 3/4 of the destination register
            unchanged.  Whereas the required semantics of these
            primops is that the upper 3/4 is simply copied in from the
            argument. */
         HReg arg = iselVecExpr(env, e->Iex.Unop.arg);
         HReg dst = newVRegV(env);
         addInstr(env, mk_vMOVsd_RR(arg, dst));
         addInstr(env, X86Instr_Sse32FLo(op, arg, dst));
         return dst;
      }

      case Iop_Sqrt64F0x2:  op = Xsse_SQRTF;  goto do_64F0x2_unary;
      do_64F0x2_unary:
      {
         /* A bit subtle.  We have to copy the arg to the result
            register first, because actually doing the SSE scalar insn
            leaves the upper half of the destination register
            unchanged.  Whereas the required semantics of these
            primops is that the upper half is simply copied in from the
            argument. */
         HReg arg = iselVecExpr(env, e->Iex.Unop.arg);
         HReg dst = newVRegV(env);
         REQUIRE_SSE2;
         addInstr(env, mk_vMOVsd_RR(arg, dst));
         addInstr(env, X86Instr_Sse64FLo(op, arg, dst));
         return dst;
      }

      case Iop_32UtoV128: {
         HReg      dst  = newVRegV(env);
         X86AMode* esp0 = X86AMode_IR(0, hregX86_ESP());
         X86RMI*   rmi  = iselIntExpr_RMI(env, e->Iex.Unop.arg);
         addInstr(env, X86Instr_Push(rmi));
	 addInstr(env, X86Instr_SseLdzLO(4, dst, esp0));
         add_to_esp(env, 4);
         return dst;
      }

      case Iop_64UtoV128: {
         HReg      rHi, rLo;
         HReg      dst  = newVRegV(env);
         X86AMode* esp0 = X86AMode_IR(0, hregX86_ESP());
         iselInt64Expr(&rHi, &rLo, env, e->Iex.Unop.arg);
         addInstr(env, X86Instr_Push(X86RMI_Reg(rHi)));
         addInstr(env, X86Instr_Push(X86RMI_Reg(rLo)));
	 addInstr(env, X86Instr_SseLdzLO(8, dst, esp0));
         add_to_esp(env, 8);
         return dst;
      }

      default:
         break;
   } /* switch (e->Iex.Unop.op) */
   } /* if (e->tag == Iex_Unop) */

   if (e->tag == Iex_Binop) {
   switch (e->Iex.Binop.op) {

      case Iop_Sqrt64Fx2:
         REQUIRE_SSE2;
         /* fallthrough */
      case Iop_Sqrt32Fx4: {
         /* :: (rmode, vec) -> vec */
         HReg arg = iselVecExpr(env, e->Iex.Binop.arg2);
         HReg dst = newVRegV(env);
         /* XXXROUNDINGFIXME */
         /* set roundingmode here */
         addInstr(env, (e->Iex.Binop.op == Iop_Sqrt64Fx2 
                           ? X86Instr_Sse64Fx2 : X86Instr_Sse32Fx4)
                       (Xsse_SQRTF, arg, dst));
         return dst;
      }

      case Iop_SetV128lo32: {
         HReg dst = newVRegV(env);
         HReg srcV = iselVecExpr(env, e->Iex.Binop.arg1);
         HReg srcI = iselIntExpr_R(env, e->Iex.Binop.arg2);
         X86AMode* esp0 = X86AMode_IR(0, hregX86_ESP());
         sub_from_esp(env, 16);
         addInstr(env, X86Instr_SseLdSt(False/*store*/, srcV, esp0));
         addInstr(env, X86Instr_Alu32M(Xalu_MOV, X86RI_Reg(srcI), esp0));
         addInstr(env, X86Instr_SseLdSt(True/*load*/, dst, esp0));
         add_to_esp(env, 16);
         return dst;
      }

      case Iop_SetV128lo64: {
         HReg dst = newVRegV(env);
         HReg srcV = iselVecExpr(env, e->Iex.Binop.arg1);
         HReg srcIhi, srcIlo;
         X86AMode* esp0 = X86AMode_IR(0, hregX86_ESP());
         X86AMode* esp4 = advance4(esp0);
         iselInt64Expr(&srcIhi, &srcIlo, env, e->Iex.Binop.arg2);
         sub_from_esp(env, 16);
         addInstr(env, X86Instr_SseLdSt(False/*store*/, srcV, esp0));
         addInstr(env, X86Instr_Alu32M(Xalu_MOV, X86RI_Reg(srcIlo), esp0));
         addInstr(env, X86Instr_Alu32M(Xalu_MOV, X86RI_Reg(srcIhi), esp4));
         addInstr(env, X86Instr_SseLdSt(True/*load*/, dst, esp0));
         add_to_esp(env, 16);
         return dst;
      }

      case Iop_64HLtoV128: {
         HReg r3, r2, r1, r0;
         X86AMode* esp0  = X86AMode_IR(0, hregX86_ESP());
         X86AMode* esp4  = advance4(esp0);
         X86AMode* esp8  = advance4(esp4);
         X86AMode* esp12 = advance4(esp8);
         HReg dst = newVRegV(env);
	 /* do this via the stack (easy, convenient, etc) */
         sub_from_esp(env, 16);
         /* Do the less significant 64 bits */
         iselInt64Expr(&r1, &r0, env, e->Iex.Binop.arg2);
         addInstr(env, X86Instr_Alu32M(Xalu_MOV, X86RI_Reg(r0), esp0));
         addInstr(env, X86Instr_Alu32M(Xalu_MOV, X86RI_Reg(r1), esp4));
         /* Do the more significant 64 bits */
         iselInt64Expr(&r3, &r2, env, e->Iex.Binop.arg1);
         addInstr(env, X86Instr_Alu32M(Xalu_MOV, X86RI_Reg(r2), esp8));
         addInstr(env, X86Instr_Alu32M(Xalu_MOV, X86RI_Reg(r3), esp12));
	 /* Fetch result back from stack. */
         addInstr(env, X86Instr_SseLdSt(True/*load*/, dst, esp0));
         add_to_esp(env, 16);
         return dst;
      }

      case Iop_CmpEQ32Fx4: op = Xsse_CMPEQF; goto do_32Fx4;
      case Iop_CmpLT32Fx4: op = Xsse_CMPLTF; goto do_32Fx4;
      case Iop_CmpLE32Fx4: op = Xsse_CMPLEF; goto do_32Fx4;
      case Iop_CmpUN32Fx4: op = Xsse_CMPUNF; goto do_32Fx4;
      case Iop_Max32Fx4:   op = Xsse_MAXF;   goto do_32Fx4;
      case Iop_Min32Fx4:   op = Xsse_MINF;   goto do_32Fx4;
      do_32Fx4:
      {
         HReg argL = iselVecExpr(env, e->Iex.Binop.arg1);
         HReg argR = iselVecExpr(env, e->Iex.Binop.arg2);
         HReg dst = newVRegV(env);
         addInstr(env, mk_vMOVsd_RR(argL, dst));
         addInstr(env, X86Instr_Sse32Fx4(op, argR, dst));
         return dst;
      }

      case Iop_CmpEQ64Fx2: op = Xsse_CMPEQF; goto do_64Fx2;
      case Iop_CmpLT64Fx2: op = Xsse_CMPLTF; goto do_64Fx2;
      case Iop_CmpLE64Fx2: op = Xsse_CMPLEF; goto do_64Fx2;
      case Iop_CmpUN64Fx2: op = Xsse_CMPUNF; goto do_64Fx2;
      case Iop_Max64Fx2:   op = Xsse_MAXF;   goto do_64Fx2;
      case Iop_Min64Fx2:   op = Xsse_MINF;   goto do_64Fx2;
      do_64Fx2:
      {
         HReg argL = iselVecExpr(env, e->Iex.Binop.arg1);
         HReg argR = iselVecExpr(env, e->Iex.Binop.arg2);
         HReg dst = newVRegV(env);
         REQUIRE_SSE2;
         addInstr(env, mk_vMOVsd_RR(argL, dst));
         addInstr(env, X86Instr_Sse64Fx2(op, argR, dst));
         return dst;
      }

      case Iop_CmpEQ32F0x4: op = Xsse_CMPEQF; goto do_32F0x4;
      case Iop_CmpLT32F0x4: op = Xsse_CMPLTF; goto do_32F0x4;
      case Iop_CmpLE32F0x4: op = Xsse_CMPLEF; goto do_32F0x4;
      case Iop_CmpUN32F0x4: op = Xsse_CMPUNF; goto do_32F0x4;
      case Iop_Add32F0x4:   op = Xsse_ADDF;   goto do_32F0x4;
      case Iop_Div32F0x4:   op = Xsse_DIVF;   goto do_32F0x4;
      case Iop_Max32F0x4:   op = Xsse_MAXF;   goto do_32F0x4;
      case Iop_Min32F0x4:   op = Xsse_MINF;   goto do_32F0x4;
      case Iop_Mul32F0x4:   op = Xsse_MULF;   goto do_32F0x4;
      case Iop_Sub32F0x4:   op = Xsse_SUBF;   goto do_32F0x4;
      do_32F0x4: {
         HReg argL = iselVecExpr(env, e->Iex.Binop.arg1);
         HReg argR = iselVecExpr(env, e->Iex.Binop.arg2);
         HReg dst = newVRegV(env);
         addInstr(env, mk_vMOVsd_RR(argL, dst));
         addInstr(env, X86Instr_Sse32FLo(op, argR, dst));
         return dst;
      }

      case Iop_CmpEQ64F0x2: op = Xsse_CMPEQF; goto do_64F0x2;
      case Iop_CmpLT64F0x2: op = Xsse_CMPLTF; goto do_64F0x2;
      case Iop_CmpLE64F0x2: op = Xsse_CMPLEF; goto do_64F0x2;
      case Iop_CmpUN64F0x2: op = Xsse_CMPUNF; goto do_64F0x2;
      case Iop_Add64F0x2:   op = Xsse_ADDF;   goto do_64F0x2;
      case Iop_Div64F0x2:   op = Xsse_DIVF;   goto do_64F0x2;
      case Iop_Max64F0x2:   op = Xsse_MAXF;   goto do_64F0x2;
      case Iop_Min64F0x2:   op = Xsse_MINF;   goto do_64F0x2;
      case Iop_Mul64F0x2:   op = Xsse_MULF;   goto do_64F0x2;
      case Iop_Sub64F0x2:   op = Xsse_SUBF;   goto do_64F0x2;
      do_64F0x2: {
         HReg argL = iselVecExpr(env, e->Iex.Binop.arg1);
         HReg argR = iselVecExpr(env, e->Iex.Binop.arg2);
         HReg dst = newVRegV(env);
         REQUIRE_SSE2;
         addInstr(env, mk_vMOVsd_RR(argL, dst));
         addInstr(env, X86Instr_Sse64FLo(op, argR, dst));
         return dst;
      }

      case Iop_QNarrowBin32Sto16Sx8: 
         op = Xsse_PACKSSD; arg1isEReg = True; goto do_SseReRg;
      case Iop_QNarrowBin16Sto8Sx16: 
         op = Xsse_PACKSSW; arg1isEReg = True; goto do_SseReRg;
      case Iop_QNarrowBin16Sto8Ux16: 
         op = Xsse_PACKUSW; arg1isEReg = True; goto do_SseReRg;

      case Iop_InterleaveHI8x16: 
         op = Xsse_UNPCKHB; arg1isEReg = True; goto do_SseReRg;
      case Iop_InterleaveHI16x8: 
         op = Xsse_UNPCKHW; arg1isEReg = True; goto do_SseReRg;
      case Iop_InterleaveHI32x4: 
         op = Xsse_UNPCKHD; arg1isEReg = True; goto do_SseReRg;
      case Iop_InterleaveHI64x2: 
         op = Xsse_UNPCKHQ; arg1isEReg = True; goto do_SseReRg;

      case Iop_InterleaveLO8x16: 
         op = Xsse_UNPCKLB; arg1isEReg = True; goto do_SseReRg;
      case Iop_InterleaveLO16x8: 
         op = Xsse_UNPCKLW; arg1isEReg = True; goto do_SseReRg;
      case Iop_InterleaveLO32x4: 
         op = Xsse_UNPCKLD; arg1isEReg = True; goto do_SseReRg;
      case Iop_InterleaveLO64x2: 
         op = Xsse_UNPCKLQ; arg1isEReg = True; goto do_SseReRg;

      case Iop_AndV128:    op = Xsse_AND;      goto do_SseReRg;
      case Iop_OrV128:     op = Xsse_OR;       goto do_SseReRg;
      case Iop_XorV128:    op = Xsse_XOR;      goto do_SseReRg;
      case Iop_Add8x16:    op = Xsse_ADD8;     goto do_SseReRg;
      case Iop_Add16x8:    op = Xsse_ADD16;    goto do_SseReRg;
      case Iop_Add32x4:    op = Xsse_ADD32;    goto do_SseReRg;
      case Iop_Add64x2:    op = Xsse_ADD64;    goto do_SseReRg;
      case Iop_QAdd8Sx16:  op = Xsse_QADD8S;   goto do_SseReRg;
      case Iop_QAdd16Sx8:  op = Xsse_QADD16S;  goto do_SseReRg;
      case Iop_QAdd8Ux16:  op = Xsse_QADD8U;   goto do_SseReRg;
      case Iop_QAdd16Ux8:  op = Xsse_QADD16U;  goto do_SseReRg;
      case Iop_Avg8Ux16:   op = Xsse_AVG8U;    goto do_SseReRg;
      case Iop_Avg16Ux8:   op = Xsse_AVG16U;   goto do_SseReRg;
      case Iop_CmpEQ8x16:  op = Xsse_CMPEQ8;   goto do_SseReRg;
      case Iop_CmpEQ16x8:  op = Xsse_CMPEQ16;  goto do_SseReRg;
      case Iop_CmpEQ32x4:  op = Xsse_CMPEQ32;  goto do_SseReRg;
      case Iop_CmpGT8Sx16: op = Xsse_CMPGT8S;  goto do_SseReRg;
      case Iop_CmpGT16Sx8: op = Xsse_CMPGT16S; goto do_SseReRg;
      case Iop_CmpGT32Sx4: op = Xsse_CMPGT32S; goto do_SseReRg;
      case Iop_Max16Sx8:   op = Xsse_MAX16S;   goto do_SseReRg;
      case Iop_Max8Ux16:   op = Xsse_MAX8U;    goto do_SseReRg;
      case Iop_Min16Sx8:   op = Xsse_MIN16S;   goto do_SseReRg;
      case Iop_Min8Ux16:   op = Xsse_MIN8U;    goto do_SseReRg;
      case Iop_MulHi16Ux8: op = Xsse_MULHI16U; goto do_SseReRg;
      case Iop_MulHi16Sx8: op = Xsse_MULHI16S; goto do_SseReRg;
      case Iop_Mul16x8:    op = Xsse_MUL16;    goto do_SseReRg;
      case Iop_Sub8x16:    op = Xsse_SUB8;     goto do_SseReRg;
      case Iop_Sub16x8:    op = Xsse_SUB16;    goto do_SseReRg;
      case Iop_Sub32x4:    op = Xsse_SUB32;    goto do_SseReRg;
      case Iop_Sub64x2:    op = Xsse_SUB64;    goto do_SseReRg;
      case Iop_QSub8Sx16:  op = Xsse_QSUB8S;   goto do_SseReRg;
      case Iop_QSub16Sx8:  op = Xsse_QSUB16S;  goto do_SseReRg;
      case Iop_QSub8Ux16:  op = Xsse_QSUB8U;   goto do_SseReRg;
      case Iop_QSub16Ux8:  op = Xsse_QSUB16U;  goto do_SseReRg;
      do_SseReRg: {
         HReg arg1 = iselVecExpr(env, e->Iex.Binop.arg1);
         HReg arg2 = iselVecExpr(env, e->Iex.Binop.arg2);
         HReg dst = newVRegV(env);
         if (op != Xsse_OR && op != Xsse_AND && op != Xsse_XOR)
            REQUIRE_SSE2;
         if (arg1isEReg) {
            addInstr(env, mk_vMOVsd_RR(arg2, dst));
            addInstr(env, X86Instr_SseReRg(op, arg1, dst));
         } else {
            addInstr(env, mk_vMOVsd_RR(arg1, dst));
            addInstr(env, X86Instr_SseReRg(op, arg2, dst));
         }
         return dst;
      }

      case Iop_ShlN16x8: op = Xsse_SHL16; goto do_SseShift;
      case Iop_ShlN32x4: op = Xsse_SHL32; goto do_SseShift;
      case Iop_ShlN64x2: op = Xsse_SHL64; goto do_SseShift;
      case Iop_SarN16x8: op = Xsse_SAR16; goto do_SseShift;
      case Iop_SarN32x4: op = Xsse_SAR32; goto do_SseShift;
      case Iop_ShrN16x8: op = Xsse_SHR16; goto do_SseShift;
      case Iop_ShrN32x4: op = Xsse_SHR32; goto do_SseShift;
      case Iop_ShrN64x2: op = Xsse_SHR64; goto do_SseShift;
      do_SseShift: {
         HReg      greg = iselVecExpr(env, e->Iex.Binop.arg1);
         X86RMI*   rmi  = iselIntExpr_RMI(env, e->Iex.Binop.arg2);
         X86AMode* esp0 = X86AMode_IR(0, hregX86_ESP());
         HReg      ereg = newVRegV(env);
         HReg      dst  = newVRegV(env);
         REQUIRE_SSE2;
         addInstr(env, X86Instr_Push(X86RMI_Imm(0)));
         addInstr(env, X86Instr_Push(X86RMI_Imm(0)));
         addInstr(env, X86Instr_Push(X86RMI_Imm(0)));
         addInstr(env, X86Instr_Push(rmi));
         addInstr(env, X86Instr_SseLdSt(True/*load*/, ereg, esp0));
	 addInstr(env, mk_vMOVsd_RR(greg, dst));
         addInstr(env, X86Instr_SseReRg(op, ereg, dst));
         add_to_esp(env, 16);
         return dst;
      }

      case Iop_NarrowBin32to16x8:
         fn = (HWord)h_generic_calc_NarrowBin32to16x8;
         goto do_SseAssistedBinary;
      case Iop_NarrowBin16to8x16:
         fn = (HWord)h_generic_calc_NarrowBin16to8x16;
         goto do_SseAssistedBinary;
      do_SseAssistedBinary: {
         /* As with the amd64 case (where this is copied from) we
            generate pretty bad code. */
         vassert(fn != 0);
         HReg dst = newVRegV(env);
         HReg argL = iselVecExpr(env, e->Iex.Binop.arg1);
         HReg argR = iselVecExpr(env, e->Iex.Binop.arg2);
         HReg argp = newVRegI(env);
         /* subl $112, %esp         -- make a space */
         sub_from_esp(env, 112);
         /* leal 48(%esp), %r_argp  -- point into it */
         addInstr(env, X86Instr_Lea32(X86AMode_IR(48, hregX86_ESP()),
                                      argp));
         /* andl $-16, %r_argp      -- 16-align the pointer */
         addInstr(env, X86Instr_Alu32R(Xalu_AND,
                                       X86RMI_Imm( ~(UInt)15 ), 
                                       argp));
         /* Prepare 3 arg regs:
            leal  0(%r_argp), %eax
            leal 16(%r_argp), %edx
            leal 32(%r_argp), %ecx
         */
         addInstr(env, X86Instr_Lea32(X86AMode_IR(0, argp),
                                      hregX86_EAX()));
         addInstr(env, X86Instr_Lea32(X86AMode_IR(16, argp),
                                      hregX86_EDX()));
         addInstr(env, X86Instr_Lea32(X86AMode_IR(32, argp),
                                      hregX86_ECX()));
         /* Store the two args, at (%edx) and (%ecx):
            movupd  %argL, 0(%edx)
            movupd  %argR, 0(%ecx)
         */
         addInstr(env, X86Instr_SseLdSt(False/*!isLoad*/, argL,
                                        X86AMode_IR(0, hregX86_EDX())));
         addInstr(env, X86Instr_SseLdSt(False/*!isLoad*/, argR,
                                        X86AMode_IR(0, hregX86_ECX())));
         /* call the helper */
         addInstr(env, X86Instr_Call( Xcc_ALWAYS, (Addr32)fn,
                                      3, mk_RetLoc_simple(RLPri_None) ));
         /* fetch the result from memory, using %r_argp, which the
            register allocator will keep alive across the call. */
         addInstr(env, X86Instr_SseLdSt(True/*isLoad*/, dst,
                                        X86AMode_IR(0, argp)));
         /* and finally, clear the space */
         add_to_esp(env, 112);
         return dst;
      }

      default:
         break;
   } /* switch (e->Iex.Binop.op) */
   } /* if (e->tag == Iex_Binop) */


   if (e->tag == Iex_Triop) {
   IRTriop *triop = e->Iex.Triop.details;
   switch (triop->op) {

      case Iop_Add32Fx4: op = Xsse_ADDF; goto do_32Fx4_w_rm;
      case Iop_Sub32Fx4: op = Xsse_SUBF; goto do_32Fx4_w_rm;
      case Iop_Mul32Fx4: op = Xsse_MULF; goto do_32Fx4_w_rm;
      case Iop_Div32Fx4: op = Xsse_DIVF; goto do_32Fx4_w_rm;
      do_32Fx4_w_rm:
      {
         HReg argL = iselVecExpr(env, triop->arg2);
         HReg argR = iselVecExpr(env, triop->arg3);
         HReg dst = newVRegV(env);
         addInstr(env, mk_vMOVsd_RR(argL, dst));
         /* XXXROUNDINGFIXME */
         /* set roundingmode here */
         addInstr(env, X86Instr_Sse32Fx4(op, argR, dst));
         return dst;
      }

      case Iop_Add64Fx2: op = Xsse_ADDF; goto do_64Fx2_w_rm;
      case Iop_Sub64Fx2: op = Xsse_SUBF; goto do_64Fx2_w_rm;
      case Iop_Mul64Fx2: op = Xsse_MULF; goto do_64Fx2_w_rm;
      case Iop_Div64Fx2: op = Xsse_DIVF; goto do_64Fx2_w_rm;
      do_64Fx2_w_rm:
      {
         HReg argL = iselVecExpr(env, triop->arg2);
         HReg argR = iselVecExpr(env, triop->arg3);
         HReg dst = newVRegV(env);
         REQUIRE_SSE2;
         addInstr(env, mk_vMOVsd_RR(argL, dst));
         /* XXXROUNDINGFIXME */
         /* set roundingmode here */
         addInstr(env, X86Instr_Sse64Fx2(op, argR, dst));
         return dst;
      }

      default:
         break;
   } /* switch (triop->op) */
   } /* if (e->tag == Iex_Triop) */


   if (e->tag == Iex_ITE) { // VFD
      HReg r1  = iselVecExpr(env, e->Iex.ITE.iftrue);
      HReg r0  = iselVecExpr(env, e->Iex.ITE.iffalse);
      HReg dst = newVRegV(env);
      addInstr(env, mk_vMOVsd_RR(r1,dst));
      X86CondCode cc = iselCondCode(env, e->Iex.ITE.cond);
      addInstr(env, X86Instr_SseCMov(cc ^ 1, r0, dst));
      return dst;
   }

   vec_fail:
   vex_printf("iselVecExpr (hwcaps = %s): can't reduce\n",
              LibVEX_ppVexHwCaps(VexArchX86,env->hwcaps));
   ppIRExpr(e);
   vpanic("iselVecExpr_wrk");

#  undef REQUIRE_SSE1
#  undef REQUIRE_SSE2
#  undef SSE2_OR_ABOVE
}


/*---------------------------------------------------------*/
/*--- ISEL: Statements                                  ---*/
/*---------------------------------------------------------*/

static void iselStmt ( ISelEnv* env, IRStmt* stmt )
{
   if (vex_traceflags & VEX_TRACE_VCODE) {
      vex_printf("\n-- ");
      ppIRStmt(stmt);
      vex_printf("\n");
   }

   switch (stmt->tag) {

   /* --------- STORE --------- */
   case Ist_Store: {
      IRType    tya   = typeOfIRExpr(env->type_env, stmt->Ist.Store.addr);
      IRType    tyd   = typeOfIRExpr(env->type_env, stmt->Ist.Store.data);
      IREndness end   = stmt->Ist.Store.end;

      if (tya != Ity_I32 || end != Iend_LE) 
         goto stmt_fail;

      if (tyd == Ity_I32) {
         X86AMode* am = iselIntExpr_AMode(env, stmt->Ist.Store.addr);
         X86RI* ri = iselIntExpr_RI(env, stmt->Ist.Store.data);
         addInstr(env, X86Instr_Alu32M(Xalu_MOV,ri,am));
         return;
      }
      if (tyd == Ity_I8 || tyd == Ity_I16) {
         X86AMode* am = iselIntExpr_AMode(env, stmt->Ist.Store.addr);
         HReg r = iselIntExpr_R(env, stmt->Ist.Store.data);
         addInstr(env, X86Instr_Store( toUChar(tyd==Ity_I8 ? 1 : 2),
                                       r,am ));
         return;
      }
      if (tyd == Ity_F64) {
         X86AMode* am = iselIntExpr_AMode(env, stmt->Ist.Store.addr);
         HReg r = iselDblExpr(env, stmt->Ist.Store.data);
         addInstr(env, X86Instr_FpLdSt(False/*store*/, 8, r, am));
         return;
      }
      if (tyd == Ity_F32) {
         X86AMode* am = iselIntExpr_AMode(env, stmt->Ist.Store.addr);
         HReg r = iselFltExpr(env, stmt->Ist.Store.data);
         addInstr(env, X86Instr_FpLdSt(False/*store*/, 4, r, am));
         return;
      }
      if (tyd == Ity_I64) {
         HReg vHi, vLo, rA;
         iselInt64Expr(&vHi, &vLo, env, stmt->Ist.Store.data);
         rA = iselIntExpr_R(env, stmt->Ist.Store.addr);
         addInstr(env, X86Instr_Alu32M(
                          Xalu_MOV, X86RI_Reg(vLo), X86AMode_IR(0, rA)));
         addInstr(env, X86Instr_Alu32M(
                          Xalu_MOV, X86RI_Reg(vHi), X86AMode_IR(4, rA)));
         return;
      }
      if (tyd == Ity_V128) {
         X86AMode* am = iselIntExpr_AMode(env, stmt->Ist.Store.addr);
         HReg r = iselVecExpr(env, stmt->Ist.Store.data);
         addInstr(env, X86Instr_SseLdSt(False/*store*/, r, am));
         return;
      }
      break;
   }

   /* --------- PUT --------- */
   case Ist_Put: {
      IRType ty = typeOfIRExpr(env->type_env, stmt->Ist.Put.data);
      if (ty == Ity_I32) {
         /* We're going to write to memory, so compute the RHS into an
            X86RI. */
         X86RI* ri = iselIntExpr_RI(env, stmt->Ist.Put.data);
         addInstr(env,
                  X86Instr_Alu32M(
                     Xalu_MOV,
                     ri,
                     X86AMode_IR(stmt->Ist.Put.offset,hregX86_EBP())
                 ));
         return;
      }
      if (ty == Ity_I8 || ty == Ity_I16) {
         HReg r = iselIntExpr_R(env, stmt->Ist.Put.data);
         addInstr(env, X86Instr_Store(
                          toUChar(ty==Ity_I8 ? 1 : 2),
                          r,
                          X86AMode_IR(stmt->Ist.Put.offset,
                                      hregX86_EBP())));
         return;
      }
      if (ty == Ity_I64) {
         HReg vHi, vLo;
         X86AMode* am  = X86AMode_IR(stmt->Ist.Put.offset, hregX86_EBP());
         X86AMode* am4 = advance4(am);
         iselInt64Expr(&vHi, &vLo, env, stmt->Ist.Put.data);
         addInstr(env, X86Instr_Alu32M( Xalu_MOV, X86RI_Reg(vLo), am ));
         addInstr(env, X86Instr_Alu32M( Xalu_MOV, X86RI_Reg(vHi), am4 ));
         return;
      }
      if (ty == Ity_V128) {
         HReg      vec = iselVecExpr(env, stmt->Ist.Put.data);
         X86AMode* am  = X86AMode_IR(stmt->Ist.Put.offset, hregX86_EBP());
         addInstr(env, X86Instr_SseLdSt(False/*store*/, vec, am));
         return;
      }
      if (ty == Ity_F32) {
         HReg f32 = iselFltExpr(env, stmt->Ist.Put.data);
         X86AMode* am  = X86AMode_IR(stmt->Ist.Put.offset, hregX86_EBP());
         set_FPU_rounding_default(env); /* paranoia */
         addInstr(env, X86Instr_FpLdSt( False/*store*/, 4, f32, am ));
         return;
      }
      if (ty == Ity_F64) {
         HReg f64 = iselDblExpr(env, stmt->Ist.Put.data);
         X86AMode* am  = X86AMode_IR(stmt->Ist.Put.offset, hregX86_EBP());
         set_FPU_rounding_default(env); /* paranoia */
         addInstr(env, X86Instr_FpLdSt( False/*store*/, 8, f64, am ));
         return;
      }
      break;
   }

   /* --------- Indexed PUT --------- */
   case Ist_PutI: {
      IRPutI *puti = stmt->Ist.PutI.details;

      X86AMode* am 
         = genGuestArrayOffset(
              env, puti->descr, 
                   puti->ix, puti->bias );

      IRType ty = typeOfIRExpr(env->type_env, puti->data);
      if (ty == Ity_F64) {
         HReg val = iselDblExpr(env, puti->data);
         addInstr(env, X86Instr_FpLdSt( False/*store*/, 8, val, am ));
         return;
      }
      if (ty == Ity_I8) {
         HReg r = iselIntExpr_R(env, puti->data);
         addInstr(env, X86Instr_Store( 1, r, am ));
         return;
      }
      if (ty == Ity_I32) {
         HReg r = iselIntExpr_R(env, puti->data);
         addInstr(env, X86Instr_Alu32M( Xalu_MOV, X86RI_Reg(r), am ));
         return;
      }
      if (ty == Ity_I64) {
         HReg rHi, rLo;
         X86AMode* am4 = advance4(am);
         iselInt64Expr(&rHi, &rLo, env, puti->data);
         addInstr(env, X86Instr_Alu32M( Xalu_MOV, X86RI_Reg(rLo), am ));
         addInstr(env, X86Instr_Alu32M( Xalu_MOV, X86RI_Reg(rHi), am4 ));
         return;
      }
      break;
   }

   /* --------- TMP --------- */
   case Ist_WrTmp: {
      IRTemp tmp = stmt->Ist.WrTmp.tmp;
      IRType ty = typeOfIRTemp(env->type_env, tmp);

      /* optimisation: if stmt->Ist.WrTmp.data is Add32(..,..),
         compute it into an AMode and then use LEA.  This usually
         produces fewer instructions, often because (for memcheck
         created IR) we get t = address-expression, (t is later used
         twice) and so doing this naturally turns address-expression
         back into an X86 amode. */
      if (ty == Ity_I32 
          && stmt->Ist.WrTmp.data->tag == Iex_Binop
          && stmt->Ist.WrTmp.data->Iex.Binop.op == Iop_Add32) {
         X86AMode* am = iselIntExpr_AMode(env, stmt->Ist.WrTmp.data);
         HReg dst = lookupIRTemp(env, tmp);
         if (am->tag == Xam_IR && am->Xam.IR.imm == 0) {
            /* Hmm, iselIntExpr_AMode wimped out and just computed the
               value into a register.  Just emit a normal reg-reg move
               so reg-alloc can coalesce it away in the usual way. */
            HReg src = am->Xam.IR.reg;
            addInstr(env, X86Instr_Alu32R(Xalu_MOV, X86RMI_Reg(src), dst));
         } else {
            addInstr(env, X86Instr_Lea32(am,dst));
         }
         return;
      }

      if (ty == Ity_I32 || ty == Ity_I16 || ty == Ity_I8) {
         X86RMI* rmi = iselIntExpr_RMI(env, stmt->Ist.WrTmp.data);
         HReg dst = lookupIRTemp(env, tmp);
         addInstr(env, X86Instr_Alu32R(Xalu_MOV,rmi,dst));
         return;
      }
      if (ty == Ity_I64) {
         HReg rHi, rLo, dstHi, dstLo;
         iselInt64Expr(&rHi,&rLo, env, stmt->Ist.WrTmp.data);
         lookupIRTemp64( &dstHi, &dstLo, env, tmp);
         addInstr(env, mk_iMOVsd_RR(rHi,dstHi) );
         addInstr(env, mk_iMOVsd_RR(rLo,dstLo) );
         return;
      }
      if (ty == Ity_I1) {
         X86CondCode cond = iselCondCode(env, stmt->Ist.WrTmp.data);
         HReg dst = lookupIRTemp(env, tmp);
         addInstr(env, X86Instr_Set32(cond, dst));
         return;
      }
      if (ty == Ity_F64) {
         HReg dst = lookupIRTemp(env, tmp);
         HReg src = iselDblExpr(env, stmt->Ist.WrTmp.data);
         addInstr(env, X86Instr_FpUnary(Xfp_MOV,src,dst));
         return;
      }
      if (ty == Ity_F32) {
         HReg dst = lookupIRTemp(env, tmp);
         HReg src = iselFltExpr(env, stmt->Ist.WrTmp.data);
         addInstr(env, X86Instr_FpUnary(Xfp_MOV,src,dst));
         return;
      }
      if (ty == Ity_V128) {
         HReg dst = lookupIRTemp(env, tmp);
         HReg src = iselVecExpr(env, stmt->Ist.WrTmp.data);
         addInstr(env, mk_vMOVsd_RR(src,dst));
         return;
      }
      break;
   }

   /* --------- Call to DIRTY helper --------- */
   case Ist_Dirty: {
      IRDirty* d = stmt->Ist.Dirty.details;

      /* Figure out the return type, if any. */
      IRType retty = Ity_INVALID;
      if (d->tmp != IRTemp_INVALID)
         retty = typeOfIRTemp(env->type_env, d->tmp);

      Bool retty_ok = False;
      switch (retty) {
         case Ity_INVALID: /* function doesn't return anything */
         case Ity_I64: case Ity_I32: case Ity_I16: case Ity_I8:
         case Ity_V128:
            retty_ok = True; break;
         default:
            break;
      }
      if (!retty_ok)
         break; /* will go to stmt_fail: */

      /* Marshal args, do the call, and set the return value to
         0x555..555 if this is a conditional call that returns a value
         and the call is skipped. */
      UInt   addToSp = 0;
      RetLoc rloc    = mk_RetLoc_INVALID();
      doHelperCall( &addToSp, &rloc, env, d->guard, d->cee, retty, d->args );
      vassert(is_sane_RetLoc(rloc));

      /* Now figure out what to do with the returned value, if any. */
      switch (retty) {
         case Ity_INVALID: {
            /* No return value.  Nothing to do. */
            vassert(d->tmp == IRTemp_INVALID);
            vassert(rloc.pri == RLPri_None);
            vassert(addToSp == 0);
            return;
         }
         case Ity_I32: case Ity_I16: case Ity_I8: {
            /* The returned value is in %eax.  Park it in the register
               associated with tmp. */
            vassert(rloc.pri == RLPri_Int);
            vassert(addToSp == 0);
            HReg dst = lookupIRTemp(env, d->tmp);
            addInstr(env, mk_iMOVsd_RR(hregX86_EAX(),dst) );
            return;
         }
         case Ity_I64: {
            /* The returned value is in %edx:%eax.  Park it in the
               register-pair associated with tmp. */
            vassert(rloc.pri == RLPri_2Int);
            vassert(addToSp == 0);
            HReg dstHi, dstLo;
            lookupIRTemp64( &dstHi, &dstLo, env, d->tmp);
            addInstr(env, mk_iMOVsd_RR(hregX86_EDX(),dstHi) );
            addInstr(env, mk_iMOVsd_RR(hregX86_EAX(),dstLo) );
            return;
         }
         case Ity_V128: {
            /* The returned value is on the stack, and *retloc tells
               us where.  Fish it off the stack and then move the
               stack pointer upwards to clear it, as directed by
               doHelperCall. */
            vassert(rloc.pri == RLPri_V128SpRel);
            vassert(addToSp >= 16);
            HReg      dst = lookupIRTemp(env, d->tmp);
            X86AMode* am  = X86AMode_IR(rloc.spOff, hregX86_ESP());
            addInstr(env, X86Instr_SseLdSt( True/*load*/, dst, am ));
            add_to_esp(env, addToSp);
            return;
         }
         default:
            /*NOTREACHED*/
            vassert(0);
      }
      break;
   }

   /* --------- MEM FENCE --------- */
   case Ist_MBE:
      switch (stmt->Ist.MBE.event) {
         case Imbe_Fence:
            addInstr(env, X86Instr_MFence(env->hwcaps));
            return;
         default:
            break;
      }
      break;

   /* --------- ACAS --------- */
   case Ist_CAS:
      if (stmt->Ist.CAS.details->oldHi == IRTemp_INVALID) {
         /* "normal" singleton CAS */
         UChar  sz;
         IRCAS* cas = stmt->Ist.CAS.details;
         IRType ty  = typeOfIRExpr(env->type_env, cas->dataLo);
         /* get: cas->expdLo into %eax, and cas->dataLo into %ebx */
         X86AMode* am = iselIntExpr_AMode(env, cas->addr);
         HReg rDataLo = iselIntExpr_R(env, cas->dataLo);
         HReg rExpdLo = iselIntExpr_R(env, cas->expdLo);
         HReg rOldLo  = lookupIRTemp(env, cas->oldLo);
         vassert(cas->expdHi == NULL);
         vassert(cas->dataHi == NULL);
         addInstr(env, mk_iMOVsd_RR(rExpdLo, rOldLo));
         addInstr(env, mk_iMOVsd_RR(rExpdLo, hregX86_EAX()));
         addInstr(env, mk_iMOVsd_RR(rDataLo, hregX86_EBX()));
         switch (ty) { 
            case Ity_I32: sz = 4; break;
            case Ity_I16: sz = 2; break;
            case Ity_I8:  sz = 1; break; 
            default: goto unhandled_cas;
         }
         addInstr(env, X86Instr_ACAS(am, sz));
         addInstr(env,
                  X86Instr_CMov32(Xcc_NZ,
                                  X86RM_Reg(hregX86_EAX()), rOldLo));
         return;
      } else {
         /* double CAS */
         IRCAS* cas = stmt->Ist.CAS.details;
         IRType ty  = typeOfIRExpr(env->type_env, cas->dataLo);
         /* only 32-bit allowed in this case */
         /* get: cas->expdLo into %eax, and cas->dataLo into %ebx */
         /* get: cas->expdHi into %edx, and cas->dataHi into %ecx */
         X86AMode* am = iselIntExpr_AMode(env, cas->addr);
         HReg rDataHi = iselIntExpr_R(env, cas->dataHi);
         HReg rDataLo = iselIntExpr_R(env, cas->dataLo);
         HReg rExpdHi = iselIntExpr_R(env, cas->expdHi);
         HReg rExpdLo = iselIntExpr_R(env, cas->expdLo);
         HReg rOldHi  = lookupIRTemp(env, cas->oldHi);
         HReg rOldLo  = lookupIRTemp(env, cas->oldLo);
         if (ty != Ity_I32)
            goto unhandled_cas;
         addInstr(env, mk_iMOVsd_RR(rExpdHi, rOldHi));
         addInstr(env, mk_iMOVsd_RR(rExpdLo, rOldLo));
         addInstr(env, mk_iMOVsd_RR(rExpdHi, hregX86_EDX()));
         addInstr(env, mk_iMOVsd_RR(rExpdLo, hregX86_EAX()));
         addInstr(env, mk_iMOVsd_RR(rDataHi, hregX86_ECX()));
         addInstr(env, mk_iMOVsd_RR(rDataLo, hregX86_EBX()));
         addInstr(env, X86Instr_DACAS(am));
         addInstr(env,
                  X86Instr_CMov32(Xcc_NZ,
                                  X86RM_Reg(hregX86_EDX()), rOldHi));
         addInstr(env,
                  X86Instr_CMov32(Xcc_NZ,
                                  X86RM_Reg(hregX86_EAX()), rOldLo));
         return;
      }
      unhandled_cas:
      break;

   /* --------- INSTR MARK --------- */
   /* Doesn't generate any executable code ... */
   case Ist_IMark:
       return;

   /* --------- NO-OP --------- */
   /* Fairly self-explanatory, wouldn't you say? */
   case Ist_NoOp:
       return;

   /* --------- EXIT --------- */
   case Ist_Exit: {
      if (stmt->Ist.Exit.dst->tag != Ico_U32)
         vpanic("iselStmt(x86): Ist_Exit: dst is not a 32-bit value");

      X86CondCode cc    = iselCondCode(env, stmt->Ist.Exit.guard);
      X86AMode*   amEIP = X86AMode_IR(stmt->Ist.Exit.offsIP,
                                      hregX86_EBP());

      /* Case: boring transfer to known address */
      if (stmt->Ist.Exit.jk == Ijk_Boring) {
         if (env->chainingAllowed) {
            /* .. almost always true .. */
            /* Skip the event check at the dst if this is a forwards
               edge. */
            Bool toFastEP
               = ((Addr32)stmt->Ist.Exit.dst->Ico.U32) > env->max_ga;
            if (0) vex_printf("%s", toFastEP ? "Y" : ",");
            addInstr(env, X86Instr_XDirect(stmt->Ist.Exit.dst->Ico.U32,
                                           amEIP, cc, toFastEP));
         } else {
            /* .. very occasionally .. */
            /* We can't use chaining, so ask for an assisted transfer,
               as that's the only alternative that is allowable. */
            HReg r = iselIntExpr_R(env, IRExpr_Const(stmt->Ist.Exit.dst));
            addInstr(env, X86Instr_XAssisted(r, amEIP, cc, Ijk_Boring));
         }
         return;
      }

      /* Case: assisted transfer to arbitrary address */
      switch (stmt->Ist.Exit.jk) {
         /* Keep this list in sync with that in iselNext below */
         case Ijk_ClientReq:
         case Ijk_EmWarn:
         case Ijk_MapFail:
         case Ijk_NoDecode:
         case Ijk_NoRedir:
         case Ijk_SigSEGV:
         case Ijk_SigTRAP:
         case Ijk_Sys_int128:
         case Ijk_Sys_int129:
         case Ijk_Sys_int130:
         case Ijk_Sys_int145:
         case Ijk_Sys_int210:
         case Ijk_Sys_syscall:
         case Ijk_Sys_sysenter:
         case Ijk_InvalICache:
         case Ijk_Yield:
         {
            HReg r = iselIntExpr_R(env, IRExpr_Const(stmt->Ist.Exit.dst));
            addInstr(env, X86Instr_XAssisted(r, amEIP, cc, stmt->Ist.Exit.jk));
            return;
         }
         default:
            break;
      }

      /* Do we ever expect to see any other kind? */
      goto stmt_fail;
   }

   default: break;
   }
  stmt_fail:
   ppIRStmt(stmt);
   vpanic("iselStmt");
}


/*---------------------------------------------------------*/
/*--- ISEL: Basic block terminators (Nexts)             ---*/
/*---------------------------------------------------------*/

static void iselNext ( ISelEnv* env,
                       IRExpr* next, IRJumpKind jk, Int offsIP )
{
   if (vex_traceflags & VEX_TRACE_VCODE) {
      vex_printf( "\n-- PUT(%d) = ", offsIP);
      ppIRExpr( next );
      vex_printf( "; exit-");
      ppIRJumpKind(jk);
      vex_printf( "\n");
   }

   /* Case: boring transfer to known address */
   if (next->tag == Iex_Const) {
      IRConst* cdst = next->Iex.Const.con;
      vassert(cdst->tag == Ico_U32);
      if (jk == Ijk_Boring || jk == Ijk_Call) {
         /* Boring transfer to known address */
         X86AMode* amEIP = X86AMode_IR(offsIP, hregX86_EBP());
         if (env->chainingAllowed) {
            /* .. almost always true .. */
            /* Skip the event check at the dst if this is a forwards
               edge. */
            Bool toFastEP
               = ((Addr32)cdst->Ico.U32) > env->max_ga;
            if (0) vex_printf("%s", toFastEP ? "X" : ".");
            addInstr(env, X86Instr_XDirect(cdst->Ico.U32,
                                           amEIP, Xcc_ALWAYS, 
                                           toFastEP));
         } else {
            /* .. very occasionally .. */
            /* We can't use chaining, so ask for an assisted transfer,
               as that's the only alternative that is allowable. */
            HReg r = iselIntExpr_R(env, next);
            addInstr(env, X86Instr_XAssisted(r, amEIP, Xcc_ALWAYS,
                                             Ijk_Boring));
         }
         return;
      }
   }

   /* Case: call/return (==boring) transfer to any address */
   switch (jk) {
      case Ijk_Boring: case Ijk_Ret: case Ijk_Call: {
         HReg      r     = iselIntExpr_R(env, next);
         X86AMode* amEIP = X86AMode_IR(offsIP, hregX86_EBP());
         if (env->chainingAllowed) {
            addInstr(env, X86Instr_XIndir(r, amEIP, Xcc_ALWAYS));
         } else {
            addInstr(env, X86Instr_XAssisted(r, amEIP, Xcc_ALWAYS,
                                               Ijk_Boring));
         }
         return;
      }
      default:
         break;
   }

   /* Case: assisted transfer to arbitrary address */
   switch (jk) {
      /* Keep this list in sync with that for Ist_Exit above */
      case Ijk_ClientReq:
      case Ijk_EmWarn:
      case Ijk_MapFail:
      case Ijk_NoDecode:
      case Ijk_NoRedir:
      case Ijk_SigSEGV:
      case Ijk_SigTRAP:
      case Ijk_Sys_int128:
      case Ijk_Sys_int129:
      case Ijk_Sys_int130:
      case Ijk_Sys_int145:
      case Ijk_Sys_int210:
      case Ijk_Sys_syscall:
      case Ijk_Sys_sysenter:
      case Ijk_InvalICache:
      case Ijk_Yield:
      {
         HReg      r     = iselIntExpr_R(env, next);
         X86AMode* amEIP = X86AMode_IR(offsIP, hregX86_EBP());
         addInstr(env, X86Instr_XAssisted(r, amEIP, Xcc_ALWAYS, jk));
         return;
      }
      default:
         break;
   }

   vex_printf( "\n-- PUT(%d) = ", offsIP);
   ppIRExpr( next );
   vex_printf( "; exit-");
   ppIRJumpKind(jk);
   vex_printf( "\n");
   vassert(0); // are we expecting any other kind?
}


/*---------------------------------------------------------*/
/*--- Insn selector top-level                           ---*/
/*---------------------------------------------------------*/

/* Translate an entire SB to x86 code. */

HInstrArray* iselSB_X86 ( const IRSB* bb,
                          VexArch      arch_host,
                          const VexArchInfo* archinfo_host,
                          const VexAbiInfo*  vbi/*UNUSED*/,
                          Int offs_Host_EvC_Counter,
                          Int offs_Host_EvC_FailAddr,
                          Bool chainingAllowed,
                          Bool addProfInc,
                          Addr max_ga )
{
   Int      i, j;
   HReg     hreg, hregHI;
   ISelEnv* env;
   UInt     hwcaps_host = archinfo_host->hwcaps;
   X86AMode *amCounter, *amFailAddr;

   /* sanity ... */
   vassert(arch_host == VexArchX86);
   vassert(0 == (hwcaps_host
                 & ~(VEX_HWCAPS_X86_MMXEXT
                     | VEX_HWCAPS_X86_SSE1
                     | VEX_HWCAPS_X86_SSE2
                     | VEX_HWCAPS_X86_SSE3
                     | VEX_HWCAPS_X86_LZCNT)));

   /* Check that the host's endianness is as expected. */
   vassert(archinfo_host->endness == VexEndnessLE);

   /* Make up an initial environment to use. */
   env = LibVEX_Alloc_inline(sizeof(ISelEnv));
   env->vreg_ctr = 0;

   /* Set up output code array. */
   env->code = newHInstrArray();

   /* Copy BB's type env. */
   env->type_env = bb->tyenv;

   /* Make up an IRTemp -> virtual HReg mapping.  This doesn't
      change as we go along. */
   env->n_vregmap = bb->tyenv->types_used;
   env->vregmap   = LibVEX_Alloc_inline(env->n_vregmap * sizeof(HReg));
   env->vregmapHI = LibVEX_Alloc_inline(env->n_vregmap * sizeof(HReg));

   /* and finally ... */
   env->chainingAllowed = chainingAllowed;
   env->hwcaps          = hwcaps_host;
   env->max_ga          = max_ga;

   /* For each IR temporary, allocate a suitably-kinded virtual
      register. */
   j = 0;
   for (i = 0; i < env->n_vregmap; i++) {
      hregHI = hreg = INVALID_HREG;
      switch (bb->tyenv->types[i]) {
         case Ity_I1:
         case Ity_I8:
         case Ity_I16:
         case Ity_I32:  hreg   = mkHReg(True, HRcInt32,  0, j++); break;
         case Ity_I64:  hreg   = mkHReg(True, HRcInt32,  0, j++);
                        hregHI = mkHReg(True, HRcInt32,  0, j++); break;
         case Ity_F32:
         case Ity_F64:  hreg   = mkHReg(True, HRcFlt64,  0, j++); break;
         case Ity_V128: hreg   = mkHReg(True, HRcVec128, 0, j++); break;
         default: ppIRType(bb->tyenv->types[i]);
                  vpanic("iselBB: IRTemp type");
      }
      env->vregmap[i]   = hreg;
      env->vregmapHI[i] = hregHI;
   }
   env->vreg_ctr = j;

   /* The very first instruction must be an event check. */
   amCounter  = X86AMode_IR(offs_Host_EvC_Counter,  hregX86_EBP());
   amFailAddr = X86AMode_IR(offs_Host_EvC_FailAddr, hregX86_EBP());
   addInstr(env, X86Instr_EvCheck(amCounter, amFailAddr));

   /* Possibly a block counter increment (for profiling).  At this
      point we don't know the address of the counter, so just pretend
      it is zero.  It will have to be patched later, but before this
      translation is used, by a call to LibVEX_patchProfCtr. */
   if (addProfInc) {
      addInstr(env, X86Instr_ProfInc());
   }

   /* Ok, finally we can iterate over the statements. */
   for (i = 0; i < bb->stmts_used; i++)
      iselStmt(env, bb->stmts[i]);

   iselNext(env, bb->next, bb->jumpkind, bb->offsIP);

   /* record the number of vregs we used. */
   env->code->n_vregs = env->vreg_ctr;
   return env->code;
}


/*---------------------------------------------------------------*/
/*--- end                                     host_x86_isel.c ---*/
/*---------------------------------------------------------------*/