1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
/*
* Copyright 2019 Xilinx Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <glog/logging.h>
#include <algorithm>
#include <cmath>
#include <functional>
#include <iomanip>
#include <iostream>
#include <memory>
#include <numeric>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <xir/graph/graph.hpp>
#include "vart/runner.hpp"
#include "vart/runner_ext.hpp"
#include "vitis/ai/collection_helper.hpp"
static std::vector<std::pair<int, float>> post_process(
vart::TensorBuffer* tensor_buffer, float scale, int batch_idx);
static std::vector<float> convert_fixpoint_to_float(vart::TensorBuffer* tensor,
float scale, int batch_idx);
static std::vector<float> softmax(const std::vector<float>& input);
static std::vector<std::pair<int, float>> topk(const std::vector<float>& score,
int K);
static void print_topk(const std::vector<std::pair<int, float>>& topk);
static const char* lookup(int index);
// resize input image if necessary
static cv::Mat preprocess_image(cv::Mat input_image, cv::Size size) {
cv::Mat image;
// resize it if size is not match
if (size != input_image.size()) {
cv::resize(input_image, image, size);
} else {
image = input_image;
}
return image;
}
// preprocessing for resnet50
static void setImageBGR(const cv::Mat& image, void* data, float scale) {
// mean value and scale are model specific, we need to check the
// model to get concrete value. For resnet50, they are {104, 107, 123}
signed char* data1 = (signed char*)data;
int c = 0;
for (auto row = 0; row < image.rows; row++) {
for (auto col = 0; col < image.cols; col++) {
auto v = image.at<cv::Vec3b>(row, col);
// substract mean value and times scale;
auto B = (float)v[0];
auto G = (float)v[1];
auto R = (float)v[2];
auto nB = (B - 104.0f) * scale;
auto nG = (G - 107.0f) * scale;
auto nR = (R - 123.0f) * scale;
nB = std::max(std::min(nB, 127.0f), -128.0f);
nG = std::max(std::min(nG, 127.0f), -128.0f);
nR = std::max(std::min(nR, 127.0f), -128.0f);
data1[c++] = (int)(nB);
data1[c++] = (int)(nG);
data1[c++] = (int)(nR);
}
}
}
// fix_point to scale for input tensor
static float get_input_scale(const xir::Tensor* tensor) {
int fixpos = tensor->template get_attr<int>("fix_point");
return std::exp2f(1.0f * (float)fixpos);
}
// fix_point to scale for output tensor
static float get_output_scale(const xir::Tensor* tensor) {
int fixpos = tensor->template get_attr<int>("fix_point");
return std::exp2f(-1.0f * (float)fixpos);
}
int main(int argc, char* argv[]) {
if (argc < 3) {
std::cout << "usage: " << argv[0]
<< " <resnet50.xmodel> sample_image [sample_image ...] \n";
return 0;
}
auto xmodel_file = std::string(argv[1]);
// read input images
std::vector<cv::Mat> input_images;
for (auto i = 2; i < argc; i++) {
cv::Mat img = cv::imread(argv[i]);
if (img.empty()) {
std::cout << "Cannot load image : " << argv[i] << std::endl;
continue;
}
input_images.push_back(img);
}
if (input_images.empty()) {
std::cerr << "No image load success!" << std::endl;
abort();
}
// create dpu runner
auto graph = xir::Graph::deserialize(xmodel_file);
auto root = graph->get_root_subgraph();
xir::Subgraph* subgraph = nullptr;
for (auto c : root->children_topological_sort()) {
CHECK(c->has_attr("device"));
if (c->get_attr<std::string>("device") == "DPU") {
subgraph = c;
break;
}
}
auto attrs = xir::Attrs::create();
std::unique_ptr<vart::RunnerExt> runner =
vart::RunnerExt::create_runner(subgraph, attrs.get());
// get input & output tensor buffers
auto input_tensor_buffers = runner->get_inputs();
auto output_tensor_buffers = runner->get_outputs();
CHECK_EQ(input_tensor_buffers.size(), 1u) << "only support resnet50 model";
CHECK_EQ(output_tensor_buffers.size(), 1u) << "only support resnet50 model";
// get input_scale & output_scale
auto input_tensor = input_tensor_buffers[0]->get_tensor();
auto input_scale = get_input_scale(input_tensor);
auto output_tensor = output_tensor_buffers[0]->get_tensor();
auto output_scale = get_output_scale(output_tensor);
auto batch = input_tensor->get_shape().at(0);
auto height = input_tensor->get_shape().at(1);
auto width = input_tensor->get_shape().at(2);
// loop for running input images
for (auto i = 0; i < input_images.size(); i += batch) {
auto run_batch = std::min(((int)input_images.size() - i), batch);
auto images = std::vector<cv::Mat>(run_batch);
// preprocessing
uint64_t data_in = 0u;
size_t size_in = 0u;
for (auto batch_idx = 0; batch_idx < run_batch; ++batch_idx) {
// image resize if necessary
images[batch_idx] = preprocess_image(input_images[i + batch_idx],
cv::Size(width, height));
// set the input image and preprocessing
std::tie(data_in, size_in) =
input_tensor_buffers[0]->data(std::vector<int>{batch_idx, 0, 0, 0});
CHECK_NE(size_in, 0u);
setImageBGR(images[batch_idx], (void*)data_in, input_scale);
}
// sync data for input
for (auto& input : input_tensor_buffers) {
input->sync_for_write(0, input->get_tensor()->get_data_size() /
input->get_tensor()->get_shape()[0]);
}
// start the dpu
auto v = runner->execute_async(input_tensor_buffers, output_tensor_buffers);
auto status = runner->wait((int)v.first, -1);
CHECK_EQ(status, 0) << "failed to run dpu";
// sync data for output
for (auto& output : output_tensor_buffers) {
output->sync_for_read(0, output->get_tensor()->get_data_size() /
output->get_tensor()->get_shape()[0]);
}
// postprocessing
for (auto batch_idx = 0; batch_idx < run_batch; ++batch_idx) {
auto topk =
post_process(output_tensor_buffers[0], output_scale, batch_idx);
// print the result
print_topk(topk);
}
}
return 0;
}
static std::vector<std::pair<int, float>> post_process(
vart::TensorBuffer* tensor_buffer, float scale, int batch_idx) {
// int to float & run softmax
auto softmax_input =
convert_fixpoint_to_float(tensor_buffer, scale, batch_idx);
auto softmax_output = softmax(softmax_input);
// print top5
constexpr int TOPK = 5;
return topk(softmax_output, TOPK);
}
static std::vector<float> convert_fixpoint_to_float(
vart::TensorBuffer* tensor_buffer, float scale, int batch_idx) {
uint64_t data = 0u;
size_t size = 0u;
std::tie(data, size) = tensor_buffer->data(std::vector<int>{batch_idx, 0});
signed char* data_c = (signed char*)data;
auto ret = std::vector<float>(size);
transform(data_c, data_c + size, ret.begin(),
[scale](signed char v) { return ((float)v) * scale; });
return ret;
}
static std::vector<float> softmax(const std::vector<float>& input) {
auto output = std::vector<float>(input.size());
std::transform(input.begin(), input.end(), output.begin(), expf);
auto sum = accumulate(output.begin(), output.end(), 0.0f, std::plus<float>());
std::transform(output.begin(), output.end(), output.begin(),
[sum](float v) { return v / sum; });
return output;
}
static std::vector<std::pair<int, float>> topk(const std::vector<float>& score,
int K) {
auto indices = std::vector<int>(score.size());
std::iota(indices.begin(), indices.end(), 0);
std::partial_sort(indices.begin(), indices.begin() + K, indices.end(),
[&score](int a, int b) { return score[a] > score[b]; });
auto ret = std::vector<std::pair<int, float>>(K);
std::transform(
indices.begin(), indices.begin() + K, ret.begin(),
[&score](int index) { return std::make_pair(index, score[index]); });
return ret;
}
static void print_topk(const std::vector<std::pair<int, float>>& topk) {
for (const auto& v : topk) {
std::cout << std::setiosflags(std::ios::left) << std::setw(11)
<< "score[" + std::to_string(v.first) + "]"
<< " = " << std::setw(12) << v.second
<< " text: " << lookup(v.first) << std::resetiosflags(std::ios::left)
<< std::endl;
}
std::cout << std::endl;
}
static const char* lookup(int index) {
static const char* table[] = {
#include "word_list.inc"
};
if (index < 0) {
return "";
} else {
return table[index];
}
};
|