1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
/*
* Copyright 2019 Xilinx Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#include <pybind11/numpy.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <chrono>
#include <iostream>
#include <thread>
using namespace std;
#include <sstream>
#ifndef MODULE_NAME
#define MODULE_NAME vart
#endif
#include <unordered_map>
#include <xir/graph/subgraph.hpp>
#include <xir/tensor/tensor.hpp>
#include "../src/runner_helper.hpp"
#include "vart/runner.hpp"
#include "vart/runner_ext.hpp"
#include "vart/tensor_buffer.hpp"
#include "vitis/ai/env_config.hpp"
#include "vitis/ai/weak.hpp"
DEF_ENV_PARAM(DEBUG_RUNNER, "0");
namespace py = pybind11;
namespace {
using tensor_buffers_t = std::vector<vart::TensorBuffer*>;
using map_from_job_id_to_tensor_buffers_t =
std::unordered_map<int, tensor_buffers_t>;
using the_map_t =
std::unordered_map<vart::Runner*, map_from_job_id_to_tensor_buffers_t>;
static std::shared_ptr<the_map_t> get_store() {
return vitis::ai::WeakSingleton<the_map_t>::create();
}
class CpuFlatTensorBuffer : public vart::TensorBuffer {
public:
explicit CpuFlatTensorBuffer(py::buffer_info&& info,
std::unique_ptr<xir::Tensor>&& tensor);
virtual ~CpuFlatTensorBuffer();
public:
virtual std::pair<uint64_t, size_t> data(
const std::vector<int> idx = {}) override {
uint32_t size = std::ceil(tensor_->get_data_type().bit_width / 8.f);
if (idx.size() == 0) {
return {reinterpret_cast<uint64_t>(data_),
tensor_->get_element_num() * size};
}
auto dims = tensor_->get_shape();
auto offset = 0;
for (auto k = 0U; k < tensor_->get_shape().size(); k++) {
auto stride = 1;
for (auto m = k + 1; m < tensor_->get_shape().size(); m++) {
stride *= dims[m];
}
offset += idx[k] * stride;
}
auto elem_num = tensor_->get_element_num();
return {reinterpret_cast<uint64_t>(data_) + offset * size,
(elem_num - offset) * size};
}
void save_to_map(vart::Runner* runner, int job_id);
private:
py::buffer_info info_;
void* data_;
std::unique_ptr<xir::Tensor> my_tensor_;
std::shared_ptr<the_map_t> the_shared_map_;
vart::Runner* runner_;
int job_id_;
};
CpuFlatTensorBuffer::CpuFlatTensorBuffer(py::buffer_info&& info,
std::unique_ptr<xir::Tensor>&& tensor)
: TensorBuffer{tensor.get()},
info_{std::move(info)},
data_{info.ptr},
my_tensor_{std::move(tensor)},
the_shared_map_{},
runner_{nullptr},
job_id_{0} {
LOG_IF(INFO, ENV_PARAM(DEBUG_RUNNER))
<< "create CpuFlatTensorBuffer @" << (void*)this << " data= " << data_
<< " DEUBG " << (int)((char*)data_)[0];
}
CpuFlatTensorBuffer::~CpuFlatTensorBuffer() {
LOG_IF(INFO, ENV_PARAM(DEBUG_RUNNER))
<< "destroy CpuFlatTensorBuffer @" << (void*)this << " data= " << data_;
if (the_shared_map_) {
CHECK(runner_ != nullptr);
auto& the_map = *the_shared_map_.get();
auto& v = the_map[runner_][job_id_];
v.erase(std::remove(v.begin(), v.end(), this), v.end());
if (v.empty()) {
the_map[runner_].erase(job_id_);
if (the_map[runner_].empty()) {
the_map.erase(runner_);
}
}
LOG_IF(INFO, ENV_PARAM(DEBUG_RUNNER))
<< "size of map:" << the_map.size() << " " //
<< "use_count:" << the_shared_map_.use_count() << " " //
<< endl;
}
}
void CpuFlatTensorBuffer::save_to_map(vart::Runner* runner, int job_id) {
the_shared_map_ = get_store();
CHECK(runner != nullptr);
CHECK_GE(job_id, 0);
runner_ = runner;
job_id_ = job_id;
(*the_shared_map_)[runner][job_id].push_back(this);
}
static std::vector<int> calculate_strides(const std::vector<int>& shape,
size_t size_of_elt) {
auto ret = std::vector<int>(shape.size(), 1);
for (int i = ((int)shape.size()) - 2; i >= 0; --i) {
ret[i] = ret[i + 1] * shape[i + 1];
}
for (auto& x : ret) {
x = x * size_of_elt;
}
return ret;
}
static std::string to_py_buf_format(const xir::DataType& dtype) {
auto ret = std::string("");
if (dtype.type == xir::DataType::XINT && dtype.bit_width == 8) {
ret = py::format_descriptor<int8_t>::format();
} else if (dtype.type == xir::DataType::FLOAT && dtype.bit_width == 32) {
ret = py::format_descriptor<float>::format();
} else if (dtype.type == xir::DataType::XINT && dtype.bit_width == 16) {
ret = py::format_descriptor<int16_t>::format();
}
CHECK(!ret.empty()) << "unsupported data type";
return ret;
}
static xir::DataType from_py_buf_format(const std::string& format,
size_t itemsize) {
auto ret = xir::DataType();
ret.type = xir::DataType::UNKNOWN;
ret.bit_width = itemsize * 8;
if (format == py::format_descriptor<int8_t>::format()) {
ret.type = xir::DataType::XINT;
} else if (format == py::format_descriptor<float>::format()) {
ret.type = xir::DataType::FLOAT;
} else if (format == py::format_descriptor<int16_t>::format()) {
ret.type = xir::DataType::XINT;
}
CHECK(ret.type != xir::DataType::UNKNOWN) << "unsupported data type";
return ret;
}
static vart::TensorBuffer* array_to_tensor_buffer(py::buffer& a,
const xir::Tensor* tensor) {
auto info = a.request(true);
LOG_IF(INFO, false) << "info = " << info.format;
auto dtype = from_py_buf_format(info.format, info.itemsize);
// here we have to clone a tensor buffer, because the input tensor
// buffer might be in different data type.
auto new_tensor =
xir::Tensor::create(tensor->get_name(), tensor->get_shape(), dtype);
// do not copy attrs, we should check vart::TensorBuffer::copy, if
// "fix_point" is get from the attr or not
//
// new_tensor->set_attrs(tensor->get_attrs());
return new CpuFlatTensorBuffer(std::move(info), std::move(new_tensor));
}
// Convert py::buffer to TensorBuffer with real shape of py::buffer
// instead of tensor shape from Runner as in `array_to_tensor_buffer`
static vart::TensorBuffer* dynamic_array_to_tensor_buffer(
py::buffer& a, const xir::Tensor* tensor) {
auto info = a.request(true);
LOG_IF(INFO, false) << "info = " << info.format;
auto dtype = from_py_buf_format(info.format, info.itemsize);
std::vector<int> shape;
shape.reserve(info.shape.size());
for (auto i : info.shape) shape.push_back(i);
auto new_tensor = xir::Tensor::create(tensor->get_name(), shape, dtype);
return new CpuFlatTensorBuffer(std::move(info), std::move(new_tensor));
}
static vector<vart::TensorBuffer*> array_to_tensor_buffer(
const std::vector<py::buffer>& a,
const std::vector<const xir::Tensor*> tensors, bool enable_dynamic_array) {
auto ret = vector<vart::TensorBuffer*>{};
ret.reserve(a.size());
auto c = 0u;
if (enable_dynamic_array) {
for (auto x : a) {
ret.emplace_back(dynamic_array_to_tensor_buffer(x, tensors[c++]));
}
} else {
for (auto x : a) {
ret.emplace_back(array_to_tensor_buffer(x, tensors[c++]));
}
}
return ret;
}
static void destroy(vart::TensorBuffer* tb) { delete tb; }
static void destroy(const std::vector<vart::TensorBuffer*>& tb) {
for (auto x : tb) {
destroy(x);
}
}
PYBIND11_MODULE(MODULE_NAME, m) {
m.doc() = "vart::Runner inferace"; // optional module docstring
py::module::import("xir");
py::class_<vart::TensorBuffer>(m, "TensorBuffer", py::buffer_protocol())
.def_buffer([](vart::TensorBuffer& tb) -> py::buffer_info {
uint64_t data = 0u;
size_t size = 0u;
auto tensor = tb.get_tensor();
auto shape = tensor->get_shape();
auto idx = std::vector<int>(shape.size(), 0);
std::tie(data, size) = tb.data(idx);
auto dtype = tensor->get_data_type();
auto format = to_py_buf_format(dtype);
CHECK_EQ(size, tensor->get_data_size())
<< "only support continuous tensor buffer yet";
return py::buffer_info((void*)data, /* Pointer to buffer */
dtype.bit_width / 8, /* Size of one scalar */
format, /* Python struct-style
format descriptor */
shape.size(), /* Number of dimensions */
shape, /* Buffer dimensions */
calculate_strides(shape, dtype.bit_width / 8));
})
// TODO: export other method
.def("get_tensor", &vart::TensorBuffer::get_tensor,
py::return_value_policy::reference)
.def("__str__",
[](vart::TensorBuffer* self) { return self->to_string(); })
.def("__repr__",
[](vart::TensorBuffer* self) { return self->to_string(); });
py::class_<vart::Runner>(m, "Runner")
.def_static("create_runner",
py::overload_cast<const xir::Subgraph*, const std::string&>(
&vart::Runner::create_runner),
py::arg("subgraph"), py::arg("mode") = "")
.def("get_input_tensors", &vart::Runner::get_input_tensors,
py::return_value_policy::reference)
.def("get_output_tensors", &vart::Runner::get_output_tensors,
py::return_value_policy::reference)
.def(
"execute_async",
[](vart::Runner* self, std::vector<py::buffer> inputs,
std::vector<py::buffer> outputs, bool enable_dynamic_array) {
// NOTE: it is important to initialize cpu_inputs and
// cpu_outputs with GIL protection. the_map is the global
// variable alike.
auto cpu_inputs = array_to_tensor_buffer(
inputs, self->get_input_tensors(), enable_dynamic_array);
auto cpu_outputs = array_to_tensor_buffer(
outputs, self->get_output_tensors(), enable_dynamic_array);
auto ret = make_pair(uint32_t(0), int32_t(0));
if (1) {
py::gil_scoped_release release;
ret = self->execute_async(cpu_inputs, cpu_outputs);
}
// obtain the GIL again.
if (ret.first >= 0) {
for (auto t : cpu_inputs) {
static_cast<CpuFlatTensorBuffer*>(t)->save_to_map(self,
ret.first);
}
for (auto t : cpu_outputs) {
static_cast<CpuFlatTensorBuffer*>(t)->save_to_map(self,
ret.first);
}
} else {
destroy(cpu_inputs);
destroy(cpu_outputs);
}
return ret;
},
py::arg("inputs"), py::arg("outputs"),
py::arg("enable_dynamic_array") = false)
.def("wait",
[](vart::Runner* self, std::pair<uint32_t, int> job_id) {
auto ret = self->wait(job_id.first, -1);
auto the_map = get_store();
// copy instead of reference, it is important, do not use
// reference here, the decontructor will clean up the mess.
auto v = (*the_map)[self][(int)job_id.first];
for (auto t : v) {
delete t;
}
return ret;
})
.def("__repr__", [](const vart::Runner* self) {
std::ostringstream str;
str << "vart::Runner@" << (void*)self;
return str.str();
});
py::class_<vart::RunnerExt, vart::Runner>(m, "RunnerExt")
.def_static(
"create_runner",
[](const xir::Subgraph* s,
const std::string& mode) -> std::unique_ptr<vart::RunnerExt> {
auto runner = vart::Runner::create_runner(s, mode);
auto runner_ext = dynamic_cast<vart::RunnerExt*>(runner.get());
if (runner_ext == nullptr) {
return nullptr;
}
runner.release();
return std::unique_ptr<vart::RunnerExt>(runner_ext);
})
.def("get_inputs",
[](vart::RunnerExt* self) {
return vart::alloc_cpu_flat_tensor_buffers(
self->get_input_tensors());
})
.def("get_outputs", [](vart::RunnerExt* self) {
return vart::alloc_cpu_flat_tensor_buffers(self->get_output_tensors());
});
}
} // namespace
|