File: sg_main.c

package info (click to toggle)
valgrind 1%3A3.14.0-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 156,980 kB
  • sloc: ansic: 728,128; exp: 26,134; xml: 22,268; cpp: 7,638; asm: 7,312; makefile: 6,102; perl: 5,910; sh: 5,717
file content (2571 lines) | stat: -rw-r--r-- 87,520 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571

/*--------------------------------------------------------------------*/
/*--- Ptrcheck: a pointer-use checker.                             ---*/
/*--- This file checks stack and global array accesses.            ---*/
/*---                                                    sg_main.c ---*/
/*--------------------------------------------------------------------*/

/*
   This file is part of Ptrcheck, a Valgrind tool for checking pointer
   use in programs.

   Copyright (C) 2008-2017 OpenWorks Ltd
      info@open-works.co.uk

   This program is free software; you can redistribute it and/or
   modify it under the terms of the GNU General Public License as
   published by the Free Software Foundation; either version 2 of the
   License, or (at your option) any later version.

   This program is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
   02111-1307, USA.

   The GNU General Public License is contained in the file COPYING.

   Neither the names of the U.S. Department of Energy nor the
   University of California nor the names of its contributors may be
   used to endorse or promote products derived from this software
   without prior written permission.
*/

#include "pub_tool_basics.h"
#include "pub_tool_libcbase.h"
#include "pub_tool_libcassert.h"
#include "pub_tool_libcprint.h"
#include "pub_tool_tooliface.h"
#include "pub_tool_wordfm.h"
#include "pub_tool_xarray.h"
#include "pub_tool_threadstate.h"
#include "pub_tool_mallocfree.h"
#include "pub_tool_machine.h"
#include "pub_tool_debuginfo.h"
#include "pub_tool_options.h"

#include "pc_common.h"

#include "sg_main.h"      // self


static
void preen_global_Invars ( Addr a, SizeT len ); /*fwds*/


//////////////////////////////////////////////////////////////
//                                                          //
// Basic Stuff                                              //
//                                                          //
//////////////////////////////////////////////////////////////

static inline Bool is_sane_TId ( ThreadId tid )
{
   return tid >= 0 && tid < VG_N_THREADS
          && tid != VG_INVALID_THREADID;
}

static void* sg_malloc ( const HChar* cc, SizeT n ) {
   void* p;
   tl_assert(n > 0);
   p = VG_(malloc)( cc, n );
   return p;
}

static void sg_free ( void* p ) {
   tl_assert(p);
   VG_(free)(p);
}


/* Compare the intervals [a1,a1+n1) and [a2,a2+n2).  Return -1 if the
   first interval is lower, 1 if the first interval is higher, and 0
   if there is any overlap.  Redundant paranoia with casting is there
   following what looked distinctly like a bug in gcc-4.1.2, in which
   some of the comparisons were done signedly instead of
   unsignedly. */
inline
static Word cmp_nonempty_intervals ( Addr a1, SizeT n1, 
                                     Addr a2, SizeT n2 ) {
   UWord a1w = (UWord)a1;
   UWord n1w = (UWord)n1;
   UWord a2w = (UWord)a2;
   UWord n2w = (UWord)n2;
   tl_assert(n1w > 0 && n2w > 0);
   if (a1w + n1w <= a2w) return -1L;
   if (a2w + n2w <= a1w) return 1L;
   return 0;
}

/* Return true iff [aSmall,aSmall+nSmall) is entirely contained
   within [aBig,aBig+nBig). */
inline
static Bool is_subinterval_of ( Addr aBig, SizeT nBig,
                                Addr aSmall, SizeT nSmall ) {
   tl_assert(nBig > 0 && nSmall > 0);
   return aBig <= aSmall && aSmall + nSmall <= aBig + nBig;
}

inline
static Addr Addr__min ( Addr a1, Addr a2 ) {
   return a1 < a2 ? a1 : a2;
}

inline
static Addr Addr__max ( Addr a1, Addr a2 ) {
   return a1 < a2 ? a2 : a1;
}


//////////////////////////////////////////////////////////////
//                                                          //
// StackBlocks Persistent Cache                             //
//                                                          //
//////////////////////////////////////////////////////////////

/* We maintain a set of XArray* of StackBlocks.  These are never
   freed.  When a new StackBlock vector is acquired from
   VG_(di_get_local_blocks_at_ip), we compare it to the existing set.
   If not present, it is added.  If present, the just-acquired one is
   freed and the copy used.

   This simplifies storage management elsewhere.  It allows us to
   assume that a pointer to an XArray* of StackBlock is valid forever.
   It also means there are no duplicates anywhere, which could be
   important from a space point of view for programs that generate a
   lot of translations, or where translations are frequently discarded
   and re-made.

   Note that we normalise the arrays by sorting the elements according
   to an arbitrary total order, so as to avoid the situation that two
   vectors describe the same set of variables but are not structurally
   identical. */

static inline Bool StackBlock__sane ( const StackBlock* fb )
{
   if (fb->name[ sizeof(fb->name)-1 ] != 0)
      return False;
   if (fb->spRel != False && fb->spRel != True)
      return False;
   if (fb->isVec != False && fb->isVec != True)
      return False;
   return True;
}

/* Generate an arbitrary total ordering on StackBlocks. */
static Word StackBlock__cmp ( const StackBlock* fb1, const StackBlock* fb2 )
{
   Word r;
   tl_assert(StackBlock__sane(fb1));
   tl_assert(StackBlock__sane(fb2));
   /* Hopefully the .base test hits most of the time.  For the blocks
      associated with any particular instruction, if the .base values
      are the same then probably it doesn't make sense for the other
      fields to be different.  But this is supposed to be a completely
      general structural total order, so we have to compare everything
      anyway. */
   if (fb1->base < fb2->base) return -1;
   if (fb1->base > fb2->base) return 1;
   /* compare sizes */
   if (fb1->szB < fb2->szB) return -1;
   if (fb1->szB > fb2->szB) return 1;
   /* compare sp/fp flag */
   if (fb1->spRel < fb2->spRel) return -1;
   if (fb1->spRel > fb2->spRel) return 1;
   /* compare is/is-not array-typed flag */
   if (fb1->isVec < fb2->isVec) return -1;
   if (fb1->isVec > fb2->isVec) return 1;
   /* compare the name */
   r = (Word)VG_(strcmp)(fb1->name, fb2->name);
   return r;
}

/* Returns True if all fields except .szB are the same.  szBs may or
   may not be the same; they are simply not consulted. */
static Bool StackBlock__all_fields_except_szB_are_equal ( 
               StackBlock* fb1,
               StackBlock* fb2 
            )
{
   tl_assert(StackBlock__sane(fb1));
   tl_assert(StackBlock__sane(fb2));
   return fb1->base == fb2->base
          && fb1->spRel == fb2->spRel
          && fb1->isVec == fb2->isVec
          && 0 == VG_(strcmp)(fb1->name, fb2->name);
}


/* Generate an arbitrary total ordering on vectors of StackBlocks. */
static Word StackBlocks__cmp ( XArray* fb1s, XArray* fb2s )
{
   Word i, r, n1, n2;
   n1 = VG_(sizeXA)( fb1s );
   n2 = VG_(sizeXA)( fb2s );
   if (n1 < n2) return -1;
   if (n1 > n2) return 1;
   for (i = 0; i < n1; i++) {
      StackBlock *fb1, *fb2;
      fb1 = VG_(indexXA)( fb1s, i );
      fb2 = VG_(indexXA)( fb2s, i );
      r = StackBlock__cmp( fb1, fb2 );
      if (r != 0) return r;
   }
   tl_assert(i == n1 && i == n2);
   return 0;
}

static void pp_StackBlocks ( XArray* sbs )
{
   Word i, n = VG_(sizeXA)( sbs );
   VG_(message)(Vg_DebugMsg, "<<< STACKBLOCKS\n" );
   for (i = 0; i < n; i++) {
      StackBlock* sb = (StackBlock*)VG_(indexXA)( sbs, i );
      VG_(message)(Vg_DebugMsg,
         "   StackBlock{ off %ld szB %lu spRel:%c isVec:%c \"%s\" }\n",
         sb->base, sb->szB, sb->spRel ? 'Y' : 'N',
         sb->isVec ? 'Y' : 'N', &sb->name[0] 
      );
   }
   VG_(message)(Vg_DebugMsg, ">>> STACKBLOCKS\n" );
}


/* ---------- The StackBlock vector cache ---------- */

static WordFM* /* XArray* of StackBlock -> nothing */
       frameBlocks_set = NULL;

static void init_StackBlocks_set ( void )
{
   tl_assert(!frameBlocks_set);
   frameBlocks_set
      = VG_(newFM)( sg_malloc, "di.sg_main.iSBs.1", sg_free, 
                    (Word(*)(UWord,UWord))StackBlocks__cmp );
   tl_assert(frameBlocks_set);
}

/* Find the given StackBlock-vector in our collection thereof.  If
   found, deallocate the supplied one, and return the address of the
   copy.  If not found, add the supplied one to our collection and
   return its address. */
static XArray* /* of StackBlock */
       StackBlocks__find_and_dealloc__or_add
          ( XArray* /* of StackBlock */ orig )
{
   UWord key, val;

   /* First, normalise, as per comments above. */
   VG_(setCmpFnXA)( orig, (XACmpFn_t)StackBlock__cmp );
   VG_(sortXA)( orig );

   /* Now get rid of any exact duplicates. */
  nuke_dups:
   { Word r, w, nEQ, n = VG_(sizeXA)( orig );
     if (n >= 2) {
        w = 0;
        nEQ = 0;
        for (r = 0; r < n; r++) {
           if (r+1 < n) {
              StackBlock* pR0 = VG_(indexXA)( orig, r+0 );
              StackBlock* pR1 = VG_(indexXA)( orig, r+1 );
              Word c = StackBlock__cmp(pR0,pR1);
              tl_assert(c == -1 || c == 0);
              if (c == 0) { nEQ++; continue; }
           }
           if (w != r) {
              StackBlock* pW = VG_(indexXA)( orig, w );
              StackBlock* pR = VG_(indexXA)( orig, r );
              *pW = *pR;
           }
           w++;
        }
        tl_assert(r == n);
        tl_assert(w + nEQ == n);
        if (w < n) {
           VG_(dropTailXA)( orig, n-w );
        }
        if (0) VG_(printf)("delta %ld\n", n-w);
     }
   }

   /* Deal with the following strangeness, where two otherwise
      identical blocks are claimed to have different sizes.  In which
      case we use the larger size. */
   /* StackBlock{ off 16 szB 66 spRel:Y isVec:Y "sz" }
      StackBlock{ off 16 szB 130 spRel:Y isVec:Y "sz" }
      StackBlock{ off 208 szB 16 spRel:Y isVec:Y "ar" }
   */
   { Word i, n = VG_(sizeXA)( orig );
     if (n >= 2) {
        for (i = 0; i < n-1; i++) {
           StackBlock* sb0 = VG_(indexXA)( orig, i+0 );
           StackBlock* sb1 = VG_(indexXA)( orig, i+1 );
           if (StackBlock__all_fields_except_szB_are_equal(sb0, sb1)) {
              /* They can't be identical because the previous tidying
                 pass would have removed the duplicates.  And they
                 can't be > because the earlier sorting pass would
                 have ordered otherwise-identical descriptors
                 according to < on .szB fields.  Hence: */
              tl_assert(sb0->szB < sb1->szB);
              sb0->szB = sb1->szB;
              /* This makes the blocks identical, at the size of the
                 larger one.  Rather than go to all the hassle of
                 sliding the rest down, simply go back to the
                 remove-duplicates stage.  The assertion guarantees
                 that we eventually make progress, since the rm-dups
                 stage will get rid of one of the blocks.  This is
                 expected to happen only exceedingly rarely. */
              tl_assert(StackBlock__cmp(sb0,sb1) == 0);
              goto nuke_dups;
           }
        }
     }
   }

   /* If there are any blocks which overlap and have the same
      fpRel-ness, junk the whole descriptor; it's obviously bogus.
      Icc11 certainly generates bogus info from time to time.

      This check is pretty weak; really we ought to have a stronger
      sanity check. */
   { Word i, n = VG_(sizeXA)( orig );
     static Int moans = 3;
     for (i = 0; i < n-1; i++) {
       StackBlock* sb1 = (StackBlock*)VG_(indexXA)( orig, i );
       StackBlock* sb2 = (StackBlock*)VG_(indexXA)( orig, i+1 );
       if (sb1->spRel == sb2->spRel
           && (sb1->base >= sb2->base
               || sb1->base + sb1->szB > sb2->base)) {
          if (moans > 0 && !VG_(clo_xml)) {
             moans--;
             VG_(message)(Vg_UserMsg, "Warning: bogus DWARF3 info: "
                                      "overlapping stack blocks\n");
             if (VG_(clo_verbosity) >= 2)
                pp_StackBlocks(orig);
             if (moans == 0)
                VG_(message)(Vg_UserMsg, "Further instances of this "
                                         "message will not be shown\n" );
          }
          VG_(dropTailXA)( orig, VG_(sizeXA)( orig ));
          break;
       }
     }
   }

   /* Now, do we have it already? */
   if (VG_(lookupFM)( frameBlocks_set, &key, &val, (UWord)orig )) {
      /* yes */
      XArray* res;
      tl_assert(val == 0);
      tl_assert(key != (UWord)orig);
      VG_(deleteXA)(orig);
      res = (XArray*)key;
      return res;
   } else {
      /* no */
      VG_(addToFM)( frameBlocks_set, (UWord)orig, 0 );
      return orig;
   }
}

/* Top level function for getting the StackBlock vector for a given
   instruction.  It is guaranteed that the returned pointer will be
   valid for the entire rest of the run, and also that the addresses
   of the individual elements of the array will not change. */

static XArray* /* of StackBlock */ get_StackBlocks_for_IP ( Addr ip )
{
   XArray* blocks = VG_(di_get_stack_blocks_at_ip)( ip, True/*arrays only*/ );
   tl_assert(blocks);
   return StackBlocks__find_and_dealloc__or_add( blocks );
}


//////////////////////////////////////////////////////////////
//                                                          //
// GlobalBlocks Persistent Cache                            //
//                                                          //
//////////////////////////////////////////////////////////////

/* Generate an arbitrary total ordering on GlobalBlocks. */
static Word GlobalBlock__cmp ( GlobalBlock* gb1, GlobalBlock* gb2 )
{
   Word r;
   /* compare addrs */
   if (gb1->addr < gb2->addr) return -1;
   if (gb1->addr > gb2->addr) return 1;
   /* compare sizes */
   if (gb1->szB < gb2->szB) return -1;
   if (gb1->szB > gb2->szB) return 1;
   /* compare is/is-not array-typed flag */
   if (gb1->isVec < gb2->isVec) return -1;
   if (gb1->isVec > gb2->isVec) return 1;
   /* compare the name */
   r = (Word)VG_(strcmp)(gb1->name, gb2->name);
   if (r != 0) return r;
   /* compare the soname */
   r = (Word)VG_(strcmp)(gb1->soname, gb2->soname);
   return r;
}

static WordFM* /* GlobalBlock* -> nothing */
       globalBlock_set = NULL;

static void init_GlobalBlock_set ( void )
{
   tl_assert(!globalBlock_set);
    globalBlock_set
       = VG_(newFM)( sg_malloc, "di.sg_main.iGBs.1", sg_free, 
                     (Word(*)(UWord,UWord))GlobalBlock__cmp );
   tl_assert(globalBlock_set);
}


/* Top level function for making GlobalBlocks persistent.  Call here
   with a non-persistent version, and the returned one is guaranteed
   to be valid for the entire rest of the run.  The supplied one is
   copied, not stored, so can be freed after the call. */

static GlobalBlock* get_persistent_GlobalBlock ( GlobalBlock* orig )
{
   UWord key, val;
   /* Now, do we have it already? */
   if (VG_(lookupFM)( globalBlock_set, &key, &val, (UWord)orig )) {
      /* yes, return the copy */
      GlobalBlock* res;
      tl_assert(val == 0);
      res = (GlobalBlock*)key;
      tl_assert(res != orig);
      return res;
   } else {
      /* no.  clone it, store the clone and return the clone's
         address. */
      GlobalBlock* clone = sg_malloc( "di.sg_main.gpGB.1",
                                      sizeof(GlobalBlock) );
      tl_assert(clone);
      *clone = *orig;
      VG_(addToFM)( globalBlock_set, (UWord)clone, 0 );
      return clone;
   }
}


//////////////////////////////////////////////////////////////
//                                                          //
// Interval tree of StackTreeBlock                          //
//                                                          //
//////////////////////////////////////////////////////////////

/* A node in a stack interval tree.  Zero length intervals (.szB == 0)
   are not allowed.

   A stack interval tree is a (WordFM StackTreeNode* void).  There is
   one stack interval tree for each thread.
*/
typedef
   struct {
      Addr        addr;
      SizeT       szB;   /* copied from .descr->szB */
      StackBlock* descr; /* it's an instance of this block */
      UWord       depth; /* depth of stack at time block was pushed */
   }
   StackTreeNode;

static void pp_StackTree ( WordFM* sitree, const HChar* who )
{
   UWord keyW, valW;
   VG_(printf)("<<< BEGIN pp_StackTree %s\n", who );
   VG_(initIterFM)( sitree );
   while (VG_(nextIterFM)( sitree, &keyW, &valW )) {
      StackTreeNode* nd = (StackTreeNode*)keyW;
      VG_(printf)("  [%#lx,+%lu) descr=%p %s %lu\n", nd->addr, nd->szB,
                  nd->descr, nd->descr->name, nd->descr->szB);
   }
   VG_(printf)(">>> END   pp_StackTree %s\n", who );
}

/* Interval comparison function for StackTreeNode */
static Word cmp_intervals_StackTreeNode ( StackTreeNode* sn1,
                                          StackTreeNode* sn2 )
{
   return cmp_nonempty_intervals(sn1->addr, sn1->szB,
                                 sn2->addr, sn2->szB);
}

/* Find the node holding 'a', if any. */
static StackTreeNode* find_StackTreeNode ( WordFM* sitree, Addr a )
{
   UWord keyW, valW;
   StackTreeNode key;
   tl_assert(sitree);
   key.addr = a;
   key.szB  = 1;
   if (VG_(lookupFM)( sitree, &keyW, &valW, (UWord)&key )) {
      StackTreeNode* res = (StackTreeNode*)keyW;
      tl_assert(valW == 0);
      tl_assert(res != &key);
      return res;
   } else {
      return NULL;
   }
}

/* Note that the supplied XArray of FrameBlock must have been
   made persistent already. */
__attribute__((noinline))
static void add_blocks_to_StackTree (
               /*MOD*/WordFM* sitree,
               XArray* /* FrameBlock */ descrs,
               XArray* /* Addr */ bases,
               UWord depth
            )
{
   Bool debug = (Bool)0;
   Word i, nDescrs, nBases;

   nDescrs = VG_(sizeXA)( descrs ),
   nBases = VG_(sizeXA)( bases );
   tl_assert(nDescrs == nBases);

   if (nDescrs == 0) return;

   tl_assert(sitree);
   if (debug) {
      VG_(printf)("\ndepth = %lu\n", depth);
      pp_StackTree( sitree, "add_blocks_to_StackTree-pre" );
      pp_StackBlocks(descrs);
   }

   for (i = 0; i < nDescrs; i++) {
      Bool already_present;
      StackTreeNode* nyu;
      Addr        addr  = *(Addr*)VG_(indexXA)( bases, i );
      StackBlock* descr = (StackBlock*)VG_(indexXA)( descrs, i );
      tl_assert(descr->szB > 0);
      nyu = sg_malloc( "di.sg_main.abtST.1", sizeof(StackTreeNode) );
      nyu->addr  = addr;
      nyu->szB   = descr->szB;
      nyu->descr = descr;
      nyu->depth = depth;
      if (debug) VG_(printf)("ADD %#lx %lu\n", addr, descr->szB);
      already_present = VG_(addToFM)( sitree, (UWord)nyu, 0 );
      /* The interval can't already be there; else we have
         overlapping stack blocks. */
      tl_assert(!already_present);
      if (debug) {
         pp_StackTree( sitree, "add_blocks_to_StackTree-step" );
      }
   }
   if (debug) {
      pp_StackTree( sitree, "add_blocks_to_StackTree-post" );
      VG_(printf)("\n");
   }
}

static void del_blocks_from_StackTree ( /*MOD*/WordFM* sitree,
                                        XArray* /* Addr */ bases ) 
{
   UWord oldK, oldV;
   Word i, nBases = VG_(sizeXA)( bases );
   for (i = 0; i < nBases; i++) {
      Bool b;
      Addr addr = *(Addr*)VG_(indexXA)( bases, i );
      StackTreeNode* nd = find_StackTreeNode(sitree, addr);
      /* The interval must be there; we added it earlier when
         the associated frame was created. */
      tl_assert(nd);
      b = VG_(delFromFM)( sitree, &oldK, &oldV, (UWord)nd );
      /* we just found the block! */
      tl_assert(b);
      tl_assert(oldV == 0);
      tl_assert(nd == (StackTreeNode*)oldK);
      sg_free(nd);
   }
}


static void delete_StackTree__kFin ( UWord keyW ) {
   StackTreeNode* nd = (StackTreeNode*)keyW;
   tl_assert(nd);
   sg_free(nd);
}
static void delete_StackTree__vFin ( UWord valW ) {
   tl_assert(valW == 0);
}
static void delete_StackTree ( WordFM* sitree )
{
   VG_(deleteFM)( sitree,
                 delete_StackTree__kFin, delete_StackTree__vFin );
}

static WordFM* new_StackTree ( void ) {
   return VG_(newFM)( sg_malloc, "di.sg_main.nST.1", sg_free,
                      (Word(*)(UWord,UWord))cmp_intervals_StackTreeNode );
}


//////////////////////////////////////////////////////////////
//                                                          //
// Interval tree of GlobalTreeBlock                         //
//                                                          //
//////////////////////////////////////////////////////////////

/* A node in a global interval tree.  Zero length intervals 
   (.szB == 0) are not allowed.

   A global interval tree is a (WordFM GlobalTreeNode* void).  There
   is one global interval tree for the entire process.
*/
typedef
   struct {
      Addr         addr; /* copied from .descr->addr */
      SizeT        szB; /* copied from .descr->szB */
      GlobalBlock* descr; /* it's this block */
   }
   GlobalTreeNode;

static void GlobalTreeNode__pp ( GlobalTreeNode* nd ) {
   tl_assert(nd->descr);
   VG_(printf)("GTNode [%#lx,+%lu) %s", 
               nd->addr, nd->szB, nd->descr->name);
}

static void GlobalTree__pp ( WordFM* /* of (GlobalTreeNode,void) */ gitree,
                             const HChar* who )
{
   UWord keyW, valW;
   GlobalTreeNode* nd;
   VG_(printf)("<<< GlobalBlockTree (%s)\n", who);
   VG_(initIterFM)( gitree );
   while (VG_(nextIterFM)( gitree, &keyW, &valW )) {
      tl_assert(valW == 0);
      nd = (GlobalTreeNode*)keyW;
      VG_(printf)("  ");
      GlobalTreeNode__pp(nd);
      VG_(printf)("\n");
   }
   VG_(doneIterFM)( gitree );
   VG_(printf)(">>>\n");
}

/* Interval comparison function for GlobalTreeNode */
static Word cmp_intervals_GlobalTreeNode ( GlobalTreeNode* gn1,
                                           GlobalTreeNode* gn2 )
{
   return cmp_nonempty_intervals( gn1->addr, gn1->szB,
                                  gn2->addr, gn2->szB );
}

/* Find the node holding 'a', if any. */
static GlobalTreeNode* find_GlobalTreeNode ( WordFM* gitree, Addr a )
{
   UWord keyW, valW;
   GlobalTreeNode key;
   key.addr = a;
   key.szB  = 1;
   if (VG_(lookupFM)( gitree, &keyW, &valW, (UWord)&key )) {
      GlobalTreeNode* res = (GlobalTreeNode*)keyW;
      tl_assert(valW == 0);
      tl_assert(res != &key);
      return res;
   } else {
      return NULL;
   }
}

/* Note that the supplied GlobalBlock must have been made persistent
   already. */
static void add_block_to_GlobalTree (
               /*MOD*/WordFM* gitree,
               GlobalBlock* descr
            )
{
   Bool already_present;
   GlobalTreeNode *nyu, *nd;
   UWord keyW, valW;
   static Int moans = 3;

   tl_assert(descr->szB > 0);
   nyu = sg_malloc( "di.sg_main.abtG.1", sizeof(GlobalTreeNode) );
   nyu->addr  = descr->addr;
   nyu->szB   = descr->szB;
   nyu->descr = descr;

   /* Basically it's an error to add a global block to the tree that
      is already in the tree.  However, detect and ignore attempts to
      insert exact duplicates; they do appear for some reason
      (possible a bug in m_debuginfo?) */
   already_present = VG_(lookupFM)( gitree, &keyW, &valW, (UWord)nyu );
   if (already_present) {
      tl_assert(valW == 0);
      nd = (GlobalTreeNode*)keyW;
      tl_assert(nd);
      tl_assert(nd != nyu);
      tl_assert(nd->descr);
      tl_assert(nyu->descr);
      if (nd->addr == nyu->addr && nd->szB == nyu->szB
          /* && 0 == VG_(strcmp)(nd->descr->name, nyu->descr->name) */
          /* Although it seems reasonable to demand that duplicate
             blocks have identical names, that is too strict.  For
             example, reading debuginfo from glibc produces two
             otherwise identical blocks with names "tzname" and
             "__tzname".  A constraint of the form "must be identical,
             or one must be a substring of the other" would fix that.
             However, such trickery is scuppered by the fact that we
             truncate all variable names to 15 characters to make
             storage management simpler, hence giving pairs like
             "__EI___pthread_" (truncated) vs "__pthread_keys".  So
             it's simplest just to skip the name comparison
             completely. */
          && 0 == VG_(strcmp)(nd->descr->soname, nyu->descr->soname)) {
         /* exact duplicate; ignore it */
         sg_free(nyu);
         return;
      }
      /* else fall through; the assertion below will catch it */
   }

   already_present = VG_(addToFM)( gitree, (UWord)nyu, 0 );
   /* The interval can't already be there; else we have
      overlapping global blocks. */
   /* Unfortunately (25 Jan 09) at least icc11 has been seen to
      generate overlapping block descriptions in the Dwarf3; clearly
      bogus. */
   if (already_present && moans > 0 && !VG_(clo_xml)) {
      moans--;
      VG_(message)(Vg_UserMsg, "Warning: bogus DWARF3 info: "
                               "overlapping global blocks\n");
      if (VG_(clo_verbosity) >= 2) {
         GlobalTree__pp( gitree,
                         "add_block_to_GlobalTree: non-exact duplicate" );
         VG_(printf)("Overlapping block: ");
         GlobalTreeNode__pp(nyu);
         VG_(printf)("\n");
      }
      if (moans == 0)
         VG_(message)(Vg_UserMsg, "Further instances of this "
                                  "message will not be shown\n" );
   }
   /* tl_assert(!already_present); */
}

static Bool del_GlobalTree_range ( /*MOD*/WordFM* gitree,
                                   Addr a, SizeT szB )
{
   /* One easy way to do this: look up [a,a+szB) in the tree.  That
      will either succeed, producing a block which intersects that
      range, in which case we delete it and repeat; or it will fail,
      in which case there are no blocks intersecting the range, and we
      can bring the process to a halt. */
   UWord keyW, valW, oldK, oldV;
   GlobalTreeNode key, *nd;
   Bool b, anyFound;

   tl_assert(szB > 0);

   anyFound = False;

   key.addr = a;
   key.szB  = szB;

   while (VG_(lookupFM)( gitree, &keyW, &valW, (UWord)&key )) {
      anyFound = True;
      nd = (GlobalTreeNode*)keyW;
      tl_assert(valW == 0);
      tl_assert(nd != &key);
      tl_assert(cmp_nonempty_intervals(a, szB, nd->addr, nd->szB) == 0);

      b = VG_(delFromFM)( gitree, &oldK, &oldV, (UWord)&key );
      tl_assert(b);
      tl_assert(oldV == 0);
      tl_assert(oldK == keyW); /* check we deleted the node we just found */
   }

   return anyFound;
}


//////////////////////////////////////////////////////////////
//                                                          //
// Invar                                                    //
//                                                          //
//////////////////////////////////////////////////////////////

/* An invariant, as resulting from watching the destination of a
   memory referencing instruction.  Initially is Inv_Unset until the
   instruction makes a first access. */

typedef
   enum {
      Inv_Unset=1,  /* not established yet */
      Inv_Unknown,  /* unknown location */
      Inv_Stack0,   /* array-typed stack block in innermost frame */
      Inv_StackN,   /* array-typed stack block in non-innermost frame */
      Inv_Global,   /* array-typed global block */
   }
   InvarTag;

typedef
   struct {
      InvarTag tag;
      union {
         struct {
         } Unset;
         struct {
         } Unknown;
         struct {
            Addr  addr;
            SizeT szB;
            StackBlock* descr;
         } Stack0; /* innermost stack frame */
         struct {
            /* Pointer to a node in the interval tree for
              this thread. */
            StackTreeNode* nd;
         } StackN; /* non-innermost stack frame */
         struct {
           /* Pointer to a GlobalBlock in the interval tree of
              global blocks. */
           GlobalTreeNode* nd;
         } Global;
      }
      Inv;
   }
   Invar;

/* Partial debugging printing for an Invar. */
static void pp_Invar ( Invar* i )
{
   switch (i->tag) {
      case Inv_Unset: 
         VG_(printf)("Unset");
         break;
      case Inv_Unknown:
         VG_(printf)("Unknown");
         break;
      case Inv_Stack0:
         VG_(printf)("Stack0 [%#lx,+%lu)",
                     i->Inv.Stack0.addr, i->Inv.Stack0.szB);
         break;
      case Inv_StackN:
         VG_(printf)("StackN [%#lx,+%lu)",
                     i->Inv.StackN.nd->addr, i->Inv.StackN.nd->szB);
         break;
      case Inv_Global:
         VG_(printf)("Global [%#lx,+%lu)",
                     i->Inv.Global.nd->addr, i->Inv.Global.nd->szB);
         break;
      default:
         tl_assert(0);
   }
}

/* Compare two Invars for equality. */
static Bool eq_Invar ( Invar* i1, Invar* i2 )
{
   if (i1->tag != i2->tag)
      return False;
   switch (i1->tag) {
      case Inv_Unset:
         return True;
      case Inv_Unknown:
         return True;
      case Inv_Stack0:
         return i1->Inv.Stack0.addr == i2->Inv.Stack0.addr
                && i1->Inv.Stack0.szB == i2->Inv.Stack0.szB;
      case Inv_StackN:
         return i1->Inv.StackN.nd == i2->Inv.StackN.nd;
      case Inv_Global:
         return i1->Inv.Global.nd == i2->Inv.Global.nd;
      default:
         tl_assert(0);
   }
   /*NOTREACHED*/
   tl_assert(0);
}

/* Generate a piece of text showing 'ea' is relative to 'invar', if
   known.  If unknown, generate an empty string.  'buf' must be at
   least 32 bytes in size.  Also return the absolute value of the
   delta, if known, or zero if not known.
*/
static void gen_delta_str ( /*OUT*/HChar* buf,
                            /*OUT*/UWord* absDelta,
                            Invar* inv, Addr ea )
{
   Addr  block = 0;
   SizeT szB   = 0;

   buf[0] = 0;
   *absDelta = 0;

   switch (inv->tag) {
      case Inv_Unknown:
      case Inv_Unset:
         return; /* unknown */
      case Inv_Stack0:
         block = inv->Inv.Stack0.addr;
         szB   = inv->Inv.Stack0.szB;
         break;
      case Inv_StackN:
         block = inv->Inv.StackN.nd->addr;
         szB   = inv->Inv.StackN.nd->szB;
         break;
      case Inv_Global:
         block = inv->Inv.Global.nd->addr;
         szB = inv->Inv.Global.nd->szB;
         break;
      default:
         tl_assert(0);
   }
   tl_assert(szB > 0);
   if (ea < block) {
      *absDelta = block - ea;
      VG_(sprintf)(buf, "%'lu before", *absDelta);
   }
   else if (ea >= block + szB) {
      *absDelta = ea - (block + szB);
      VG_(sprintf)(buf, "%'lu after", *absDelta);
   }
   else {
     // Leave *absDelta at zero.
     VG_(sprintf)(buf, "%'lu inside", ea - block);
   }
}


/* Print selected parts of an Invar, suitable for use in error
   messages. */
static void show_Invar( HChar* buf, Word nBuf, Invar* inv, Word depth )
{
   const HChar* str;
   tl_assert(nBuf >= 128);
   buf[0] = 0;
   switch (inv->tag) {
      case Inv_Unknown:
         VG_(sprintf)(buf, "%s", "unknown");
         break;
      case Inv_Stack0:
         str = "array";
         VG_(sprintf)(buf, "stack %s \"%s\" of size %'lu in this frame",
                      str, inv->Inv.Stack0.descr->name,
                      inv->Inv.Stack0.szB );
         break;
      case Inv_StackN:
         str = "array";
         VG_(sprintf)(buf, "stack %s \"%s\" of size %'lu in frame %lu back from here",
                      str, inv->Inv.StackN.nd->descr->name,
                           inv->Inv.StackN.nd->descr->szB,
                           depth - inv->Inv.StackN.nd->depth );
         break;
      case Inv_Global:
         str = "array";
         VG_(sprintf)(buf, "global %s \"%s\" of size %'lu in object with soname \"%s\"",
                      str, inv->Inv.Global.nd->descr->name,
                           inv->Inv.Global.nd->descr->szB,
                           inv->Inv.Global.nd->descr->soname );
         break;
      case Inv_Unset:
         VG_(sprintf)(buf, "%s", "Unset!");
         break;
      default:
         tl_assert(0);
   }
}


//////////////////////////////////////////////////////////////
//                                                          //
// our globals                                              //
//                                                          //
//////////////////////////////////////////////////////////////

//////////////////////////////////////////////////////////////
///

#define N_QCACHE 16

/* Powers of two only, else the result will be chaos */
#define QCACHE_ADVANCE_EVERY 16

/* Per-thread query cache.  Note that the invar can only be Inv_StackN
   (but not Inv_Stack0), Inv_Global or Inv_Unknown. */
typedef
   struct {
      Addr  addr;
      SizeT szB;
      Invar inv;
   }
   QCElem;

typedef
   struct {
      Word   nInUse;
      QCElem elems[N_QCACHE];
   }
   QCache;

static void QCache__invalidate ( QCache* qc ) {
   tl_assert(qc->nInUse >= 0);
   qc->nInUse = 0;
}

static void QCache__pp ( QCache* qc, const HChar* who )
{
   Word i;
   VG_(printf)("<<< QCache with %ld elements (%s)\n", qc->nInUse, who);
   for (i = 0; i < qc->nInUse; i++) {
      VG_(printf)("  [%#lx,+%#lx) ", qc->elems[i].addr, qc->elems[i].szB);
      pp_Invar(&qc->elems[i].inv);
      VG_(printf)("\n");
   }
   VG_(printf)(">>>\n");
}

static ULong stats__qcache_queries = 0;
static ULong stats__qcache_misses  = 0;
static ULong stats__qcache_probes  = 0;

///
//////////////////////////////////////////////////////////////

/* Each thread has:
   * a shadow stack of StackFrames, which is a double-linked list
   * an stack block interval tree
*/
static  struct _StackFrame**         shadowStacks;

static  WordFM** /* StackTreeNode */ siTrees;

static  QCache*                      qcaches;


/* Additionally, there is one global variable interval tree
   for the entire process.
*/
static WordFM* /* GlobalTreeNode */ giTree;


static void invalidate_all_QCaches ( void )
{
   Word i;
   for (i = 0; i < VG_N_THREADS; i++) {
      QCache__invalidate( &qcaches[i] );
   }
}

static void ourGlobals_init ( void )
{
   Word i;

   shadowStacks = sg_malloc( "di.sg_main.oGi.2",
                             VG_N_THREADS * sizeof shadowStacks[0] );
   siTrees = sg_malloc( "di.sg_main.oGi.3", VG_N_THREADS * sizeof siTrees[0] );
   qcaches = sg_malloc( "di.sg_main.oGi.4", VG_N_THREADS * sizeof qcaches[0] );

   for (i = 0; i < VG_N_THREADS; i++) {
      shadowStacks[i] = NULL;
      siTrees[i] = NULL;
      qcaches[i] = (QCache){};
   }
   invalidate_all_QCaches();
   giTree = VG_(newFM)( sg_malloc, "di.sg_main.oGi.1", sg_free, 
                        (Word(*)(UWord,UWord))cmp_intervals_GlobalTreeNode );
}


//////////////////////////////////////////////////////////////
//                                                          //
// Handle global variable load/unload events                //
//                                                          //
//////////////////////////////////////////////////////////////

static void acquire_globals ( ULong di_handle )
{
   Word n, i;
   XArray* /* of GlobalBlock */ gbs;
   if (0) VG_(printf)("ACQUIRE GLOBALS %llu\n", di_handle );
   gbs = VG_(di_get_global_blocks_from_dihandle)
            (di_handle, True/*arrays only*/);
   if (0) VG_(printf)("   GOT %ld globals\n", VG_(sizeXA)( gbs ));

   n = VG_(sizeXA)( gbs );
   for (i = 0; i < n; i++) {
      GlobalBlock* gbp;
      GlobalBlock* gb = VG_(indexXA)( gbs, i );
      if (0) VG_(printf)("   new Global size %2lu at %#lx:  %s %s\n", 
                         gb->szB, gb->addr, gb->soname, gb->name );
      tl_assert(gb->szB > 0);
      /* Make a persistent copy of each GlobalBlock, and add it
         to the tree. */
      gbp = get_persistent_GlobalBlock( gb );
      add_block_to_GlobalTree( giTree, gbp );
   }

   VG_(deleteXA)( gbs );
}


/* We only intercept these two because we need to see any di_handles
   that might arise from the mappings/allocations. */
void sg_new_mem_mmap( Addr a, SizeT len,
                      Bool rr, Bool ww, Bool xx, ULong di_handle )
{
   if (di_handle > 0)
      acquire_globals(di_handle);
}
void sg_new_mem_startup( Addr a, SizeT len,
                         Bool rr, Bool ww, Bool xx, ULong di_handle )
{
   if (di_handle > 0)
      acquire_globals(di_handle);
}
void sg_die_mem_munmap ( Addr a, SizeT len )
{
   Bool debug = (Bool)0;
   Bool overlap = False;

   if (debug) VG_(printf)("MUNMAP %#lx %lu\n", a, len );

   if (len == 0)
      return;

   overlap = del_GlobalTree_range(giTree, a, len);

   { /* redundant sanity check */
     UWord keyW, valW;
     VG_(initIterFM)( giTree );
     while (VG_(nextIterFM)( giTree, &keyW, &valW )) {
       GlobalTreeNode* nd = (GlobalTreeNode*)keyW;
        tl_assert(valW == 0);
        tl_assert(nd->szB > 0);
        tl_assert(nd->addr + nd->szB <= a
                  || a + len <= nd->addr);
     }
     VG_(doneIterFM)( giTree );
   }

   if (!overlap)
      return;

   /* Ok, the range contained some blocks.  Therefore we'll need to
      visit all the Invars in all the thread shadow stacks, and
      convert all Inv_Global entries that intersect [a,a+len) to
      Inv_Unknown. */
   tl_assert(len > 0);
   preen_global_Invars( a, len );
   invalidate_all_QCaches();
}


//////////////////////////////////////////////////////////////
//                                                          //
// StackFrame                                               //
//                                                          //
//////////////////////////////////////////////////////////////

static ULong stats__total_accesses   = 0;
static ULong stats__classify_Stack0  = 0;
static ULong stats__classify_StackN  = 0;
static ULong stats__classify_Global  = 0;
static ULong stats__classify_Unknown = 0;
static ULong stats__Invars_preened   = 0;
static ULong stats__Invars_changed   = 0;
static ULong stats__t_i_b_empty      = 0;
static ULong stats__htab_fast        = 0;
static ULong stats__htab_searches    = 0;
static ULong stats__htab_probes      = 0;
static ULong stats__htab_resizes     = 0;


/* A dynamic instance of an instruction */
typedef
   struct {
      /* IMMUTABLE */
      Addr    insn_addr; /* NB! zero means 'not in use' */
      XArray* blocks; /* XArray* of StackBlock, or NULL if none */
      /* MUTABLE */
      Invar invar;
   }
   IInstance;


#define N_HTAB_FIXED 64

typedef
   struct _StackFrame {
      /* The sp when the frame was created, so we know when to get rid
         of it. */
      Addr creation_sp;
      /* The stack frames for a thread are arranged as a doubly linked
         list.  Obviously the outermost frame in the stack has .outer
         as NULL and the innermost in theory has .inner as NULL.
         However, when a function returns, we don't delete the
         just-vacated StackFrame.  Instead, it is retained in the list
         and will be re-used when the next call happens.  This is so
         as to avoid constantly having to dynamically allocate and
         deallocate frames. */
      struct _StackFrame* inner;
      struct _StackFrame* outer;
      Word depth; /* 0 for outermost; increases inwards */
      /* Information for each memory referencing instruction, for this
         instantiation of the function.  The iinstances array is
         operated as a simple linear-probe hash table, which is
         dynamically expanded as necessary.  Once critical thing is
         that an IInstance with a .insn_addr of zero is interpreted to
         mean that hash table slot is unused.  This means we can't
         store an IInstance for address zero. */
      /* Note that htab initially points to htab_fixed.  If htab_fixed
         turns out not to be big enough then htab is made to point to
         dynamically allocated memory.  But it's often the case that
         htab_fixed is big enough, so this optimisation saves a huge
         number of sg_malloc/sg_free call pairs. */
      IInstance* htab;
      UWord      htab_size; /* size of hash table, MAY ONLY BE A POWER OF 2 */
      UWord      htab_used; /* number of hash table slots currently in use */
      /* If this frame is currently making a call, then the following
         are relevant. */
      Addr sp_at_call;
      Addr fp_at_call;
      XArray* /* of Addr */ blocks_added_by_call;
      /* See comment just above */
      IInstance htab_fixed[N_HTAB_FIXED];
   }
   StackFrame;





/* Move this somewhere else? */
/* Visit all Invars in the entire system.  If 'isHeap' is True, change
   all Inv_Heap Invars that intersect [a,a+len) to Inv_Unknown.  If
   'isHeap' is False, do the same but to the Inv_Global{S,V} Invars
   instead. */

__attribute__((noinline))
static void preen_global_Invar ( Invar* inv, Addr a, SizeT len )
{
   stats__Invars_preened++;
   tl_assert(len > 0);
   tl_assert(inv);
   switch (inv->tag) {
      case Inv_Global:
         tl_assert(inv->Inv.Global.nd);
         tl_assert(inv->Inv.Global.nd->szB > 0);
         if (0) VG_(printf)("preen_Invar Global %#lx %lu\n",
                            inv->Inv.Global.nd->addr,
                            inv->Inv.Global.nd->szB);
         if (0 == cmp_nonempty_intervals(a, len, inv->Inv.Global.nd->addr,
                                                 inv->Inv.Global.nd->szB)) {
            inv->tag = Inv_Unknown;
            stats__Invars_changed++;
         }
         break;
      case Inv_Stack0:
      case Inv_StackN:
      case Inv_Unknown:
         break;
      case Inv_Unset: /* this should never happen */
         /* fallthrough */
      default:
         tl_assert(0);
   }
}

__attribute__((noinline))
static void preen_global_Invars ( Addr a, SizeT len )
{
   Int         i;
   UWord       u;
   StackFrame* frame;
   tl_assert(len > 0);
   for (i = 0; i < VG_N_THREADS; i++) {
      frame = shadowStacks[i];
      if (!frame)
         continue; /* no frames for this thread */
      /* start from the innermost frame */
      while (frame->inner)
         frame = frame->inner;
      tl_assert(frame->outer);
      /* work through the frames from innermost to outermost.  The
         order isn't important; we just need to ensure we visit each
         frame once (including those which are not actually active,
         more 'inner' than the 'innermost active frame', viz, just
         hanging around waiting to be used, when the current innermost
         active frame makes more calls.  See comments on definition of
         struct _StackFrame. */
      for (; frame; frame = frame->outer) {
         UWord xx = 0; /* sanity check only; count of used htab entries */
         if (!frame->htab)
            continue; /* frame not in use.  See shadowStack_unwind(). */
         for (u = 0; u < frame->htab_size; u++) {
            IInstance* ii = &frame->htab[u];
            if (ii->insn_addr == 0)
               continue; /* not in use */
            if (0) { pp_Invar(&ii->invar); VG_(printf)(" x\n"); }
            preen_global_Invar( &ii->invar, a, len );
            xx++;           
         }
         tl_assert(xx == frame->htab_used);
      }
   }
}


/* XXX this should be >> 2 on ppc32/64 since the bottom two bits
   of the ip are guaranteed to be zero */
inline static UWord compute_II_hash ( Addr ip, UWord htab_size ) {
   return (ip >> 0) & (htab_size - 1);
}

__attribute__((noinline))
static void initialise_II_hash_table ( StackFrame* sf )
{
   UWord i;
   sf->htab_size = N_HTAB_FIXED; /* initial hash table size */
   sf->htab = &sf->htab_fixed[0];
   tl_assert(sf->htab);
   sf->htab_used = 0;
   for (i = 0; i < sf->htab_size; i++)
      sf->htab[i].insn_addr = 0; /* NOT IN USE */
}


__attribute__((noinline))
static void resize_II_hash_table ( StackFrame* sf )
{
   UWord     i, j, ix, old_size, new_size;
   IInstance *old_htab, *new_htab, *old;

   tl_assert(sf && sf->htab);
   old_size = sf->htab_size;
   new_size = 2 * old_size;
   old_htab = sf->htab;
   new_htab = sg_malloc( "di.sg_main.rIht.1",
                         new_size * sizeof(IInstance) );
   for (i = 0; i < new_size; i++) {
      new_htab[i].insn_addr = 0; /* NOT IN USE */
   }
   for (i = 0; i < old_size; i++) {
      old = &old_htab[i];
      if (old->insn_addr == 0 /* NOT IN USE */)
         continue;
      ix = compute_II_hash(old->insn_addr, new_size);
      /* find out where to put this, in the new table */
      j = new_size;
      while (1) {
         if (new_htab[ix].insn_addr == 0)
            break;
         /* This can't ever happen, because it would mean the new
            table is full; that isn't allowed -- even the old table is
            only allowed to become half full. */
         tl_assert(j > 0);
         j--;
         ix++; if (ix == new_size) ix = 0;
      }
      /* copy the old entry to this location */
      tl_assert(ix < new_size);
      tl_assert(new_htab[ix].insn_addr == 0);
      new_htab[ix] = *old;
      tl_assert(new_htab[ix].insn_addr != 0);
   }
   /* all entries copied; free old table. */
   if (old_htab != &sf->htab_fixed[0])
      sg_free(old_htab);
   sf->htab = new_htab;
   sf->htab_size = new_size;
   /* check sf->htab_used is correct.  Optional and a bit expensive
      but anyway: */
   j = 0;
   for (i = 0; i < new_size; i++) {
      if (new_htab[i].insn_addr != 0) {
         j++;
      }
   }
   tl_assert(j == sf->htab_used);
   if (0) VG_(printf)("resized tab for SF %p to %lu\n", sf, new_size);
}


__attribute__((noinline))
static IInstance* find_or_create_IInstance_SLOW (
                     StackFrame* sf, 
                     Addr ip,
                     XArray* /* StackBlock */ ip_frameblocks
                  )
{
   UWord i, ix;

   stats__htab_searches++;

   tl_assert(sf);
   tl_assert(sf->htab);

   /* Make sure the table loading doesn't get too high. */
   if (UNLIKELY(2 * sf->htab_used >= 1 * sf->htab_size)) {
      stats__htab_resizes++;
      resize_II_hash_table(sf);
   }
   tl_assert(2 * sf->htab_used <= sf->htab_size);
  
   ix = compute_II_hash(ip, sf->htab_size);
   i = sf->htab_size;
   while (1) {
      stats__htab_probes++;
      /* Note that because of the way the fast-case handler works,
         these two tests are actually redundant in the first iteration
         of this loop.  (Except they aren't redundant if the code just
         above resized the table first. :-) */
      if (sf->htab[ix].insn_addr == ip)
         return &sf->htab[ix];
      if (sf->htab[ix].insn_addr == 0)
         break;
      /* If i ever gets to zero and we have found neither what we're
         looking for nor an empty slot, the table must be full.  Which
         isn't possible -- we monitor the load factor to ensure it
         doesn't get above say 50%; if that ever does happen the table
         is resized. */
      tl_assert(i > 0);
      i--;
      ix++;
      if (ix == sf->htab_size) ix = 0;
   }

   /* So now we've found a free slot at ix, and we can use that. */
   tl_assert(sf->htab[ix].insn_addr == 0);

   /* Add a new record in this slot. */
   tl_assert(ip != 0); /* CAN'T REPRESENT THIS */
   sf->htab[ix].insn_addr = ip;
   sf->htab[ix].blocks    = ip_frameblocks;
   sf->htab[ix].invar.tag = Inv_Unset;
   sf->htab_used++;
   return &sf->htab[ix];
}


inline
static IInstance* find_or_create_IInstance (
                     StackFrame* sf, 
                     Addr ip,
                     XArray* /* StackBlock */ ip_frameblocks
                  )
{
   UWord ix = compute_II_hash(ip, sf->htab_size);
   /* Is it in the first slot we come to? */
   if (LIKELY(sf->htab[ix].insn_addr == ip)) {
      stats__htab_fast++;
      return &sf->htab[ix];
   }
   /* If the first slot we come to is empty, bag it. */
   if (LIKELY(sf->htab[ix].insn_addr == 0)) {
      stats__htab_fast++;
      tl_assert(ip != 0);
      sf->htab[ix].insn_addr = ip;
      sf->htab[ix].blocks    = ip_frameblocks;
      sf->htab[ix].invar.tag = Inv_Unset;
      sf->htab_used++;
      return &sf->htab[ix];
   }
   /* Otherwise we hand off to the slow case, which searches other
      slots, and optionally resizes the table if necessary. */
   return find_or_create_IInstance_SLOW( sf, ip, ip_frameblocks );
}


__attribute__((noinline))
static Addr calculate_StackBlock_EA ( StackBlock* descr,
                                      Addr sp, Addr fp ) {
   UWord w1 = (UWord)descr->base;
   UWord w2 = (UWord)(descr->spRel ? sp : fp);
   UWord ea = w1 + w2;
   return ea;
}

/* Given an array of StackBlocks, return an array of Addrs, holding
   their effective addresses.  Caller deallocates result array. */
__attribute__((noinline))
static XArray* /* Addr */ calculate_StackBlock_EAs (
                             XArray* /* StackBlock */ blocks,
                             Addr sp, Addr fp
                          )
{
   XArray* res;
   Word i, n = VG_(sizeXA)( blocks );
   tl_assert(n > 0);
   res = VG_(newXA)( sg_malloc, "di.sg_main.cSBE.1", sg_free, sizeof(Addr) );
   for (i = 0; i < n; i++) {
      StackBlock* blk = VG_(indexXA)( blocks, i );
      Addr ea = calculate_StackBlock_EA( blk, sp, fp );
      VG_(addToXA)( res, &ea );
   }
   return res;
}


/* Try to classify the block into which a memory access falls, and
   write the result in 'inv'.  This writes all relevant fields of
   'inv'. */
__attribute__((noinline)) 
static void classify_address ( /*OUT*/Invar* inv,
                               ThreadId tid,
                               Addr ea, Addr sp, Addr fp,
                               UWord szB,
                               XArray* /* of StackBlock */ thisInstrBlocks )
{
   tl_assert(szB > 0);
   /* First, look in the stack blocks accessible in this instruction's
      frame. */
   { 
     Word i, nBlocks = VG_(sizeXA)( thisInstrBlocks );
     if (nBlocks == 0) stats__t_i_b_empty++;
     for (i = 0; i < nBlocks; i++) {
        StackBlock* descr = VG_(indexXA)( thisInstrBlocks, i );
        Addr bea = calculate_StackBlock_EA( descr, sp, fp );
        if (bea <= ea && ea + szB <= bea + descr->szB) {
           /* found it */
           inv->tag = Inv_Stack0;
           inv->Inv.Stack0.addr  = bea;
           inv->Inv.Stack0.szB   = descr->szB;
           inv->Inv.Stack0.descr = descr;
           stats__classify_Stack0++;
           return;
        }
     }
   }
   /* Look in this thread's query cache */
   { Word i;
     QCache* cache = &qcaches[tid];
     static UWord ctr = 0;
     stats__qcache_queries++;
     for (i = 0; i < cache->nInUse; i++) {
        if (0) /* expensive in a loop like this */
               tl_assert(cache->elems[i].addr + cache->elems[i].szB != 0);
        stats__qcache_probes++;
        if (is_subinterval_of(cache->elems[i].addr,
                              cache->elems[i].szB, ea, szB)) {
           if (i > 0
               && (ctr++ & (QCACHE_ADVANCE_EVERY-1)) == 0) {
              QCElem tmp;
              tmp = cache->elems[i-1];
              cache->elems[i-1] = cache->elems[i];
              cache->elems[i] = tmp;
              i--;
           }
           *inv = cache->elems[i].inv;
           return;
        }
     }
     stats__qcache_misses++;
   }
   /* Ok, so it's not a block in the top frame.  Perhaps it's a block
      in some calling frame?  Consult this thread's stack-block
      interval tree to find out. */
   { StackTreeNode* nd = find_StackTreeNode( siTrees[tid], ea );
     /* We know that [ea,ea+1) is in the block, but we need to
        restrict to the case where the whole access falls within
        it. */
     if (nd && !is_subinterval_of(nd->addr, nd->szB, ea, szB)) {
        nd = NULL;
     }
     if (nd) {
        /* found it */
        inv->tag = Inv_StackN;
        inv->Inv.StackN.nd = nd;
        stats__classify_StackN++;
        goto out;
     }
   }
   /* Not in a stack block.  Try the global pool. */
   { GlobalTreeNode* nd = find_GlobalTreeNode(giTree, ea);
     /* We know that [ea,ea+1) is in the block, but we need to
        restrict to the case where the whole access falls within
        it. */
     if (nd && !is_subinterval_of(nd->addr, nd->szB, ea, szB)) {
        nd = NULL;
     }
     if (nd) {
        /* found it */
        inv->tag = Inv_Global;
        inv->Inv.Global.nd = nd;
        stats__classify_Global++;
        goto out;
     }
   }
   /* No idea - give up. */
   inv->tag = Inv_Unknown;
   stats__classify_Unknown++;

   /* Update the cache */
  out:
   { Addr    toadd_addr = 0;
     SizeT   toadd_szB  = 0;
     QCache* cache      = &qcaches[tid];

     static UWord ctr = 0;
     Bool show = False;
     if (0 && 0 == (ctr++ & 0x1FFFFF)) show = True;

     if (show) QCache__pp(cache, "before upd");

     switch (inv->tag) {
        case Inv_Global:
           toadd_addr = inv->Inv.Global.nd->addr;
           toadd_szB  = inv->Inv.Global.nd->szB;
           break;
        case Inv_StackN:
           toadd_addr = inv->Inv.StackN.nd->addr;
           toadd_szB  = inv->Inv.StackN.nd->szB;
           break;
        case Inv_Unknown: {
           /* This is more complex.  We need to figure out the
              intersection of the "holes" in the global and stack
              interval trees into which [ea,ea+szB) falls.  This is
              further complicated by the fact that [ea,ea+szB) might
              not fall cleanly into a hole; it may instead fall across
              the boundary of a stack or global block.  In that case
              we just ignore it and don't update the cache, since we
              have no way to represent this situation precisely. */
           StackTreeNode  sNegInf, sPosInf, sKey, *sLB, *sUB;
           GlobalTreeNode gNegInf, gPosInf, gKey, *gLB, *gUB;
           Addr gMin, gMax, sMin, sMax, uMin, uMax;
           Bool sOK, gOK;
           sNegInf.addr = 0;
           sNegInf.szB  = 1;
           sPosInf.addr = ~(UWord)0;
           sPosInf.szB  = 1;
           gNegInf.addr = 0;
           gNegInf.szB  = 1;
           gPosInf.addr = ~(UWord)0;
           gPosInf.szB  = 1;
           sKey.addr = ea;
           sKey.szB  = szB;
           gKey.addr = ea;
           gKey.szB  = szB;
           if (0) VG_(printf)("Tree sizes %lu %lu\n",
                              VG_(sizeFM)(siTrees[tid]), VG_(sizeFM)(giTree));
           sOK = VG_(findBoundsFM)( siTrees[tid], 
                                    (UWord*)&sLB,    NULL/*unused*/,
                                    (UWord*)&sUB,    NULL/*unused*/,
                                    (UWord)&sNegInf, 0/*unused*/,
                                    (UWord)&sPosInf, 0/*unused*/,
                                    (UWord)&sKey );
           gOK = VG_(findBoundsFM)( giTree,
                                    (UWord*)&gLB,    NULL/*unused*/,
                                    (UWord*)&gUB,    NULL/*unused*/,
                                    (UWord)&gNegInf, 0/*unused*/,
                                    (UWord)&gPosInf, 0/*unused*/,
                                    (UWord)&gKey );
           if (!(sOK && gOK)) {
              /* If this happens, then [ea,ea+szB) partially overlaps
                 a heap or stack block.  We can't represent that, so
                 just forget it (should be very rare).  However, do
                 maximum sanity checks first.  In such a
                 partial overlap case, it can't be the case that both
                 [ea] and [ea+szB-1] overlap the same block, since if
                 that were indeed the case then it wouldn't be a
                 partial overlap; rather it would simply fall inside
                 that block entirely and we shouldn't be inside this
                 conditional at all. */
              if (!sOK) {
                 StackTreeNode *ndFirst, *ndLast;
                 ndFirst = find_StackTreeNode( siTrees[tid], ea );
                 ndLast  = find_StackTreeNode( siTrees[tid], ea+szB-1 );
                 /* if both ends of the range fall inside a block,
                    they can't be in the same block. */
                 if (ndFirst && ndLast)
                    tl_assert(ndFirst != ndLast);
                 /* for each end of the range, if it is in a block,
                    the range as a whole can't be entirely within the
                    block. */
                 if (ndFirst)
                    tl_assert(!is_subinterval_of(ndFirst->addr,
                                                 ndFirst->szB, ea, szB));
                 if (ndLast)
                    tl_assert(!is_subinterval_of(ndLast->addr,
                                                 ndLast->szB, ea, szB));
              }
              if (!gOK) {
                 GlobalTreeNode *ndFirst, *ndLast;
                 ndFirst = find_GlobalTreeNode( giTree, ea );
                 ndLast  = find_GlobalTreeNode( giTree, ea+szB-1 );
                 /* if both ends of the range fall inside a block,
                    they can't be in the same block. */
                 if (ndFirst && ndLast)
                    tl_assert(ndFirst != ndLast);
                 /* for each end of the range, if it is in a block,
                    the range as a whole can't be entirely within the
                    block. */
                 if (ndFirst)
                    tl_assert(!is_subinterval_of(ndFirst->addr,
                                                 ndFirst->szB, ea, szB));
                 if (ndLast)
                    tl_assert(!is_subinterval_of(ndLast->addr,
                                                 ndLast->szB, ea, szB));
              }
              if (0) VG_(printf)("overlapping blocks in cache\n");
              return;
           }
           sMin = sLB == &sNegInf  ? 0         : (sLB->addr + sLB->szB);
           sMax = sUB == &sPosInf  ? ~(UWord)0 : (sUB->addr - 1);
           gMin = gLB == &gNegInf  ? 0         : (gLB->addr + gLB->szB);
           gMax = gUB == &gPosInf  ? ~(UWord)0 : (gUB->addr - 1);
           if (0) VG_(printf)("sMin %lx sMax %lx gMin %lx gMax %lx\n",
                              sMin, sMax, gMin, gMax);
           /* [sMin,sMax] and [gMin,gMax] must both contain
              [ea,ea+szB) (right?)  That implies they must overlap at
              at least over [ea,ea+szB). */
           tl_assert(sMin <= ea && ea+szB-1 <= sMax);
           tl_assert(gMin <= ea && ea+szB-1 <= gMax);
           /* So now compute their intersection. */
           uMin = Addr__max( sMin, gMin );
           uMax = Addr__min( sMax, gMax );
           if (0) VG_(printf)("uMin %lx uMax %lx\n", uMin, uMax);
           tl_assert(uMin <= uMax);
           tl_assert(uMin <= ea && ea+szB-1 <= uMax);
           /* Finally, we can park [uMin,uMax] in the cache.  However,
              if uMax is ~0, we can't represent the difference; hence
              fudge uMax. */
           if (uMin < uMax && uMax == ~(UWord)0)
              uMax--;
           toadd_addr = uMin;
           toadd_szB  = uMax - uMin + 1;
           break;
        }
        default:
           /* We should only be caching info for the above 3 cases */
          tl_assert(0);
     } /* switch (inv->tag) */

     { /* and actually add this to the cache, finally */
       Word i;
       Word ip = cache->nInUse / 2; /* doesn't seem critical */

       if (cache->nInUse < N_QCACHE)
          cache->nInUse++;
       for (i = cache->nInUse-1; i > ip; i--) {
          cache->elems[i] = cache->elems[i-1];
       }

       tl_assert(toadd_szB > 0);
       cache->elems[ip].addr = toadd_addr;
       cache->elems[ip].szB  = toadd_szB;
       cache->elems[ip].inv  = *inv;
     }

     if (show) QCache__pp(cache, "after upd");

   }
}


/* CALLED FROM GENERATED CODE */
static 
VG_REGPARM(3)
void helperc__mem_access ( /* Known only at run time: */
                           Addr ea, Addr sp, Addr fp,
                           /* Known at translation time: */
                           Word sszB, Addr ip, XArray* ip_frameBlocks )
{
   UWord szB;
   IInstance* iinstance;
   Invar* inv;
   Invar new_inv;
   ThreadId tid = VG_(get_running_tid)();
   StackFrame* frame;
   HChar bufE[160], bufA[160], bufD[32];

   stats__total_accesses++;

   tl_assert(is_sane_TId(tid));
   frame = shadowStacks[tid];
   tl_assert(frame);

   /* Find the instance info for this instruction. */
   tl_assert(ip_frameBlocks);
   iinstance = find_or_create_IInstance( frame, ip, ip_frameBlocks );
   tl_assert(iinstance);
   tl_assert(iinstance->blocks == ip_frameBlocks);

   szB = (sszB < 0) ? (-sszB) : sszB;
   tl_assert(szB > 0);

   inv = &iinstance->invar;

   /* Deal with first uses of instruction instances. */
   if (inv->tag == Inv_Unset) {
      /* This is the first use of this instance of the instruction, so
         we can't make any check; we merely record what we saw, so we
         can compare it against what happens for 2nd and subsequent
         accesses. */
      classify_address( inv,
                        tid, ea, sp, fp, szB, iinstance->blocks );
      tl_assert(inv->tag != Inv_Unset);
      return;
   }

   /* So generate an Invar and see if it's different from what
      we had before. */
   classify_address( &new_inv,
                     tid, ea, sp, fp, szB, iinstance->blocks );
   tl_assert(new_inv.tag != Inv_Unset);

   /* Did we see something different from before?  If no, then there's
      no error. */
   tl_assert(inv->tag != Inv_Unset);

   if (LIKELY(eq_Invar(&new_inv, inv)))
      return;

   VG_(memset)(bufE, 0, sizeof(bufE));
   show_Invar( bufE, sizeof(bufE)-1, inv, frame->depth );

   VG_(memset)(bufA, 0, sizeof(bufA));
   show_Invar( bufA, sizeof(bufA)-1, &new_inv, frame->depth );

   VG_(memset)(bufD, 0, sizeof(bufD));
   UWord absDelta;
   gen_delta_str( bufD, &absDelta, inv, ea );

   if (absDelta < 1024)
      sg_record_error_SorG( tid, ea, sszB, bufE, bufA, bufD );

   /* And now install the new observation as "standard", so as to
      make future error messages make more sense. */
   *inv = new_inv;
}


////////////////////////////////////////
/* Primary push-a-new-frame routine.  Called indirectly from
   generated code. */

static UWord stats__max_sitree_size = 0;
static UWord stats__max_gitree_size = 0;

static
void shadowStack_new_frame ( ThreadId tid,
                             Addr     sp_at_call_insn,
                             Addr     sp_post_call_insn,
                             Addr     fp_at_call_insn,
                             Addr     ip_post_call_insn,
                             XArray*  descrs_at_call_insn )
{
   StackFrame *callee, *caller;
   tl_assert(is_sane_TId(tid));

   caller = shadowStacks[tid];
   tl_assert(caller);

   if (caller->outer) { /* "this is not the outermost frame" */
      tl_assert(caller->outer->inner == caller);
      tl_assert(caller->outer->depth >= 0);
      tl_assert(1 + caller->outer->depth == caller->depth);
   } else {
      tl_assert(caller->depth == 0);
   }

   caller->sp_at_call = sp_at_call_insn;
   caller->fp_at_call = fp_at_call_insn;

   if (descrs_at_call_insn) {
      tl_assert( VG_(sizeXA)(descrs_at_call_insn) > 0 );
      caller->blocks_added_by_call
         = calculate_StackBlock_EAs( descrs_at_call_insn,
                                     sp_at_call_insn, fp_at_call_insn );
      if (caller->blocks_added_by_call)
         add_blocks_to_StackTree( siTrees[tid], 
                                  descrs_at_call_insn,
                                  caller->blocks_added_by_call,
                                  caller->depth /* stack depth at which
                                                   these blocks are
                                                   considered to exist*/ );
      if (1) {
         UWord s  = VG_(sizeFM)( siTrees[tid] );
         UWord g  = VG_(sizeFM)( giTree );
         Bool  sb = s > stats__max_sitree_size;
         Bool  gb = g > stats__max_gitree_size;
         if (sb) stats__max_sitree_size = s;
         if (gb) stats__max_gitree_size = g;
         if (0 && (sb || gb))
            VG_(message)(Vg_DebugMsg, 
                         "exp-sgcheck: new max tree sizes: "
                         "StackTree %lu, GlobalTree %lu\n",
                         stats__max_sitree_size, stats__max_gitree_size );
      }
   } else {
      caller->blocks_added_by_call = NULL;
   }

   /* caller->blocks_added_by_call is used again (and then freed) when
      this frame is removed from the stack. */

   if (caller->inner) {
      callee = caller->inner;
   } else {
      callee = sg_malloc("di.sg_main.sSnf.1", sizeof(StackFrame));
      VG_(memset)(callee, 0, sizeof(StackFrame));
      callee->outer = caller;
      caller->inner = callee;
      callee->depth = 1 + caller->depth;
      tl_assert(callee->inner == NULL);
   }

   /* This sets up .htab, .htab_size and .htab_used */
   initialise_II_hash_table( callee );

   callee->creation_sp    = sp_post_call_insn;
   callee->sp_at_call     = 0; // not actually required ..
   callee->fp_at_call     = 0; // .. these 3 initialisations are ..
   callee->blocks_added_by_call = NULL; // .. just for cleanness

   /* record the new running stack frame */
   shadowStacks[tid] = callee;

   /* and this thread's query cache is now invalid */
   QCache__invalidate( &qcaches[tid] );

   if (0)
   { Word d = callee->depth;
     const HChar *fnname;
     Bool ok;
     Addr ip = ip_post_call_insn;
     DiEpoch ep = VG_(current_DiEpoch)();
     ok = VG_(get_fnname_w_offset)( ep, ip, &fnname );
     while (d > 0) {
        VG_(printf)(" ");
        d--;
     }
     VG_(printf)("> %s %#lx\n", ok ? fnname : "???", ip);
   }
}

/* CALLED FROM GENERATED CODE */
static
VG_REGPARM(3)
void helperc__new_frame ( Addr sp_post_call_insn,
                          Addr fp_at_call_insn,
                          Addr ip_post_call_insn,
                          XArray* blocks_at_call_insn,
                          Word sp_adjust )
{
   ThreadId tid = VG_(get_running_tid)();
   Addr     sp_at_call_insn = sp_post_call_insn + sp_adjust;
   shadowStack_new_frame( tid,
                          sp_at_call_insn,
                          sp_post_call_insn,
                          fp_at_call_insn,
                          ip_post_call_insn,
                          blocks_at_call_insn );
}


////////////////////////////////////////
/* Primary remove-frame(s) routine.  Called indirectly from
   generated code. */

__attribute__((noinline))
static void shadowStack_unwind ( ThreadId tid, Addr sp_now )
{
   StackFrame *innermost, *innermostOrig;
   tl_assert(is_sane_TId(tid));
   innermost = shadowStacks[tid];
   tl_assert(innermost);
   innermostOrig = innermost;
   //VG_(printf)("UNWIND sp_new = %p\n", sp_now);
   while (1) {
      if (!innermost->outer)
         break;
      if (innermost->inner)
         tl_assert(innermost->inner->outer == innermost);
      tl_assert(innermost->outer->inner == innermost);
      tl_assert(innermost->blocks_added_by_call == NULL);
      if (sp_now <= innermost->creation_sp) break;
      //VG_(printf)("UNWIND     dump %p\n", innermost->creation_sp);
      tl_assert(innermost->htab);
      if (innermost->htab != &innermost->htab_fixed[0])
         sg_free(innermost->htab);
      /* be on the safe side */
      innermost->creation_sp = 0;
      innermost->htab = NULL;
      innermost->htab_size = 0;
      innermost->htab_used = 0;
      innermost->sp_at_call = 0;
      innermost->fp_at_call = 0;
      innermost->blocks_added_by_call = NULL;
      innermost = innermost->outer;

      /* So now we're "back" in the calling frame.  Remove from this
         thread's stack-interval-tree, the blocks added at the time of
         the call. */

      if (innermost->outer) { /* not at the outermost frame */
         if (innermost->blocks_added_by_call == NULL) {
         } else {
            del_blocks_from_StackTree( siTrees[tid],
                                       innermost->blocks_added_by_call );
            VG_(deleteXA)( innermost->blocks_added_by_call );
            innermost->blocks_added_by_call = NULL;
         }
      }
      /* That completes the required tidying of the interval tree
         associated with the frame we just removed. */

      if (0) {
         Word d = innermost->depth;
         while (d > 0) {
            VG_(printf)(" ");
            d--;
         }
         VG_(printf)("X\n");
      }

   }

   tl_assert(innermost);

   if (innermost != innermostOrig) {
      shadowStacks[tid] = innermost;
      /* this thread's query cache is now invalid */
      QCache__invalidate( &qcaches[tid] );
   }
}



//////////////////////////////////////////////////////////////
//                                                          //
// Instrumentation                                          //
//                                                          //
//////////////////////////////////////////////////////////////

/* What does instrumentation need to do?

   - at each Call transfer, generate a call to shadowStack_new_frame
     do this by manually inspecting the IR

   - at each sp change, if the sp change is negative, 
     call shadowStack_unwind
     do this by asking for SP-change analysis

   - for each memory referencing instruction,
     call helperc__mem_access
*/

/* A complication: sg_ instrumentation and h_ instrumentation need to
   be interleaved.  Since the latter is a lot more complex than the
   former, we split the sg_ instrumentation here into four functions
   and let the h_ instrumenter call the four functions as it goes.
   Hence the h_ instrumenter drives the sg_ instrumenter.

   To make this viable, the sg_ instrumenter carries what running
   state it needs in 'struct _SGEnv'.  This is exported only
   abstractly from this file.
*/

struct _SGEnv {
   /* the current insn's IP */
   Addr curr_IP;
   /* whether the above is actually known */
   Bool curr_IP_known;
   /* if we find a mem ref, is it the first for this insn?  Used for
      detecting insns which make more than one memory ref, a situation
      we basically can't really handle properly; and so we ignore all
      but the first ref. */
   Bool firstRef;
   /* READONLY */
   IRTemp (*newIRTemp_cb)(IRType,void*);
   void* newIRTemp_opaque;
};


/* --- Helper fns for instrumentation --- */

static IRTemp gen_Get_SP ( struct _SGEnv*  sge,
                           IRSB*           bbOut,
                           const VexGuestLayout* layout,
                           Int             hWordTy_szB )
{
   IRExpr* sp_expr;
   IRTemp  sp_temp;
   IRType  sp_type;
   /* This in effect forces the host and guest word sizes to be the
      same. */
   tl_assert(hWordTy_szB == layout->sizeof_SP);
   sp_type = layout->sizeof_SP == 8 ? Ity_I64 : Ity_I32;
   sp_expr = IRExpr_Get( layout->offset_SP, sp_type );
   sp_temp = sge->newIRTemp_cb( sp_type, sge->newIRTemp_opaque );
   addStmtToIRSB( bbOut, IRStmt_WrTmp( sp_temp, sp_expr ) );
   return sp_temp;
}

static IRTemp gen_Get_FP ( struct _SGEnv*  sge,
                           IRSB*           bbOut,
                           const VexGuestLayout* layout,
                           Int             hWordTy_szB )
{
   IRExpr* fp_expr;
   IRTemp  fp_temp;
   IRType  fp_type;
   /* This in effect forces the host and guest word sizes to be the
      same. */
   tl_assert(hWordTy_szB == layout->sizeof_SP);
   fp_type = layout->sizeof_FP == 8 ? Ity_I64 : Ity_I32;
   fp_expr = IRExpr_Get( layout->offset_FP, fp_type );
   fp_temp = sge->newIRTemp_cb( fp_type, sge->newIRTemp_opaque );
   addStmtToIRSB( bbOut, IRStmt_WrTmp( fp_temp, fp_expr ) );
   return fp_temp;
}

static void instrument_mem_access ( struct _SGEnv* sge,
                                    IRSB*   bbOut, 
                                    IRExpr* addr,
                                    Int     szB,
                                    Bool    isStore,
                                    Int     hWordTy_szB,
                                    Addr    curr_IP,
                                    const VexGuestLayout* layout )
{
   IRType  tyAddr      = Ity_INVALID;
   XArray* frameBlocks = NULL;

   tl_assert(isIRAtom(addr));
   tl_assert(hWordTy_szB == 4 || hWordTy_szB == 8);

   tyAddr = typeOfIRExpr( bbOut->tyenv, addr );
   tl_assert(tyAddr == Ity_I32 || tyAddr == Ity_I64);

#if defined(VGA_x86)
   { UChar* p = (UChar*)curr_IP;
     // pop %ebp; RET
     if (p[0] == 0xc3 && p[-1] == 0x5d) return;
     // pop %ebp; RET $imm16
     if (p[0] == 0xc2 && p[-1] == 0x5d) return;
     // PUSH %EBP; mov %esp,%ebp
     if (p[0] == 0x55 && p[1] == 0x89 && p[2] == 0xe5) return;
   }
#endif

   /* First off, find or create the StackBlocks for this instruction. */
   frameBlocks = get_StackBlocks_for_IP( curr_IP );
   tl_assert(frameBlocks);
   //if (VG_(sizeXA)( frameBlocks ) == 0)
   //   frameBlocks = NULL;

   /* Generate a call to "helperc__mem_access", passing:
         addr current_SP current_FP szB curr_IP frameBlocks
   */
   { IRTemp t_SP = gen_Get_SP( sge, bbOut, layout, hWordTy_szB );
     IRTemp t_FP = gen_Get_FP( sge, bbOut, layout, hWordTy_szB );
     IRExpr** args
        = mkIRExprVec_6( addr,
                         IRExpr_RdTmp(t_SP),
                         IRExpr_RdTmp(t_FP),
                         mkIRExpr_HWord( isStore ? (-szB) : szB ),
                         mkIRExpr_HWord( curr_IP ),
                         mkIRExpr_HWord( (HWord)frameBlocks ) );
     IRDirty* di
        = unsafeIRDirty_0_N( 3/*regparms*/, 
                             "helperc__mem_access", 
                            VG_(fnptr_to_fnentry)( &helperc__mem_access ),
                             args );

     addStmtToIRSB( bbOut, IRStmt_Dirty(di) );
   }
}


/* --- Instrumentation main (4 fns) --- */

struct _SGEnv * sg_instrument_init ( IRTemp (*newIRTemp_cb)(IRType,void*),
                                     void* newIRTemp_opaque )
{
   struct _SGEnv * env = sg_malloc("di.sg_main.sii.1",
                                   sizeof(struct _SGEnv));
   tl_assert(env);
   env->curr_IP          = 0;
   env->curr_IP_known    = False;
   env->firstRef         = True;
   env->newIRTemp_cb     = newIRTemp_cb;
   env->newIRTemp_opaque = newIRTemp_opaque;
   return env;
}

void sg_instrument_fini ( struct _SGEnv * env )
{
   sg_free(env);
}

/* Add instrumentation for 'st' to 'sbOut', and possibly modify 'env'
   as required.  This must be called before 'st' itself is added to
   'sbOut'. */
void sg_instrument_IRStmt ( /*MOD*/struct _SGEnv * env, 
                            /*MOD*/IRSB* sbOut,
                            IRStmt* st,
                            const VexGuestLayout* layout,
                            IRType gWordTy, IRType hWordTy )
{
   if (!sg_clo_enable_sg_checks)
      return;

   tl_assert(st);
   tl_assert(isFlatIRStmt(st));
   switch (st->tag) {
      case Ist_NoOp:
      case Ist_AbiHint:
      case Ist_Put:
      case Ist_PutI:
      case Ist_MBE:
         /* None of these can contain any memory references. */
         break;

      case Ist_Exit:
         tl_assert(st->Ist.Exit.jk != Ijk_Call);
         /* else we must deal with a conditional call */
         break;

      case Ist_IMark:
         env->curr_IP_known = True;
         env->curr_IP       = st->Ist.IMark.addr;
         env->firstRef      = True;
         break;

      case Ist_Store:
         tl_assert(env->curr_IP_known);
         if (env->firstRef) {
            instrument_mem_access( 
               env, sbOut, 
               st->Ist.Store.addr, 
               sizeofIRType(typeOfIRExpr(sbOut->tyenv, st->Ist.Store.data)),
               True/*isStore*/,
               sizeofIRType(hWordTy),
               env->curr_IP, layout
            );
            env->firstRef = False;
         }
         break;

      case Ist_WrTmp: {
         IRExpr* data = st->Ist.WrTmp.data;
         if (data->tag == Iex_Load) {
            tl_assert(env->curr_IP_known);
            if (env->firstRef) {
               instrument_mem_access(
                  env, sbOut,
                  data->Iex.Load.addr,
                  sizeofIRType(data->Iex.Load.ty),
                  False/*!isStore*/,
                  sizeofIRType(hWordTy),
                  env->curr_IP, layout
               );
               env->firstRef = False;
            }
         }
         break;
      }

      case Ist_Dirty: {
         Int      dataSize;
         IRDirty* d = st->Ist.Dirty.details;
         if (d->mFx != Ifx_None) {
            /* This dirty helper accesses memory.  Collect the
               details. */
            tl_assert(env->curr_IP_known);
            if (env->firstRef) {
               tl_assert(d->mAddr != NULL);
               tl_assert(d->mSize != 0);
               dataSize = d->mSize;
               if (d->mFx == Ifx_Read || d->mFx == Ifx_Modify) {
                  instrument_mem_access( 
                     env, sbOut, d->mAddr, dataSize, False/*!isStore*/,
                     sizeofIRType(hWordTy), env->curr_IP, layout
                  );
               }
               if (d->mFx == Ifx_Write || d->mFx == Ifx_Modify) {
                  instrument_mem_access( 
                     env, sbOut, d->mAddr, dataSize, True/*isStore*/,
                     sizeofIRType(hWordTy), env->curr_IP, layout
                  );
               }
               env->firstRef = False;
            }
         } else {
            tl_assert(d->mAddr == NULL);
            tl_assert(d->mSize == 0);
         }
         break;
      }

      case Ist_CAS: {
         /* We treat it as a read and a write of the location.  I
            think that is the same behaviour as it was before IRCAS
            was introduced, since prior to that point, the Vex front
            ends would translate a lock-prefixed instruction into a
            (normal) read followed by a (normal) write. */
         if (env->firstRef) {
            Int    dataSize;
            IRCAS* cas = st->Ist.CAS.details;
            tl_assert(cas->addr != NULL);
            tl_assert(cas->dataLo != NULL);
            dataSize = sizeofIRType(typeOfIRExpr(sbOut->tyenv, cas->dataLo));
            if (cas->dataHi != NULL)
               dataSize *= 2; /* since it's a doubleword-CAS */
            instrument_mem_access(
               env, sbOut, cas->addr, dataSize, False/*!isStore*/,
               sizeofIRType(hWordTy), env->curr_IP, layout
            );
            instrument_mem_access(
               env, sbOut, cas->addr, dataSize, True/*isStore*/,
               sizeofIRType(hWordTy), env->curr_IP, layout
            );
            env->firstRef = False;
         }
         break;
      }

      case Ist_LoadG: {
         IRLoadG* lg       = st->Ist.LoadG.details;
         IRType   type     = Ity_INVALID; /* loaded type */
         IRType   typeWide = Ity_INVALID; /* after implicit widening */
         IRExpr*  addr     = lg->addr;
         typeOfIRLoadGOp(lg->cvt, &typeWide, &type);
         tl_assert(type != Ity_INVALID);
         instrument_mem_access(
            env, sbOut, addr, sizeofIRType(type), False/*isStore*/,
            sizeofIRType(hWordTy), env->curr_IP, layout
         );
         break;
      }

      default:
         tl_assert(0);

   } /* switch (st->tag) */
}


/* Add instrumentation for the final jump of an IRSB 'sbOut', and
   possibly modify 'env' as required.  This must be the last
   instrumentation statement in the block. */
void sg_instrument_final_jump ( /*MOD*/struct _SGEnv * env, 
                                /*MOD*/IRSB* sbOut,
                                IRExpr* next,
                                IRJumpKind jumpkind,
                                const VexGuestLayout* layout,
                                IRType gWordTy, IRType hWordTy )
{
   if (!sg_clo_enable_sg_checks)
      return;

   if (jumpkind == Ijk_Call) {
      // Assumes x86 or amd64
      IRTemp   sp_post_call_insn, fp_post_call_insn;
      XArray*  frameBlocks;
      IRExpr** args;
      IRDirty* di;
      sp_post_call_insn
         = gen_Get_SP( env, sbOut, layout, sizeofIRType(hWordTy) );
      fp_post_call_insn
         = gen_Get_FP( env, sbOut, layout, sizeofIRType(hWordTy) );
      tl_assert(env->curr_IP_known);
      frameBlocks = get_StackBlocks_for_IP( env->curr_IP );
      tl_assert(frameBlocks);
      if (VG_(sizeXA)(frameBlocks) == 0)
         frameBlocks = NULL;
      args
         = mkIRExprVec_5(
              IRExpr_RdTmp(sp_post_call_insn),
              IRExpr_RdTmp(fp_post_call_insn), 
                         /* assume the call doesn't change FP */
              next,
              mkIRExpr_HWord( (HWord)frameBlocks ),
              mkIRExpr_HWord( sizeofIRType(gWordTy) )
           );
      di = unsafeIRDirty_0_N(
              3/*regparms*/,
              "helperc__new_frame",
              VG_(fnptr_to_fnentry)( &helperc__new_frame ),
              args ); 
      addStmtToIRSB( sbOut, IRStmt_Dirty(di) );
   }
}


//////////////////////////////////////////////////////////////
//                                                          //
// end Instrumentation                                      //
//                                                          //
//////////////////////////////////////////////////////////////


//////////////////////////////////////////////////////////////
//                                                          //
// misc                                                     //
//                                                          //
//////////////////////////////////////////////////////////////

/* Make a new empty stack frame that is suitable for being the
   outermost frame in a stack.  It has a creation_sp of effectively
   infinity, so it can never be removed. */
static StackFrame* new_root_StackFrame ( void )
{
   StackFrame* sframe = sg_malloc("di.sg_main.nrS.1", sizeof(StackFrame));
   VG_(memset)( sframe, 0, sizeof(*sframe) );
   sframe->creation_sp = ~0UL;

   /* This sets up .htab, .htab_size and .htab_used */
   initialise_II_hash_table( sframe );

   /* ->depth, ->outer, ->inner are 0, NULL, NULL */

   return sframe;
}

/* Primary routine for setting up the shadow stack for a new thread.
   Note that this is used to create not only child thread stacks, but
   the root thread's stack too.  We create a new stack with
   .creation_sp set to infinity, so that the outermost frame can never
   be removed (by shadowStack_unwind).  The core calls this function
   as soon as a thread is created.  We cannot yet get its SP value,
   since that may not yet be set. */
static void shadowStack_thread_create ( ThreadId parent, ThreadId child )
{
   tl_assert(is_sane_TId(child));
   if (parent == VG_INVALID_THREADID) {
      /* creating the main thread's stack */
   } else {
      tl_assert(is_sane_TId(parent));
      tl_assert(parent != child);
      tl_assert(shadowStacks[parent] != NULL);
      tl_assert(siTrees[parent] != NULL);
   }

   /* Create the child's stack.  Bear in mind we may be re-using
      it. */
   if (shadowStacks[child] == NULL) {
      /* First use of this stack.  Just allocate an initial frame. */
      tl_assert(siTrees[child] == NULL);
   } else {
      StackFrame *frame, *frame2;
      /* re-using a stack. */
      /* get rid of the interval tree */
      tl_assert(siTrees[child] != NULL);
      delete_StackTree( siTrees[child] );
      siTrees[child] = NULL;
      /* Throw away all existing frames. */
      frame = shadowStacks[child];
      while (frame->outer)
         frame = frame->outer;
      tl_assert(frame->depth == 0);
      while (frame) {
         frame2 = frame->inner;
         if (frame2) tl_assert(1 + frame->depth == frame2->depth);
         sg_free(frame);
         frame = frame2;
      }
      shadowStacks[child] = NULL;
   }

   tl_assert(shadowStacks[child] == NULL);
   tl_assert(siTrees[child] == NULL);

   /* Set up the initial stack frame. */
   shadowStacks[child] = new_root_StackFrame();

   /* and set up the child's stack block interval tree. */
   siTrees[child] = new_StackTree();
}

/* Once a thread is ready to go, the core calls here.  We take the
   opportunity to push a second frame on its stack, with the
   presumably valid SP value that is going to be used for the thread's
   startup.  Hence we should always wind up with a valid outermost
   frame for the thread. */
static void shadowStack_set_initial_SP ( ThreadId tid )
{
   StackFrame* sf;
   tl_assert(is_sane_TId(tid));
   sf = shadowStacks[tid];
   tl_assert(sf != NULL);
   tl_assert(sf->outer == NULL);
   tl_assert(sf->inner == NULL);
   tl_assert(sf->creation_sp == ~0UL);
   shadowStack_new_frame( tid, 0, VG_(get_SP)(tid),
                               0, VG_(get_IP)(tid), NULL );
}


//////////////////////////////////////////////////////////////
//                                                          //
// main-ish                                                 //
//                                                          //
//////////////////////////////////////////////////////////////

/* CALLED indirectly FROM GENERATED CODE.  Calls here are created by
   sp-change analysis, as requested in pc_pre_clo_int(). */
void sg_die_mem_stack ( Addr old_SP, SizeT len ) {
   ThreadId  tid = VG_(get_running_tid)();
   shadowStack_unwind( tid, old_SP+len );
}

void sg_pre_clo_init ( void ) {
   ourGlobals_init();
   init_StackBlocks_set();
   init_GlobalBlock_set();
}

void sg_post_clo_init ( void ) {
}

void sg_pre_thread_ll_create ( ThreadId parent, ThreadId child ) {
   shadowStack_thread_create(parent, child);
}

void sg_pre_thread_first_insn ( ThreadId tid ) {
   shadowStack_set_initial_SP(tid);
}

void sg_fini(Int exitcode)
{
   if (VG_(clo_stats)) {
      VG_(message)(Vg_DebugMsg,
         " sg_:  %'llu total accesses, of which:\n", stats__total_accesses);
      VG_(message)(Vg_DebugMsg,
         " sg_:     stack0: %'12llu classify\n",
         stats__classify_Stack0);
      VG_(message)(Vg_DebugMsg,
         " sg_:     stackN: %'12llu classify\n",
         stats__classify_StackN);
      VG_(message)(Vg_DebugMsg,
         " sg_:     global: %'12llu classify\n",
         stats__classify_Global);
      VG_(message)(Vg_DebugMsg,
         " sg_:    unknown: %'12llu classify\n",
         stats__classify_Unknown);
      VG_(message)(Vg_DebugMsg,
         " sg_:  %'llu Invars preened, of which %'llu changed\n",
         stats__Invars_preened, stats__Invars_changed);
      VG_(message)(Vg_DebugMsg,
         " sg_:   t_i_b_MT: %'12llu\n", stats__t_i_b_empty);
      VG_(message)(Vg_DebugMsg, 
         " sg_:     qcache: %'llu searches, %'llu probes, %'llu misses\n",
         stats__qcache_queries, stats__qcache_probes, stats__qcache_misses);
      VG_(message)(Vg_DebugMsg, 
         " sg_:  htab-fast: %'llu hits\n",
         stats__htab_fast);
      VG_(message)(Vg_DebugMsg, 
         " sg_:  htab-slow: %'llu searches, %'llu probes, %'llu resizes\n",
         stats__htab_searches, stats__htab_probes, stats__htab_resizes);
   }
}


/*--------------------------------------------------------------------*/
/*--- end                                                sg_main.c ---*/
/*--------------------------------------------------------------------*/