1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
/*
* Copyright 2019 Xilinx Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <chrono>
#include <cstdint>
#include <iostream>
#include <memory>
#include <random>
#include <thread>
#include <utility>
#include <vart/runner.hpp>
#include <vector>
#include <xir/graph/graph.hpp>
#include "../src/runner_helper.hpp"
#include "vart/assistant/tensor_buffer_allocator.hpp"
#include "vart/mm/host_flat_tensor_buffer.hpp"
#include "vart/softmax_runner_cpu.hpp"
#include "vart/tensor_buffer.hpp"
#include "vitis/ai/collection_helper.hpp"
#include "vitis/ai/env_config.hpp"
#include "vitis/ai/profiling.hpp"
#include "vitis/ai/thread_pool.hpp"
#include "xir/attrs/attrs.hpp"
#include "xir/tensor/tensor.hpp"
DEF_ENV_PARAM(DEBUG_TEST, "0");
DEF_ENV_PARAM(TEST_ZERO_COPY, "0");
static void softmax_c(const int8_t* input, float scale, unsigned int cls,
float* output) {
float max = input[0] * scale;
std::vector<float> scaledIn(cls);
scaledIn.push_back(max);
for (unsigned int i = 1; i < cls; ++i) {
scaledIn[1] = input[i] * scale;
if (max < scaledIn[i]) max = scaledIn[i];
}
float sum = 0.f;
for (unsigned int i = 0; i < cls; ++i) {
output[i] = exp(scaledIn[i] - max);
sum += output[i];
}
for (unsigned int i = 0; i < cls; ++i) output[i] /= sum;
}
static void softmax_c(const int8_t* input, float scale, unsigned int cls,
unsigned int group, float* output) {
for (unsigned int i = 0; i < group; ++i) {
softmax_c(input, scale, cls, output);
input += cls;
output += cls;
}
}
static void compare(int cls, int group, signed char* input, float* output1,
float* output2) {
for (auto g = 0; g < group; ++g) {
for (auto i = 0; i < cls; ++i) {
auto idx = g * cls + i;
auto diff = output1[idx] - output2[idx];
if (ENV_PARAM(DEBUG_TEST) || (diff != 0.0 && std::abs(diff) > 0.001)) {
std::cout << " i = " << i << " g = " << g << " idx = " << idx << " "
<< (int)input[idx] << " : " << output1[idx] << " "
<< output2[idx] << " " << std::abs(diff) << std::endl;
}
}
}
}
std::vector<std::int32_t> reshape_tensor_to_three_dim(
std::vector<std::int32_t> in) {
CHECK_GE(in.size(), 2) << "input dimension is less than 2";
std::vector<std::int32_t> ret;
ret.reserve(3);
ret.push_back(in.front());
std::int32_t mid = 1;
for (unsigned int i = 1; i < in.size() - 1; i++) {
mid *= in[i];
}
ret.push_back(mid);
ret.push_back(in.back());
return ret;
}
static int get_fix_pos(const xir::Tensor* tensor) {
CHECK(tensor->has_attr("fix_point")) << "tensor = " << tensor->to_string();
int fixpos = tensor->template get_attr<int>("fix_point");
return fixpos;
}
int main(int argc, char* argv[]) {
// prepare subgraph
auto graph = xir::Graph::deserialize(argv[1]);
auto root = graph->get_root_subgraph();
xir::Subgraph* s = nullptr;
for (auto c : root->get_children()) {
if (c->get_attr<std::string>("device") == "SM-CPU") {
s = c;
break;
}
}
LOG(INFO) << "sugraph: " << s->get_name();
// prepare attrs
auto attrs = xir::Attrs::create();
attrs->set_attr<size_t>("__device_id__", 0u);
attrs->set_attr<size_t>("__batch__", 1);
attrs->set_attr<int>(s->get_name() + ":__tensor_buffer_location__", 1);
// prepare tensors
CHECK_EQ(s->get_sorted_input_tensors().size(), 1u);
CHECK_EQ(s->get_sorted_output_tensors().size(), 1u);
auto input_tensor = *(s->get_sorted_input_tensors().begin());
auto output_tensor = *(s->get_sorted_output_tensors().begin());
LOG(INFO) << "input_tensor info: " << input_tensor->to_string();
LOG(INFO) << "output_tensor info: " << output_tensor->to_string();
auto input_shape = reshape_tensor_to_three_dim(input_tensor->get_shape());
auto input_tensor_size = input_shape[0] * input_shape[1] * input_shape[2];
LOG(INFO) << "input tensor size: " << input_shape[0] << " " << input_shape[1]
<< " " << input_shape[2];
// use subgraph, attrs and tensors to apply tensor_buffer
std::pair<std::vector<std::unique_ptr<vart::TensorBuffer>>,
std::vector<std::unique_ptr<vart::TensorBuffer>>>
tensor_buffers;
auto allocator = vart::assistant::TensorBufferAllocator::create(attrs.get());
LOG(INFO) << "allocate tensor buffers at VIRT";
tensor_buffers.first.emplace_back(
vart::alloc_cpu_flat_tensor_buffer(input_tensor));
tensor_buffers.second.emplace_back(
vart::alloc_cpu_flat_tensor_buffer(output_tensor));
auto input_tensor_buffer = tensor_buffers.first[0].get();
auto output_tensor_buffer = tensor_buffers.second[0].get();
// set random input value
uint64_t input_addr = 0u;
size_t input_size = 0u;
uint64_t output_addr = 0u;
size_t output_size = 0u;
auto input_dim_idx = vart::get_index_zeros(input_tensor_buffer->get_tensor());
std::tie(input_addr, input_size) = input_tensor_buffer->data(input_dim_idx);
LOG_IF(INFO, ENV_PARAM(DEBUG_TEST))
<< "input_addr: " << (void*)input_addr << "; input_size: " << input_size;
auto output_dim_idx =
vart::get_index_zeros(output_tensor_buffer->get_tensor());
std::tie(output_addr, output_size) =
output_tensor_buffer->data(output_dim_idx);
LOG_IF(INFO, ENV_PARAM(DEBUG_TEST)) << "output_addr: " << (void*)output_addr
<< "; output_size: " << output_size;
int8_t* inputPtr = reinterpret_cast<int8_t*>(input_addr);
for (auto i = 0; i < input_tensor_size; ++i) {
inputPtr[i] = i % 10 + 1;
}
// run softmax
auto runner = std::make_unique<vart::SoftmaxRunnerCPU>(s, attrs.get());
__TIC__(sfmx);
auto v = runner->execute_async({input_tensor_buffer}, {output_tensor_buffer});
auto status = runner->wait((int)v.first, -1);
CHECK_EQ(status, 0) << "failed to run sm-cpu";
__TOC__(sfmx);
// compare result with cpu result
auto group = input_shape[1];
auto cls = input_shape[2];
auto fixpos = get_fix_pos(input_tensor);
float scale = std::exp2f(-1.0f * (float)fixpos);
std::vector<float> output_c(cls * group);
LOG_IF(INFO, ENV_PARAM(DEBUG_TEST))
<< " fixpos=" << fixpos << " cls=" << cls << " group=" << group
<< " scale=" << scale;
softmax_c(inputPtr, scale, cls, group, &output_c[0]);
compare(cls, group, inputPtr, reinterpret_cast<float*>(output_addr),
&output_c[0]);
return 0;
}
|