1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
/*
* Copyright 2019 Xilinx Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <glog/logging.h>
#include <xrt.h>
#include <algorithm>
#include <cmath>
#include <functional>
#include <iomanip>
#include <iostream>
#include <memory>
#include <numeric>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <xir/graph/graph.hpp>
#include "vart/runner.hpp"
#include "vart/runner_ext.hpp"
#include "vitis/ai/collection_helper.hpp"
#include "xir/sfm_controller.hpp"
static cv::Mat read_image(const std::string& image_file_name);
static cv::Mat preprocess_image(cv::Mat input_image, cv::Size size);
static std::vector<std::pair<int, float>> topk(const float* score, size_t size,
int K);
static void print_topk(const std::vector<std::pair<int, float>>& topk);
static const char* lookup(int index);
static int get_fix_pos(const xir::Tensor* tensor);
static void setImageBGR(const cv::Mat& image, void* data1, float scale) {
// mean value and scale are model specific, we need to check the
// model to get concrete value. For resnet50, they are 104, 107,
// 123, and 0.5, 0.5, 0.5 respectively
signed char* data = (signed char*)data1;
int c = 0;
for (auto row = 0; row < image.rows; row++) {
for (auto col = 0; col < image.cols; col++) {
auto v = image.at<cv::Vec3b>(row, col);
// convert BGR to RGB, substract mean value and times scale;
auto B = (float)v[0];
auto G = (float)v[1];
auto R = (float)v[2];
auto nB = (B - 104.0f) * scale;
auto nG = (G - 107.0f) * scale;
auto nR = (R - 123.0f) * scale;
nB = std::max(std::min(nB, 127.0f), -128.0f);
nG = std::max(std::min(nG, 127.0f), -128.0f);
nR = std::max(std::min(nR, 127.0f), -128.0f);
data[c++] = (int)(nB);
data[c++] = (int)(nG);
data[c++] = (int)(nR);
}
}
}
static uint64_t get_physical_address(const xclDeviceHandle& handle,
const unsigned int bo) {
xclBOProperties p;
auto error_code = xclGetBOProperties(handle, bo, &p);
uint64_t phy = 0u;
if (error_code != 0) {
LOG(INFO) << "cannot xclGetBOProperties !";
}
phy = error_code == 0 ? p.paddr : -1;
return phy;
}
static void run_user_specific_ip(uint64_t dpu_output_phy_addr, unsigned int cls,
unsigned int group, int fixpos) {
// allocate memory.
auto device_id = 0;
auto handle = xclOpen(device_id, NULL, XCL_INFO);
CHECK(handle != XRT_NULL_HANDLE);
auto bo_handle = xclAllocBO(handle, 1u * 1024u * 1024u, 0, 0);
CHECK(bo_handle != XRT_NULL_BO);
auto phy_addr_for_softmax = get_physical_address(handle, bo_handle);
auto bo_addr = xclMapBO(handle, bo_handle, true);
CHECK(bo_addr != nullptr);
auto sfm_controller = xir::SfmController::get_instance();
auto fmap_size = cls * group;
// start the SMFC IP with zero-copy, DPU output is directly
// feed to SMFC's input
size_t core_idx = 0u;
const uint32_t offset = 0u;
sfm_controller->run_xrt_cu(core_idx, dpu_output_phy_addr, cls, group, fixpos,
phy_addr_for_softmax, offset);
xclSyncBO(handle, bo_handle, XCL_BO_SYNC_BO_FROM_DEVICE,
fmap_size * sizeof(float), 0u);
{
// sorting
auto topk_value = topk((float*)bo_addr, cls, 5u);
// print the result
print_topk(topk_value);
}
xclUnmapBO(handle, bo_handle, bo_addr);
xclFreeBO(handle, bo_handle);
xclClose(handle);
return;
}
int main(int argc, char* argv[]) {
if (argc < 3) {
std::cout << "usage: " << argv[0] << " <resnet50.xmodel> <sample_image>\n";
return 0;
}
auto xmodel_file = std::string(argv[1]);
const auto image_file_name = std::string(argv[2]);
{
auto graph = xir::Graph::deserialize(xmodel_file);
auto root = graph->get_root_subgraph();
xir::Subgraph* subgraph = nullptr;
xir::Subgraph* softmax_subgraph = nullptr;
for (auto c : root->children_topological_sort()) {
if (c->get_attr<std::string>("device") == "DPU" && subgraph == nullptr) {
subgraph = c;
}
if (c->get_attr<std::string>("device") == "CPU" &&
softmax_subgraph == nullptr) {
softmax_subgraph = c;
}
}
auto attrs = xir::Attrs::create();
std::unique_ptr<vart::RunnerExt> runner =
vart::RunnerExt::create_runner(subgraph, attrs.get());
// a image file, e.g.
// /usr/share/VITIS_AI_SDK/samples/classification/images/001.JPEG
// load the image
cv::Mat input_image = read_image(image_file_name);
// prepare input tensor buffer
auto input_tensor_buffers = runner->get_inputs();
auto output_tensor_buffers = runner->get_outputs();
CHECK_EQ(input_tensor_buffers.size(), 1u) << "only support resnet50 model";
CHECK_EQ(output_tensor_buffers.size(), 1u) << "only support resnet50 model";
// CHECK_EQ(output_tensors[0]->get_shape().size(), 2u)
// << "only support resnet50 model";
// CHECK_EQ(output_tensors[0]->get_shape()[1], 1000u)
// << "only support resnet50 model";
auto input_tensor = input_tensor_buffers[0]->get_tensor();
auto batch = input_tensor->get_shape().at(0);
auto height = input_tensor->get_shape().at(1);
auto width = input_tensor->get_shape().at(2);
auto input_scale = vart::get_input_scale(input_tensor);
// proprocess, i.e. resize if necessary
cv::Mat image = preprocess_image(input_image, cv::Size(width, height));
// set the input image and preprocessing
uint64_t data_in = 0u;
size_t size_in = 0u;
for (auto batch_idx = 0; batch_idx < batch; ++batch_idx) {
std::tie(data_in, size_in) =
input_tensor_buffers[0]->data(std::vector<int>{batch_idx, 0, 0, 0});
CHECK_NE(size_in, 0u);
setImageBGR(image, (void*)data_in, input_scale);
}
// start the dpu
for (auto& input : input_tensor_buffers) {
input->sync_for_write(0, input->get_tensor()->get_data_size() /
input->get_tensor()->get_shape()[0]);
}
auto v = runner->execute_async(input_tensor_buffers, output_tensor_buffers);
auto status = runner->wait((int)v.first, -1);
CHECK_EQ(status, 0) << "failed to run dpu";
// post process
uint64_t dpu_output_phy_addr = 0u;
uint64_t dpu_output_size = 0u;
std::tie(dpu_output_phy_addr, dpu_output_size) =
output_tensor_buffers[0]->data_phy({0, 0});
const unsigned int cls =
output_tensor_buffers[0]->get_tensor()->get_shape()[1];
const unsigned int group = 1u;
const int fixpos = get_fix_pos(output_tensor_buffers[0]->get_tensor());
// softmax & topk
run_user_specific_ip(dpu_output_phy_addr, cls, group, fixpos);
}
return 0;
}
static cv::Mat read_image(const std::string& image_file_name) {
// read image from a file
auto input_image = cv::imread(image_file_name);
CHECK(!input_image.empty()) << "cannot load " << image_file_name;
return input_image;
}
static cv::Mat preprocess_image(cv::Mat input_image, cv::Size size) {
cv::Mat image;
// resize it if size is not match
if (size != input_image.size()) {
cv::resize(input_image, image, size);
} else {
image = input_image;
}
return image;
}
static std::vector<std::pair<int, float>> topk(const float* score, size_t size,
int K) {
auto indices = std::vector<int>(size);
std::iota(indices.begin(), indices.end(), 0);
std::partial_sort(indices.begin(), indices.begin() + K, indices.end(),
[&score](int a, int b) { return score[a] > score[b]; });
auto ret = std::vector<std::pair<int, float>>(K);
std::transform(
indices.begin(), indices.begin() + K, ret.begin(),
[&score](int index) { return std::make_pair(index, score[index]); });
return ret;
}
static void print_topk(const std::vector<std::pair<int, float>>& topk) {
for (const auto& v : topk) {
std::cout << setiosflags(ios::left) << std::setw(11)
<< "score[" + std::to_string(v.first) + "]"
<< " = " << std::setw(12) << v.second
<< " text: " << lookup(v.first) << resetiosflags(ios::left)
<< std::endl;
}
}
static const char* lookup(int index) {
static const char* table[] = {
#include "word_list.inc"
};
if (index < 0) {
return "";
} else {
return table[index];
}
};
static int get_fix_pos(const xir::Tensor* tensor) {
int fixpos = tensor->template get_attr<int>("fix_point");
return fixpos;
}
|