File: resnet50.cpp

package info (click to toggle)
vart 2.5-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 4,404 kB
  • sloc: cpp: 30,188; python: 7,493; sh: 969; makefile: 37; ansic: 36
file content (258 lines) | stat: -rw-r--r-- 9,195 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
/*
 * Copyright 2019 Xilinx Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include <glog/logging.h>

#include <algorithm>
#include <cmath>
#include <functional>
#include <iomanip>
#include <iostream>
#include <memory>
#include <numeric>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <xir/graph/graph.hpp>

#include "vart/runner.hpp"
#include "vart/runner_ext.hpp"
#include "vitis/ai/collection_helper.hpp"

static std::vector<std::pair<int, float>> post_process(
    vart::TensorBuffer* tensor_buffer, float scale, int batch_idx);
static std::vector<float> convert_fixpoint_to_float(vart::TensorBuffer* tensor,
                                                    float scale, int batch_idx);

static std::vector<float> softmax(const std::vector<float>& input);
static std::vector<std::pair<int, float>> topk(const std::vector<float>& score,
                                               int K);
static void print_topk(const std::vector<std::pair<int, float>>& topk);
static const char* lookup(int index);

// resize input image if necessary
static cv::Mat preprocess_image(cv::Mat input_image, cv::Size size) {
  cv::Mat image;
  // resize it if size is not match
  if (size != input_image.size()) {
    cv::resize(input_image, image, size);
  } else {
    image = input_image;
  }
  return image;
}

// preprocessing for resnet50
static void setImageBGR(const cv::Mat& image, void* data, float scale) {
  // mean value and scale are model specific, we need to check the
  // model to get concrete value. For resnet50, they are {104, 107, 123}
  signed char* data1 = (signed char*)data;
  int c = 0;
  for (auto row = 0; row < image.rows; row++) {
    for (auto col = 0; col < image.cols; col++) {
      auto v = image.at<cv::Vec3b>(row, col);
      // substract mean value and times scale;
      auto B = (float)v[0];
      auto G = (float)v[1];
      auto R = (float)v[2];
      auto nB = (B - 104.0f) * scale;
      auto nG = (G - 107.0f) * scale;
      auto nR = (R - 123.0f) * scale;
      nB = std::max(std::min(nB, 127.0f), -128.0f);
      nG = std::max(std::min(nG, 127.0f), -128.0f);
      nR = std::max(std::min(nR, 127.0f), -128.0f);
      data1[c++] = (int)(nB);
      data1[c++] = (int)(nG);
      data1[c++] = (int)(nR);
    }
  }
}
// fix_point to scale for input tensor
static float get_input_scale(const xir::Tensor* tensor) {
  int fixpos = tensor->template get_attr<int>("fix_point");
  return std::exp2f(1.0f * (float)fixpos);
}
// fix_point to scale for output tensor
static float get_output_scale(const xir::Tensor* tensor) {
  int fixpos = tensor->template get_attr<int>("fix_point");
  return std::exp2f(-1.0f * (float)fixpos);
}

int main(int argc, char* argv[]) {
  if (argc < 3) {
    std::cout << "usage: " << argv[0]
         << " <resnet50.xmodel> sample_image [sample_image ...] \n";
    return 0;
  }
  auto xmodel_file = std::string(argv[1]);
  // read input images
  std::vector<cv::Mat> input_images;
  for (auto i = 2; i < argc; i++) {
    cv::Mat img = cv::imread(argv[i]);
    if (img.empty()) {
      std::cout << "Cannot load image : " << argv[i] << std::endl;
      continue;
    }
    input_images.push_back(img);
  }
  if (input_images.empty()) {
    std::cerr << "No image load success!" << std::endl;
    abort();
  }

  //  create dpu runner
  auto graph = xir::Graph::deserialize(xmodel_file);
  auto root = graph->get_root_subgraph();
  xir::Subgraph* subgraph = nullptr;
  for (auto c : root->children_topological_sort()) {
    CHECK(c->has_attr("device"));
    if (c->get_attr<std::string>("device") == "DPU") {
      subgraph = c;
      break;
    }
  }
  auto attrs = xir::Attrs::create();
  std::unique_ptr<vart::RunnerExt> runner =
      vart::RunnerExt::create_runner(subgraph, attrs.get());

  // get input & output tensor buffers
  auto input_tensor_buffers = runner->get_inputs();
  auto output_tensor_buffers = runner->get_outputs();
  CHECK_EQ(input_tensor_buffers.size(), 1u) << "only support resnet50 model";
  CHECK_EQ(output_tensor_buffers.size(), 1u) << "only support resnet50 model";

  // get input_scale & output_scale
  auto input_tensor = input_tensor_buffers[0]->get_tensor();
  auto input_scale = get_input_scale(input_tensor);

  auto output_tensor = output_tensor_buffers[0]->get_tensor();
  auto output_scale = get_output_scale(output_tensor);

  auto batch = input_tensor->get_shape().at(0);
  auto height = input_tensor->get_shape().at(1);
  auto width = input_tensor->get_shape().at(2);

  // loop for running input images
  for (auto i = 0; i < input_images.size(); i += batch) {
    auto run_batch = std::min(((int)input_images.size() - i), batch);
    auto images = std::vector<cv::Mat>(run_batch);

    // preprocessing
    uint64_t data_in = 0u;
    size_t size_in = 0u;
    for (auto batch_idx = 0; batch_idx < run_batch; ++batch_idx) {
      //  image resize if necessary
      images[batch_idx] = preprocess_image(input_images[i + batch_idx],
                                           cv::Size(width, height));
      // set the input image and preprocessing
      std::tie(data_in, size_in) =
          input_tensor_buffers[0]->data(std::vector<int>{batch_idx, 0, 0, 0});
      CHECK_NE(size_in, 0u);
      setImageBGR(images[batch_idx], (void*)data_in, input_scale);
    }

    // sync data for input
    for (auto& input : input_tensor_buffers) {
      input->sync_for_write(0, input->get_tensor()->get_data_size() /
                                   input->get_tensor()->get_shape()[0]);
    }
    // start the dpu
    auto v = runner->execute_async(input_tensor_buffers, output_tensor_buffers);
    auto status = runner->wait((int)v.first, -1);
    CHECK_EQ(status, 0) << "failed to run dpu";
    // sync data for output
    for (auto& output : output_tensor_buffers) {
      output->sync_for_read(0, output->get_tensor()->get_data_size() /
                                   output->get_tensor()->get_shape()[0]);
    }

    // postprocessing
    for (auto batch_idx = 0; batch_idx < run_batch; ++batch_idx) {
      auto topk =
          post_process(output_tensor_buffers[0], output_scale, batch_idx);
      // print the result
      print_topk(topk);
    }
  }

  return 0;
}

static std::vector<std::pair<int, float>> post_process(
    vart::TensorBuffer* tensor_buffer, float scale, int batch_idx) {
  // int to float & run softmax
  auto softmax_input =
      convert_fixpoint_to_float(tensor_buffer, scale, batch_idx);
  auto softmax_output = softmax(softmax_input);
  // print top5
  constexpr int TOPK = 5;
  return topk(softmax_output, TOPK);
}

static std::vector<float> convert_fixpoint_to_float(
    vart::TensorBuffer* tensor_buffer, float scale, int batch_idx) {
  uint64_t data = 0u;
  size_t size = 0u;
  std::tie(data, size) = tensor_buffer->data(std::vector<int>{batch_idx, 0});
  signed char* data_c = (signed char*)data;
  auto ret = std::vector<float>(size);
  transform(data_c, data_c + size, ret.begin(),
            [scale](signed char v) { return ((float)v) * scale; });
  return ret;
}

static std::vector<float> softmax(const std::vector<float>& input) {
  auto output = std::vector<float>(input.size());
  std::transform(input.begin(), input.end(), output.begin(), expf);
  auto sum = accumulate(output.begin(), output.end(), 0.0f, std::plus<float>());
  std::transform(output.begin(), output.end(), output.begin(),
                 [sum](float v) { return v / sum; });
  return output;
}
static std::vector<std::pair<int, float>> topk(const std::vector<float>& score,
                                               int K) {
  auto indices = std::vector<int>(score.size());
  std::iota(indices.begin(), indices.end(), 0);
  std::partial_sort(indices.begin(), indices.begin() + K, indices.end(),
                    [&score](int a, int b) { return score[a] > score[b]; });
  auto ret = std::vector<std::pair<int, float>>(K);
  std::transform(
      indices.begin(), indices.begin() + K, ret.begin(),
      [&score](int index) { return std::make_pair(index, score[index]); });
  return ret;
}

static void print_topk(const std::vector<std::pair<int, float>>& topk) {
  for (const auto& v : topk) {
    std::cout << std::setiosflags(std::ios::left) << std::setw(11)
              << "score[" + std::to_string(v.first) + "]"
              << " =  " << std::setw(12) << v.second
              << " text: " << lookup(v.first) << std::resetiosflags(std::ios::left)
              << std::endl;
  }
  std::cout << std::endl;
}

static const char* lookup(int index) {
  static const char* table[] = {
#include "word_list.inc"
  };

  if (index < 0) {
    return "";
  } else {
    return table[index];
  }
};