1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
/*
* Copyright 2019 Xilinx Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <glog/logging.h>
#include <xrt.h>
#include <algorithm>
#include <cmath>
#include <functional>
#include <iomanip>
#include <iostream>
#include <memory>
#include <numeric>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <xir/graph/graph.hpp>
#include "vart/assistant/xrt_bo_tensor_buffer.hpp"
#include "vart/runner.hpp"
#include "vart/runner_ext.hpp"
#include "vart/zero_copy_helper.hpp"
#include "vitis/ai/collection_helper.hpp"
#include "xir/sfm_controller.hpp"
static cv::Mat read_image(const std::string& image_file_name);
static std::unique_ptr<vart::TensorBuffer> allocate_tensor_buffer(
xclDeviceHandle h, xclBufferHandle bo, size_t offset,
const xir::Tensor* tensor);
static void mimic_hw_preprocessing(xclDeviceHandle h, //
xclBufferHandle input_bo, //
size_t offset, //
cv::Mat input_image, //
int width, //
int height, //
float input_scale //
);
static void mimic_hw_postprocessing(xclDeviceHandle h, //
xclBufferHandle output_bo, //
size_t offset, //
size_t size, //
float output_scale //
);
static std::vector<float> convert_fixpoint_to_float(int8_t* data, size_t size,
float scale);
static std::vector<float> softmax(const std::vector<float>& input);
static cv::Mat preprocess_image(cv::Mat input_image, cv::Size size);
static std::vector<std::pair<int, float>> topk(const float* score, size_t size,
int K);
static void print_topk(const std::vector<std::pair<int, float>>& topk);
static const char* lookup(int index);
static int get_fix_pos(const xir::Tensor* tensor);
static void setImageBGR(const cv::Mat& image, void* data1, float scale) {
// mean value and scale are model specific, we need to check the
// model to get concrete value. For resnet50, they are 104, 107,
// 123, and 0.5, 0.5, 0.5 respectively
signed char* data = (signed char*)data1;
int c = 0;
for (auto row = 0; row < image.rows; row++) {
for (auto col = 0; col < image.cols; col++) {
auto v = image.at<cv::Vec3b>(row, col);
// convert BGR to RGB, substract mean value and times scale;
auto B = (float)v[0];
auto G = (float)v[1];
auto R = (float)v[2];
auto nB = (B - 104.0f) * scale;
auto nG = (G - 107.0f) * scale;
auto nR = (R - 123.0f) * scale;
nB = std::max(std::min(nB, 127.0f), -128.0f);
nG = std::max(std::min(nG, 127.0f), -128.0f);
nR = std::max(std::min(nR, 127.0f), -128.0f);
data[c++] = (int)(nB);
data[c++] = (int)(nG);
data[c++] = (int)(nR);
}
}
}
int main(int argc, char* argv[]) {
if (argc < 3) {
cout << "usage: " << argv[0] << " <resnet50.xmodel> <sample_image>\n";
return 0;
}
auto xmodel_file = std::string(argv[1]);
const auto image_file_name = std::string(argv[2]);
{
auto graph = xir::Graph::deserialize(xmodel_file);
auto root = graph->get_root_subgraph();
xir::Subgraph* subgraph = nullptr;
for (auto c : root->children_topological_sort()) {
if (c->get_attr<std::string>("device") == "DPU" && subgraph == nullptr) {
subgraph = c;
}
}
auto attrs = xir::Attrs::create();
std::unique_ptr<vart::RunnerExt> runner =
vart::RunnerExt::create_runner(subgraph, attrs.get());
// prepare input tensor buffer
// get the input and output buffer size for XRT BO allocation
auto h = xclOpen(0, NULL, XCL_INFO);
auto input_bo = xclAllocBO(h, vart::get_input_buffer_size(subgraph), 0, 0);
auto input_tensors = runner->get_input_tensors();
auto input_offsets = vart::get_input_offset(subgraph);
auto input_tensor_buffer = allocate_tensor_buffer(
// only support single input
h, input_bo, input_offsets[0], input_tensors[0]);
auto output_bo =
xclAllocBO(h, vart::get_output_buffer_size(subgraph), 0, 0);
auto output_offsets = vart::get_output_offset(subgraph);
auto output_tensors = runner->get_output_tensors();
auto output_tensor_buffer = allocate_tensor_buffer(
// only support single output
h, output_bo, output_offsets[0], output_tensors[0]);
//
auto input_tensor = input_tensors[0];
auto height = input_tensor->get_shape().at(1);
auto width = input_tensor->get_shape().at(2);
auto input_scale = vart::get_input_scale(input_tensor);
auto output_tensor = output_tensors[0];
auto output_scale = vart::get_output_scale(output_tensor);
auto output_shape = output_tensor->get_shape();
auto output_softmax_size = output_shape[output_shape.size() - 1];
// a image file, e.g.
// /usr/share/VITIS_AI_SDK/samples/classification/images/001.JPEG
cv::Mat input_image = read_image(image_file_name);
mimic_hw_preprocessing(h, input_bo, input_offsets[0], input_image, width,
height, input_scale);
auto v = runner->execute_async({input_tensor_buffer.get()},
{output_tensor_buffer.get()});
auto status = runner->wait((int)v.first, -1);
CHECK_EQ(status, 0) << "failed to run dpu";
// post process
// softmax & topk
mimic_hw_postprocessing(h, output_bo, output_offsets[0],
output_softmax_size, output_scale);
xclFreeBO(h, input_bo);
xclFreeBO(h, output_bo);
xclClose(h);
}
return 0;
}
static cv::Mat read_image(const std::string& image_file_name) {
// read image from a file
auto input_image = cv::imread(image_file_name);
CHECK(!input_image.empty()) << "cannot load " << image_file_name;
return input_image;
}
static cv::Mat preprocess_image(cv::Mat input_image, cv::Size size) {
cv::Mat image;
// resize it if size is not match
if (size != input_image.size()) {
cv::resize(input_image, image, size);
} else {
image = input_image;
}
return image;
}
static std::unique_ptr<vart::TensorBuffer> allocate_tensor_buffer(
xclDeviceHandle h, xclBufferHandle bo, size_t offset,
const xir::Tensor* tensor) {
return vart::assistant::XrtBoTensorBuffer::create({h, bo}, tensor);
}
static void mimic_hw_preprocessing(xclDeviceHandle h, //
xclBufferHandle input_bo, //
size_t offset, //
cv::Mat input_image, //
int width, //
int height, //
float input_scale //
) {
cv::Mat image = preprocess_image(input_image, cv::Size(width, height));
auto data = (int8_t*)xclMapBO(h, input_bo, true); //
auto data_in = data + offset;
setImageBGR(image, (void*)data_in, input_scale);
xclSyncBO(h, input_bo, XCL_BO_SYNC_BO_TO_DEVICE, width * height * 3, offset);
xclUnmapBO(h, input_bo, data);
return;
}
static void mimic_hw_postprocessing(xclDeviceHandle h, //
xclBufferHandle output_bo, //
size_t offset, //
size_t softmax_size, //
float output_scale //
) {
xclSyncBO(h, output_bo, XCL_BO_SYNC_BO_FROM_DEVICE,
// TODO: hard coded value
softmax_size, offset);
auto data = (int8_t*)xclMapBO(h, output_bo, true); //
auto data_in = data + offset;
// run softmax
auto softmax_input =
convert_fixpoint_to_float(data_in, softmax_size, output_scale);
auto softmax_output = softmax(softmax_input);
constexpr int TOPK = 5;
auto r = topk(&softmax_output[0], softmax_size, TOPK);
print_topk(r);
return;
}
static std::vector<float> convert_fixpoint_to_float(int8_t* data, size_t size,
float scale) {
signed char* data_c = (signed char*)data;
auto ret = std::vector<float>(size);
transform(data_c, data_c + size, ret.begin(),
[scale](signed char v) { return ((float)v) * scale; });
return ret;
}
static std::vector<float> softmax(const std::vector<float>& input) {
auto output = std::vector<float>(input.size());
std::transform(input.begin(), input.end(), output.begin(), expf);
auto sum = accumulate(output.begin(), output.end(), 0.0f, std::plus<float>());
std::transform(output.begin(), output.end(), output.begin(),
[sum](float v) { return v / sum; });
return output;
}
static std::vector<std::pair<int, float>> topk(const float* score, size_t size,
int K) {
auto indices = std::vector<int>(size);
std::iota(indices.begin(), indices.end(), 0);
std::partial_sort(indices.begin(), indices.begin() + K, indices.end(),
[&score](int a, int b) { return score[a] > score[b]; });
auto ret = std::vector<std::pair<int, float>>(K);
std::transform(
indices.begin(), indices.begin() + K, ret.begin(),
[&score](int index) { return std::make_pair(index, score[index]); });
return ret;
}
static void print_topk(const std::vector<std::pair<int, float>>& topk) {
for (const auto& v : topk) {
std::cout << setiosflags(ios::left) << std::setw(11)
<< "score[" + std::to_string(v.first) + "]"
<< " = " << std::setw(12) << v.second
<< " text: " << lookup(v.first) << resetiosflags(ios::left)
<< std::endl;
}
}
static const char* lookup(int index) {
static const char* table[] = {
#include "word_list.inc"
};
if (index < 0) {
return "";
} else {
return table[index];
}
};
static int get_fix_pos(const xir::Tensor* tensor) {
int fixpos = tensor->template get_attr<int>("fix_point");
return fixpos;
}
|