1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
/*
* Copyright 2019 Xilinx Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "./buffer_object_dpcma.hpp"
#include <fcntl.h>
#include <glog/logging.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <vitis/ai/env_config.hpp>
#include "./buffer_object_fd.hpp"
#include "./dpu.h"
#include "vitis/ai/xxd.hpp"
#define DEV "/dev/dpu"
DEF_ENV_PARAM(DEBUG_BUFFER_OBJECT, "0")
namespace {
static int read_env(const char* name, int default_value) {
auto p = getenv(name);
return p ? std::stoi(p) : default_value;
}
BufferObjectDpCma::BufferObjectDpCma(
size_t size, size_t device_id /* not used */,
const std::string& cu_name /* std::string("") not used*/)
: BufferObject(), //
size_{size}, //
cache_{read_env("BUFFER_OBJECT_CACHE", 1) != 0}, //
fd_{vitis::xir::buffer_object_fd::create(DEV, O_RDWR)}, //
mm_fd_{cache_ ? nullptr
: vitis::xir::buffer_object_fd::create("/dev/mem",
O_RDWR | O_SYNC)},
capacity_{0}, //
data_{nullptr}, //
data_dev_mem_{nullptr}, //
phy_{0} {
dpcma_req_alloc req_alloc{size_, 0, 0};
auto r = ioctl(fd_->fd(), DPUIOC_CREATE_BO, &req_alloc);
CHECK_EQ(r, 0) << ", cannot allocate memory";
phy_ = req_alloc.phy_addr;
CHECK_EQ(static_cast<decltype(req_alloc.phy_addr)>(phy_), req_alloc.phy_addr)
<< ", size error";
capacity_ = req_alloc.capacity;
//
data_ = mmap(NULL, capacity_, PROT_READ | PROT_WRITE, MAP_SHARED, fd_->fd(),
phy_);
CHECK_NE(data_, MAP_FAILED) << "mmap failed";
if (!cache_) {
data_dev_mem_ = mmap(NULL, capacity_, PROT_READ | PROT_WRITE, MAP_SHARED,
mm_fd_->fd(), phy_);
CHECK_NE(data_dev_mem_, MAP_FAILED) << "mmap failed";
}
}
BufferObjectDpCma::~BufferObjectDpCma() {
munmap(data_, capacity_);
if (!cache_) munmap(data_dev_mem_, capacity_);
auto req_free = dpcma_req_free{(u64)phy_};
auto r = ioctl(fd_->fd(), DPUIOC_FREE_BO, &req_free);
CHECK_EQ(r, 0) << ", cannot free memory";
}
const void* BufferObjectDpCma::data_r() const { //
return cache_ ? data_ : data_dev_mem_;
}
void* BufferObjectDpCma::data_w() { //
// it is wired that writing from user space memory to phy memory, /dev/mem
// is fast enough, it is not true visa
return cache_ ? data_ : data_dev_mem_;
}
size_t BufferObjectDpCma::size() { return size_; }
uint64_t BufferObjectDpCma::phy(size_t offset) { return phy_ + offset; }
void BufferObjectDpCma::sync_for_read(uint64_t offset, size_t size) {
LOG_IF(INFO, ENV_PARAM(DEBUG_BUFFER_OBJECT)) << "sync_for_read "
<< "offset " << offset << " " //
<< "size " << size << " " //
<< std::endl;
if (cache_) {
dpcma_req_sync req_sync{(u64)(phy_ + offset), size,
DPCMA_FROM_DEVICE_TO_CPU};
auto r = ioctl(fd_->fd(), DPUIOC_SYNC_BO, &req_sync);
CHECK_EQ(r, 0) << ",ioctl error";
}
/* LOG(INFO) << "CACHE:\n"
<< vitis::ai::xxd((unsigned char *)data_dev_mem_, 160, 8, 1);
LOG(INFO) << "DEVMEM:\n"
<< vitis::ai::xxd((unsigned char *)data_, 160, 8, 1);
bool same = true;
auto p1 = (unsigned char *)data_dev_mem_;
auto p2 = (unsigned char *)data_;
auto i = 0u;
for (i = 0u; i < size; ++i) {
same = same && p1[i] == p2[i];
if (!same) {
break;
}
}
if (!same) {
LOG(INFO) << "CACHE:" << i << "\n" << vitis::ai::xxd(&p1[i], 160, 8, 1);
LOG(INFO) << "DEVMEM:\n" << vitis::ai::xxd(&p2[i], 160, 8, 1);
} else {
LOG(INFO) << "do nothing: " << i;
} */
}
void BufferObjectDpCma::sync_for_write(uint64_t offset, size_t size) {
LOG_IF(INFO, ENV_PARAM(DEBUG_BUFFER_OBJECT)) << "sync_for_write "
<< "offset " << offset << " " //
<< "size " << size << " " //
<< std::endl;
if (cache_) {
dpcma_req_sync req_sync{(u64)(phy_ + offset), size,
DPCMA_FROM_CPU_TO_DEVICE};
auto r = ioctl(fd_->fd(), DPUIOC_SYNC_BO, &req_sync);
CHECK_EQ(r, 0) << ",ioctl error";
}
}
void BufferObjectDpCma::copy_from_host(const void* buf, size_t size,
size_t offset) {
LOG_IF(INFO, ENV_PARAM(DEBUG_BUFFER_OBJECT))
<< "phy " << std::hex << "0x" << phy_ << std::dec << " " //
<< "offset " << std::hex << "0x" << offset << " " //
<< std::dec << //
"size " << size << " " //
;
CHECK_LE(offset + size, size_) << " out of range";
memcpy(static_cast<char*>(data_w()) + offset, buf, size);
sync_for_write(offset, size);
}
void BufferObjectDpCma::copy_to_host(void* buf, size_t size, size_t offset) {
LOG_IF(INFO, ENV_PARAM(DEBUG_BUFFER_OBJECT))
<< "phy " << std::hex << "0x" << phy_ << std::dec << " " //
<< "offset " << std::hex << "0x" << offset << " " //
<< std::dec << //
"size " << size << " " //
;
CHECK_LE(offset + size, size_) << " out of range";
sync_for_read(offset, size);
memcpy(buf, static_cast<const char*>(data_r()) + offset, size);
}
} // namespace
REGISTER_INJECTION_BEGIN(xir::BufferObject, 2, BufferObjectDpCma, size_t&,
size_t&, const std::string&) {
auto fd = open(DEV, O_RDWR);
auto ret = fd >= 0;
close(fd);
LOG_IF(INFO, ENV_PARAM(DEBUG_BUFFER_OBJECT))
<< " ret=" << ret
<< " register factory methord of BufferObjectDpCma for "
" xir::BufferObject with priority `2`";
return ret;
}
REGISTER_INJECTION_END
|