File: tsan_thread_wrappers_pthread.h

package info (click to toggle)
valgrind 1%3A3.7.0-6
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 58,060 kB
  • sloc: ansic: 396,820; xml: 18,453; cpp: 6,698; asm: 5,584; perl: 5,008; sh: 4,852; makefile: 3,965; exp: 625; haskell: 195
file content (614 lines) | stat: -rw-r--r-- 16,101 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
/*
  This file is part of Valgrind, a dynamic binary instrumentation
  framework.

  Copyright (C) 2008-2008 Google Inc
     opensource@google.com

  This program is free software; you can redistribute it and/or
  modify it under the terms of the GNU General Public License as
  published by the Free Software Foundation; either version 2 of the
  License, or (at your option) any later version.

  This program is distributed in the hope that it will be useful, but
  WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
  02111-1307, USA.

  The GNU General Public License is contained in the file COPYING.
*/

// Author: Konstantin Serebryany <opensource@google.com>
//
// Here we define few simple classes that wrap pthread primitives.
//
// We need this to create unit tests for helgrind (or similar tool)
// that will work with different threading frameworks.
//
// If one needs to test helgrind's support for another threading library,
// he/she can create a copy of this file and replace pthread_ calls
// with appropriate calls to his/her library.
//
// Note, that some of the methods defined here are annotated with
// ANNOTATE_* macros defined in dynamic_annotations.h.
//
// DISCLAIMER: the classes defined in this header file
// are NOT intended for general use -- only for unit tests.
//

#ifndef THREAD_WRAPPERS_PTHREAD_H
#define THREAD_WRAPPERS_PTHREAD_H

#include <pthread.h>
#include <semaphore.h>
#include <unistd.h>
#include <queue>
#include <stdio.h>
#include <limits.h>   // INT_MAX

#ifdef VGO_darwin
#include <libkern/OSAtomic.h>
#define NO_BARRIER
#define NO_TLS
#endif

#include <string>
using namespace std;

#include <sys/time.h>
#include <time.h>

#include "../../drd/drd.h"
#define ANNOTATE_NO_OP(arg) do { } while(0)
#define ANNOTATE_EXPECT_RACE(addr, descr)                \
    ANNOTATE_BENIGN_RACE_SIZED(addr, 4, "expected race")
static inline bool RunningOnValgrind() { return RUNNING_ON_VALGRIND; }

#include <assert.h>
#ifdef NDEBUG
# error "Pleeease, do not define NDEBUG"
#endif
#define CHECK assert

/// Set this to true if malloc() uses mutex on your platform as this may
/// introduce a happens-before arc for a pure happens-before race detector.
const bool kMallocUsesMutex = false;

/// Current time in milliseconds.
static inline int64_t GetCurrentTimeMillis() {
  struct timeval now;
  gettimeofday(&now, NULL);
  return now.tv_sec * 1000 + now.tv_usec / 1000;
}

/// Copy tv to ts adding offset in milliseconds.
static inline void timeval2timespec(timeval *const tv,
                                     timespec *ts,
                                     int64_t offset_milli) {
  const int64_t ten_9 = 1000000000LL;
  const int64_t ten_6 = 1000000LL;
  const int64_t ten_3 = 1000LL;
  int64_t now_nsec = (int64_t)tv->tv_sec * ten_9;
  now_nsec += (int64_t)tv->tv_usec * ten_3;
  int64_t then_nsec = now_nsec + offset_milli * ten_6;
  ts->tv_sec  = then_nsec / ten_9;
  ts->tv_nsec = then_nsec % ten_9;
}


class CondVar;

#ifndef NO_SPINLOCK
/// helgrind does not (yet) support spin locks, so we annotate them.

#ifndef VGO_darwin
class SpinLock {
 public:
  SpinLock() {
    CHECK(0 == pthread_spin_init(&mu_, 0));
    ANNOTATE_RWLOCK_CREATE((void*)&mu_);
  }
  ~SpinLock() {
    ANNOTATE_RWLOCK_DESTROY((void*)&mu_);
    CHECK(0 == pthread_spin_destroy(&mu_));
  }
  void Lock() {
    CHECK(0 == pthread_spin_lock(&mu_));
    ANNOTATE_RWLOCK_ACQUIRED((void*)&mu_, 1);
  }
  void Unlock() {
    ANNOTATE_RWLOCK_RELEASED((void*)&mu_, 1);
    CHECK(0 == pthread_spin_unlock(&mu_));
  }
 private:
  pthread_spinlock_t mu_;
};

#else

class SpinLock {
 public:
  // Mac OS X version.
  SpinLock() : mu_(OS_SPINLOCK_INIT) {
    ANNOTATE_RWLOCK_CREATE((void*)&mu_);
  }
  ~SpinLock() {
    ANNOTATE_RWLOCK_DESTROY((void*)&mu_);
  }
  void Lock() {
    OSSpinLockLock(&mu_);
    ANNOTATE_RWLOCK_ACQUIRED((void*)&mu_, 1);
  }
  void Unlock() {
    ANNOTATE_RWLOCK_RELEASED((void*)&mu_, 1);
    OSSpinLockUnlock(&mu_);
  }
 private:
  OSSpinLock mu_;
};
#endif // VGO_darwin

#endif // NO_SPINLOCK

/// Just a boolean condition. Used by Mutex::LockWhen and similar.
class Condition {
 public:
  typedef bool (*func_t)(void*);

  template <typename T>
  Condition(bool (*func)(T*), T* arg)
  : func_(reinterpret_cast<func_t>(func)), arg_(arg) {}

  Condition(bool (*func)())
  : func_(reinterpret_cast<func_t>(func)), arg_(NULL) {}

  bool Eval() { return func_(arg_); }
 private:
  func_t func_;
  void *arg_;

};


/// Wrapper for pthread_mutex_t.
///
/// pthread_mutex_t is *not* a reader-writer lock,
/// so the methods like ReaderLock() aren't really reader locks.
/// We can not use pthread_rwlock_t because it
/// does not work with pthread_cond_t.
///
/// TODO: We still need to test reader locks with this class.
/// Implement a mode where pthread_rwlock_t will be used
/// instead of pthread_mutex_t (only when not used with CondVar or LockWhen).
///
class Mutex {
  friend class CondVar;
 public:
  Mutex() {
    CHECK(0 == pthread_mutex_init(&mu_, NULL));
    CHECK(0 == pthread_cond_init(&cv_, NULL));
    signal_at_unlock_ = true;  // Always signal at Unlock to make
                               // Mutex more friendly to hybrid detectors.
  }
  ~Mutex() {
    CHECK(0 == pthread_cond_destroy(&cv_));
    CHECK(0 == pthread_mutex_destroy(&mu_));
  }
  void Lock()          { CHECK(0 == pthread_mutex_lock(&mu_));}
  bool TryLock()       { return (0 == pthread_mutex_trylock(&mu_));}
  void Unlock() {
    if (signal_at_unlock_) {
      CHECK(0 == pthread_cond_signal(&cv_));
    }
    CHECK(0 == pthread_mutex_unlock(&mu_));
  }
  void ReaderLock()    { Lock(); }
  bool ReaderTryLock() { return TryLock();}
  void ReaderUnlock()  { Unlock(); }

  void LockWhen(Condition cond)            { Lock(); WaitLoop(cond); }
  void ReaderLockWhen(Condition cond)      { Lock(); WaitLoop(cond); }
  void Await(Condition cond)               { WaitLoop(cond); }

  bool ReaderLockWhenWithTimeout(Condition cond, int millis)
    { Lock(); return WaitLoopWithTimeout(cond, millis); }
  bool LockWhenWithTimeout(Condition cond, int millis)
    { Lock(); return WaitLoopWithTimeout(cond, millis); }
  bool AwaitWithTimeout(Condition cond, int millis)
    { return WaitLoopWithTimeout(cond, millis); }

 private:

  void WaitLoop(Condition cond) {
    signal_at_unlock_ = true;
    while(cond.Eval() == false) {
      pthread_cond_wait(&cv_, &mu_);
    }
    ANNOTATE_CONDVAR_LOCK_WAIT(&cv_, &mu_);
  }

  bool WaitLoopWithTimeout(Condition cond, int millis) {
    struct timeval now;
    struct timespec timeout;
    int retcode = 0;
    gettimeofday(&now, NULL);
    timeval2timespec(&now, &timeout, millis);

    signal_at_unlock_ = true;
    while (cond.Eval() == false && retcode == 0) {
      retcode = pthread_cond_timedwait(&cv_, &mu_, &timeout);
    }
    if(retcode == 0) {
      ANNOTATE_CONDVAR_LOCK_WAIT(&cv_, &mu_);
    }
    return cond.Eval();
  }

  // A hack. cv_ should be the first data member so that
  // ANNOTATE_CONDVAR_WAIT(&MU, &MU) and ANNOTATE_CONDVAR_SIGNAL(&MU) works.
  // (See also racecheck_unittest.cc)
  pthread_cond_t  cv_;
  pthread_mutex_t mu_;
  bool            signal_at_unlock_;  // Set to true if Wait was called.
};


class MutexLock {  // Scoped Mutex Locker/Unlocker
 public:
  MutexLock(Mutex *mu)
    : mu_(mu) {
    mu_->Lock();
  }
  ~MutexLock() {
    mu_->Unlock();
  }
 private:
  Mutex *mu_;
};


/// Wrapper for pthread_cond_t.
class CondVar {
 public:
  CondVar()   { CHECK(0 == pthread_cond_init(&cv_, NULL)); }
  ~CondVar()  { CHECK(0 == pthread_cond_destroy(&cv_)); }
  void Wait(Mutex *mu) { CHECK(0 == pthread_cond_wait(&cv_, &mu->mu_)); }
  bool WaitWithTimeout(Mutex *mu, int millis) {
    struct timeval now;
    struct timespec timeout;
    gettimeofday(&now, NULL);
    timeval2timespec(&now, &timeout, millis);
    return 0 != pthread_cond_timedwait(&cv_, &mu->mu_, &timeout);
  }
  void Signal() { CHECK(0 == pthread_cond_signal(&cv_)); }
  void SignalAll() { CHECK(0 == pthread_cond_broadcast(&cv_)); }
 private:
  pthread_cond_t cv_;
};


// pthreads do not allow to use condvar with rwlock so we can't make
// ReaderLock method of Mutex to be the real rw-lock.
// So, we need a special lock class to test reader locks.
#define NEEDS_SEPERATE_RW_LOCK
class RWLock {
 public:
  RWLock() { CHECK(0 == pthread_rwlock_init(&mu_, NULL)); }
  ~RWLock() { CHECK(0 == pthread_rwlock_destroy(&mu_)); }
  void Lock() { CHECK(0 == pthread_rwlock_wrlock(&mu_)); }
  void ReaderLock() { CHECK(0 == pthread_rwlock_rdlock(&mu_)); }
  void Unlock() { CHECK(0 == pthread_rwlock_unlock(&mu_)); }
  void ReaderUnlock() { CHECK(0 == pthread_rwlock_unlock(&mu_)); }
 private:
  pthread_cond_t dummy; // Damn, this requires some redesign...
  pthread_rwlock_t mu_;
};

class ReaderLockScoped {  // Scoped RWLock Locker/Unlocker
 public:
  ReaderLockScoped(RWLock *mu)
    : mu_(mu) {
    mu_->ReaderLock();
  }
  ~ReaderLockScoped() {
    mu_->ReaderUnlock();
  }
 private:
  RWLock *mu_;
};

class WriterLockScoped {  // Scoped RWLock Locker/Unlocker
 public:
  WriterLockScoped(RWLock *mu)
    : mu_(mu) {
    mu_->Lock();
  }
  ~WriterLockScoped() {
    mu_->Unlock();
  }
 private:
  RWLock *mu_;
};




/// Wrapper for pthread_create()/pthread_join().
class MyThread {
 public:
  typedef void *(*worker_t)(void*);

  MyThread(worker_t worker, void *arg = NULL, const char *name = NULL)
      :w_(worker), arg_(arg), name_(name) {}
  MyThread(void (*worker)(void), void *arg = NULL, const char *name = NULL)
      :w_(reinterpret_cast<worker_t>(worker)), arg_(arg), name_(name) {}
  MyThread(void (*worker)(void *), void *arg = NULL, const char *name = NULL)
      :w_(reinterpret_cast<worker_t>(worker)), arg_(arg), name_(name) {}

  ~MyThread(){ w_ = NULL; arg_ = NULL;}
  void Start() { CHECK(0 == pthread_create(&t_, NULL, (worker_t)ThreadBody, this));}
  void Join()  { CHECK(0 == pthread_join(t_, NULL));}
  pthread_t tid() const { return t_; }
 private:
  static void ThreadBody(MyThread *my_thread) {
    if (my_thread->name_) {
      ANNOTATE_THREAD_NAME(my_thread->name_);
    }
    my_thread->w_(my_thread->arg_);
  }
  pthread_t t_;
  worker_t  w_;
  void     *arg_;
  const char *name_;
};


/// Just a message queue.
class ProducerConsumerQueue {
 public:
  ProducerConsumerQueue(int unused) {
    //ANNOTATE_PCQ_CREATE(this);
  }
  ~ProducerConsumerQueue() {
    CHECK(q_.empty());
    //ANNOTATE_PCQ_DESTROY(this);
  }

  // Put.
  void Put(void *item) {
    mu_.Lock();
      q_.push(item);
      ANNOTATE_CONDVAR_SIGNAL(&mu_); // LockWhen in Get()
      //ANNOTATE_PCQ_PUT(this);
    mu_.Unlock();
  }

  // Get.
  // Blocks if the queue is empty.
  void *Get() {
    mu_.LockWhen(Condition(IsQueueNotEmpty, &q_));
      void * item = NULL;
      bool ok = TryGetInternal(&item);
      CHECK(ok);
    mu_.Unlock();
    return item;
  }

  // If queue is not empty,
  // remove an element from queue, put it into *res and return true.
  // Otherwise return false.
  bool TryGet(void **res) {
    mu_.Lock();
      bool ok = TryGetInternal(res);
    mu_.Unlock();
    return ok;
  }

 private:
  Mutex mu_;
  std::queue<void*> q_; // protected by mu_

  // Requires mu_
  bool TryGetInternal(void ** item_ptr) {
    if (q_.empty())
      return false;
    *item_ptr = q_.front();
    q_.pop();
    //ANNOTATE_PCQ_GET(this);
    return true;
  }

  static bool IsQueueNotEmpty(std::queue<void*> * queue) {
     return !queue->empty();
  }
};



/// Function pointer with zero, one or two parameters.
struct Closure {
  typedef void (*F0)();
  typedef void (*F1)(void *arg1);
  typedef void (*F2)(void *arg1, void *arg2);
  int  n_params;
  void *f;
  void *param1;
  void *param2;

  void Execute() {
    if (n_params == 0) {
      (F0(f))();
    } else if (n_params == 1) {
      (F1(f))(param1);
    } else {
      CHECK(n_params == 2);
      (F2(f))(param1, param2);
    }
    delete this;
  }
};

Closure *NewCallback(void (*f)()) {
  Closure *res = new Closure;
  res->n_params = 0;
  res->f = (void*)(f);
  res->param1 = NULL;
  res->param2 = NULL;
  return res;
}

template <class P1>
Closure *NewCallback(void (*f)(P1), P1 p1) {
  CHECK(sizeof(P1) <= sizeof(void*));
  Closure *res = new Closure;
  res->n_params = 1;
  res->f = (void*)(f);
  res->param1 = (void*)p1;
  res->param2 = NULL;
  return res;
}

template <class T, class P1, class P2>
Closure *NewCallback(void (*f)(P1, P2), P1 p1, P2 p2) {
  CHECK(sizeof(P1) <= sizeof(void*));
  Closure *res = new Closure;
  res->n_params = 2;
  res->f = (void*)(f);
  res->param1 = (void*)p1;
  res->param2 = (void*)p2;
  return res;
}

/*! A thread pool that uses ProducerConsumerQueue.
  Usage:
  {
    ThreadPool pool(n_workers);
    pool.StartWorkers();
    pool.Add(NewCallback(func_with_no_args));
    pool.Add(NewCallback(func_with_one_arg, arg));
    pool.Add(NewCallback(func_with_two_args, arg1, arg2));
    ... // more calls to pool.Add()

    // the ~ThreadPool() is called: we wait workers to finish
    // and then join all threads in the pool.
  }
*/
class ThreadPool {
 public:
  //! Create n_threads threads, but do not start.
  explicit ThreadPool(int n_threads)
    : queue_(INT_MAX) {
    for (int i = 0; i < n_threads; i++) {
      MyThread *thread = new MyThread(&ThreadPool::Worker, this);
      workers_.push_back(thread);
    }
  }

  //! Start all threads.
  void StartWorkers() {
    for (size_t i = 0; i < workers_.size(); i++) {
      workers_[i]->Start();
    }
  }

  //! Add a closure.
  void Add(Closure *closure) {
    queue_.Put(closure);
  }

  int num_threads() { return workers_.size();}

  //! Wait workers to finish, then join all threads.
  ~ThreadPool() {
    for (size_t i = 0; i < workers_.size(); i++) {
      Add(NULL);
    }
    for (size_t i = 0; i < workers_.size(); i++) {
      workers_[i]->Join();
      delete workers_[i];
    }
  }
 private:
  std::vector<MyThread*>   workers_;
  ProducerConsumerQueue  queue_;

  static void *Worker(void *p) {
    ThreadPool *pool = reinterpret_cast<ThreadPool*>(p);
    while (true) {
      Closure *closure = reinterpret_cast<Closure*>(pool->queue_.Get());
      if(closure == NULL) {
        return NULL;
      }
      closure->Execute();
    }
  }
};

#ifndef NO_BARRIER
/// Wrapper for pthread_barrier_t.
class Barrier{
 public:
  explicit Barrier(int n_threads) {CHECK(0 == pthread_barrier_init(&b_, 0, n_threads));}
  ~Barrier()                      {CHECK(0 == pthread_barrier_destroy(&b_));}
  void Block() {
    // helgrind 3.3.0 does not have an interceptor for barrier.
    // but our current local version does.
    // ANNOTATE_CONDVAR_SIGNAL(this);
    pthread_barrier_wait(&b_);
    // ANNOTATE_CONDVAR_WAIT(this, this);
  }
 private:
  pthread_barrier_t b_;
};

#endif // NO_BARRIER

class BlockingCounter {
 public:
  explicit BlockingCounter(int initial_count) :
    count_(initial_count) {}
  bool DecrementCount() {
    MutexLock lock(&mu_);
    count_--;
    return count_ == 0;
  }
  void Wait() {
    mu_.LockWhen(Condition(&IsZero, &count_));
    mu_.Unlock();
  }
 private:
  static bool IsZero(int *arg) { return *arg == 0; }
  Mutex mu_;
  int count_;
};

int AtomicIncrement(volatile int *value, int increment);

#ifndef VGO_darwin
inline int AtomicIncrement(volatile int *value, int increment) {
  return __sync_add_and_fetch(value, increment);
}

#else
// Mac OS X version.
inline int AtomicIncrement(volatile int *value, int increment) {
  return OSAtomicAdd32(increment, value);
}

// TODO(timurrrr) this is a hack
#define memalign(A,B) malloc(B)

// TODO(timurrrr) this is a hack
int posix_memalign(void **out, size_t al, size_t size) {
  *out = memalign(al, size);
  return (*out == 0);
}
#endif // VGO_darwin

#endif // THREAD_WRAPPERS_PTHREAD_H
// vim:shiftwidth=2:softtabstop=2:expandtab:foldmethod=marker