File: resnet50_b.cpp

package info (click to toggle)
vart 2.5-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 4,404 kB
  • sloc: cpp: 30,188; python: 7,493; sh: 969; makefile: 37; ansic: 36
file content (278 lines) | stat: -rw-r--r-- 10,849 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
/*
 * Copyright 2019 Xilinx Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include <glog/logging.h>
#include <xrt.h>

#include <algorithm>
#include <cmath>
#include <functional>
#include <iomanip>
#include <iostream>
#include <memory>
#include <numeric>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <xir/graph/graph.hpp>

#include "vart/assistant/xrt_bo_tensor_buffer.hpp"
#include "vart/runner.hpp"
#include "vart/runner_ext.hpp"
#include "vart/zero_copy_helper.hpp"
#include "vitis/ai/collection_helper.hpp"
#include "xir/sfm_controller.hpp"

static cv::Mat read_image(const std::string& image_file_name);

static std::unique_ptr<vart::TensorBuffer> allocate_tensor_buffer(
    xclDeviceHandle h, xclBufferHandle bo, size_t offset,
    const xir::Tensor* tensor);
static void mimic_hw_preprocessing(xclDeviceHandle h,         //
                                   xclBufferHandle input_bo,  //
                                   size_t offset,             //
                                   cv::Mat input_image,       //
                                   int width,                 //
                                   int height,                //
                                   float input_scale          //
);

static void mimic_hw_postprocessing(xclDeviceHandle h,          //
                                    xclBufferHandle output_bo,  //
                                    size_t offset,              //
                                    size_t size,                //
                                    float output_scale          //
);
static std::vector<float> convert_fixpoint_to_float(int8_t* data, size_t size,
                                                    float scale);
static std::vector<float> softmax(const std::vector<float>& input);
static cv::Mat preprocess_image(cv::Mat input_image, cv::Size size);
static std::vector<std::pair<int, float>> topk(const float* score, size_t size,
                                               int K);

static void print_topk(const std::vector<std::pair<int, float>>& topk);

static const char* lookup(int index);
static int get_fix_pos(const xir::Tensor* tensor);
static void setImageBGR(const cv::Mat& image, void* data1, float scale) {
  // mean value and scale are model specific, we need to check the
  // model to get concrete value. For resnet50, they are 104, 107,
  // 123, and 0.5, 0.5, 0.5 respectively
  signed char* data = (signed char*)data1;
  int c = 0;
  for (auto row = 0; row < image.rows; row++) {
    for (auto col = 0; col < image.cols; col++) {
      auto v = image.at<cv::Vec3b>(row, col);
      // convert BGR to RGB, substract mean value and times scale;
      auto B = (float)v[0];
      auto G = (float)v[1];
      auto R = (float)v[2];
      auto nB = (B - 104.0f) * scale;
      auto nG = (G - 107.0f) * scale;
      auto nR = (R - 123.0f) * scale;
      nB = std::max(std::min(nB, 127.0f), -128.0f);
      nG = std::max(std::min(nG, 127.0f), -128.0f);
      nR = std::max(std::min(nR, 127.0f), -128.0f);
      data[c++] = (int)(nB);
      data[c++] = (int)(nG);
      data[c++] = (int)(nR);
    }
  }
}

int main(int argc, char* argv[]) {
  if (argc < 3) {
    cout << "usage: " << argv[0] << " <resnet50.xmodel> <sample_image>\n";
    return 0;
  }
  auto xmodel_file = std::string(argv[1]);
  const auto image_file_name = std::string(argv[2]);
  {
    auto graph = xir::Graph::deserialize(xmodel_file);
    auto root = graph->get_root_subgraph();
    xir::Subgraph* subgraph = nullptr;
    for (auto c : root->children_topological_sort()) {
      if (c->get_attr<std::string>("device") == "DPU" && subgraph == nullptr) {
        subgraph = c;
      }
    }
    auto attrs = xir::Attrs::create();
    std::unique_ptr<vart::RunnerExt> runner =
        vart::RunnerExt::create_runner(subgraph, attrs.get());
    // prepare input tensor buffer
    // get the input and output buffer size for XRT BO allocation
    auto h = xclOpen(0, NULL, XCL_INFO);
    auto input_bo = xclAllocBO(h, vart::get_input_buffer_size(subgraph), 0, 0);
    auto input_tensors = runner->get_input_tensors();
    auto input_offsets = vart::get_input_offset(subgraph);
    auto input_tensor_buffer = allocate_tensor_buffer(
        // only support single input
        h, input_bo, input_offsets[0], input_tensors[0]);
    auto output_bo =
        xclAllocBO(h, vart::get_output_buffer_size(subgraph), 0, 0);
    auto output_offsets = vart::get_output_offset(subgraph);
    auto output_tensors = runner->get_output_tensors();
    auto output_tensor_buffer = allocate_tensor_buffer(
        // only support single output
        h, output_bo, output_offsets[0], output_tensors[0]);
    //
    auto input_tensor = input_tensors[0];
    auto height = input_tensor->get_shape().at(1);
    auto width = input_tensor->get_shape().at(2);
    auto input_scale = vart::get_input_scale(input_tensor);
    auto output_tensor = output_tensors[0];
    auto output_scale = vart::get_output_scale(output_tensor);
    auto output_shape = output_tensor->get_shape();
    auto output_softmax_size = output_shape[output_shape.size() - 1];

    // a image file, e.g.
    // /usr/share/VITIS_AI_SDK/samples/classification/images/001.JPEG
    cv::Mat input_image = read_image(image_file_name);
    mimic_hw_preprocessing(h, input_bo, input_offsets[0], input_image, width,
                           height, input_scale);
    auto v = runner->execute_async({input_tensor_buffer.get()},
                                   {output_tensor_buffer.get()});
    auto status = runner->wait((int)v.first, -1);
    CHECK_EQ(status, 0) << "failed to run dpu";
    // post process
    // softmax & topk
    mimic_hw_postprocessing(h, output_bo, output_offsets[0],
                            output_softmax_size, output_scale);
    xclFreeBO(h, input_bo);
    xclFreeBO(h, output_bo);
    xclClose(h);
  }
  return 0;
}

static cv::Mat read_image(const std::string& image_file_name) {
  // read image from a file
  auto input_image = cv::imread(image_file_name);
  CHECK(!input_image.empty()) << "cannot load " << image_file_name;
  return input_image;
}

static cv::Mat preprocess_image(cv::Mat input_image, cv::Size size) {
  cv::Mat image;
  // resize it if size is not match
  if (size != input_image.size()) {
    cv::resize(input_image, image, size);
  } else {
    image = input_image;
  }
  return image;
}

static std::unique_ptr<vart::TensorBuffer> allocate_tensor_buffer(
    xclDeviceHandle h, xclBufferHandle bo, size_t offset,
    const xir::Tensor* tensor) {
  return vart::assistant::XrtBoTensorBuffer::create({h, bo}, tensor);
}

static void mimic_hw_preprocessing(xclDeviceHandle h,         //
                                   xclBufferHandle input_bo,  //
                                   size_t offset,             //
                                   cv::Mat input_image,       //
                                   int width,                 //
                                   int height,                //
                                   float input_scale          //
) {
  cv::Mat image = preprocess_image(input_image, cv::Size(width, height));
  auto data = (int8_t*)xclMapBO(h, input_bo, true);  //
  auto data_in = data + offset;
  setImageBGR(image, (void*)data_in, input_scale);
  xclSyncBO(h, input_bo, XCL_BO_SYNC_BO_TO_DEVICE, width * height * 3, offset);
  xclUnmapBO(h, input_bo, data);
  return;
}

static void mimic_hw_postprocessing(xclDeviceHandle h,          //
                                    xclBufferHandle output_bo,  //
                                    size_t offset,              //
                                    size_t softmax_size,        //
                                    float output_scale          //
) {
  xclSyncBO(h, output_bo, XCL_BO_SYNC_BO_FROM_DEVICE,
            // TODO: hard coded value
            softmax_size, offset);
  auto data = (int8_t*)xclMapBO(h, output_bo, true);  //
  auto data_in = data + offset;
  // run softmax
  auto softmax_input =
      convert_fixpoint_to_float(data_in, softmax_size, output_scale);
  auto softmax_output = softmax(softmax_input);
  constexpr int TOPK = 5;
  auto r = topk(&softmax_output[0], softmax_size, TOPK);
  print_topk(r);
  return;
}

static std::vector<float> convert_fixpoint_to_float(int8_t* data, size_t size,
                                                    float scale) {
  signed char* data_c = (signed char*)data;
  auto ret = std::vector<float>(size);
  transform(data_c, data_c + size, ret.begin(),
            [scale](signed char v) { return ((float)v) * scale; });
  return ret;
}

static std::vector<float> softmax(const std::vector<float>& input) {
  auto output = std::vector<float>(input.size());
  std::transform(input.begin(), input.end(), output.begin(), expf);
  auto sum = accumulate(output.begin(), output.end(), 0.0f, std::plus<float>());
  std::transform(output.begin(), output.end(), output.begin(),
                 [sum](float v) { return v / sum; });
  return output;
}

static std::vector<std::pair<int, float>> topk(const float* score, size_t size,
                                               int K) {
  auto indices = std::vector<int>(size);
  std::iota(indices.begin(), indices.end(), 0);
  std::partial_sort(indices.begin(), indices.begin() + K, indices.end(),
                    [&score](int a, int b) { return score[a] > score[b]; });
  auto ret = std::vector<std::pair<int, float>>(K);
  std::transform(
      indices.begin(), indices.begin() + K, ret.begin(),
      [&score](int index) { return std::make_pair(index, score[index]); });
  return ret;
}

static void print_topk(const std::vector<std::pair<int, float>>& topk) {
  for (const auto& v : topk) {
    std::cout << setiosflags(ios::left) << std::setw(11)
              << "score[" + std::to_string(v.first) + "]"
              << " =  " << std::setw(12) << v.second
              << " text: " << lookup(v.first) << resetiosflags(ios::left)
              << std::endl;
  }
}

static const char* lookup(int index) {
  static const char* table[] = {
#include "word_list.inc"
  };

  if (index < 0) {
    return "";
  } else {
    return table[index];
  }
};

static int get_fix_pos(const xir::Tensor* tensor) {
  int fixpos = tensor->template get_attr<int>("fix_point");
  return fixpos;
}