1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
|
/* Copyright (c) 2010 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Utility for ChromeOS-specific GPT partitions, Please see corresponding .c
* files for more details.
*/
#include <errno.h>
#include <fcntl.h>
#include <getopt.h>
#if !defined(HAVE_MACOS) && !defined(__FreeBSD__) && !defined(__OpenBSD__)
#include <linux/major.h>
#include <mtd/mtd-user.h>
#endif
#include <stdarg.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include "cgpt.h"
#include "cgptlib_internal.h"
#include "crc32.h"
#include "vboot_host.h"
static const char kErrorTag[] = "ERROR";
static const char kWarningTag[] = "WARNING";
static void LogToStderr(const char *tag, const char *format, va_list ap) {
fprintf(stderr, "%s: ", tag);
vfprintf(stderr, format, ap);
}
void Error(const char *format, ...) {
va_list ap;
va_start(ap, format);
LogToStderr(kErrorTag, format, ap);
va_end(ap);
}
void Warning(const char *format, ...) {
va_list ap;
va_start(ap, format);
LogToStderr(kWarningTag, format, ap);
va_end(ap);
}
int check_int_parse(char option, const char *buf) {
if (!*optarg || (buf && *buf)) {
Error("invalid argument to -%c: \"%s\"\n", option, optarg);
return 1;
}
return 0;
}
int check_int_limit(char option, int val, int low, int high) {
if (val < low || val > high) {
Error("value for -%c must be between %d and %d", option, low, high);
return 1;
}
return 0;
}
int CheckValid(const struct drive *drive) {
if ((drive->gpt.valid_headers != MASK_BOTH) ||
(drive->gpt.valid_entries != MASK_BOTH)) {
Warning("One of the GPT headers/entries is invalid\n\n");
return CGPT_FAILED;
}
return CGPT_OK;
}
int Load(struct drive *drive, uint8_t *buf,
const uint64_t sector,
const uint64_t sector_bytes,
const uint64_t sector_count) {
int count; /* byte count to read */
int nread;
require(buf);
if (!sector_count || !sector_bytes) {
Error("%s() failed at line %d: sector_count=%" PRIu64 ", sector_bytes=%" PRIu64 "\n",
__FUNCTION__, __LINE__, sector_count, sector_bytes);
return CGPT_FAILED;
}
/* Make sure that sector_bytes * sector_count doesn't roll over. */
if (sector_bytes > (UINT64_MAX / sector_count)) {
Error("%s() failed at line %d: sector_count=%" PRIu64 ", sector_bytes=%" PRIu64 "\n",
__FUNCTION__, __LINE__, sector_count, sector_bytes);
return CGPT_FAILED;
}
count = sector_bytes * sector_count;
if (-1 == lseek(drive->fd, sector * sector_bytes, SEEK_SET)) {
Error("Can't seek: %s\n", strerror(errno));
return CGPT_FAILED;
}
nread = read(drive->fd, buf, count);
if (nread < count) {
Error("Can't read enough: %d, not %d\n", nread, count);
return CGPT_FAILED;
}
return CGPT_OK;
}
int ReadPMBR(struct drive *drive) {
if (-1 == lseek(drive->fd, 0, SEEK_SET))
return CGPT_FAILED;
int nread = read(drive->fd, &drive->pmbr, sizeof(struct pmbr));
if (nread != sizeof(struct pmbr))
return CGPT_FAILED;
return CGPT_OK;
}
int WritePMBR(struct drive *drive) {
if (-1 == lseek(drive->fd, 0, SEEK_SET))
return CGPT_FAILED;
int nwrote = write(drive->fd, &drive->pmbr, sizeof(struct pmbr));
if (nwrote != sizeof(struct pmbr))
return CGPT_FAILED;
return CGPT_OK;
}
int Save(struct drive *drive, const uint8_t *buf,
const uint64_t sector,
const uint64_t sector_bytes,
const uint64_t sector_count) {
int count; /* byte count to write */
int nwrote;
require(buf);
count = sector_bytes * sector_count;
if (-1 == lseek(drive->fd, sector * sector_bytes, SEEK_SET))
return CGPT_FAILED;
nwrote = write(drive->fd, buf, count);
if (nwrote < count)
return CGPT_FAILED;
return CGPT_OK;
}
static int GptLoad(struct drive *drive, uint32_t sector_bytes) {
drive->gpt.sector_bytes = sector_bytes;
if (drive->size % drive->gpt.sector_bytes) {
Error("Media size (%llu) is not a multiple of sector size(%d)\n",
(long long unsigned int)drive->size, drive->gpt.sector_bytes);
return -1;
}
drive->gpt.streaming_drive_sectors = drive->size / drive->gpt.sector_bytes;
drive->gpt.primary_header = malloc(drive->gpt.sector_bytes);
drive->gpt.secondary_header = malloc(drive->gpt.sector_bytes);
drive->gpt.primary_entries = malloc(GPT_ENTRIES_ALLOC_SIZE);
drive->gpt.secondary_entries = malloc(GPT_ENTRIES_ALLOC_SIZE);
if (!drive->gpt.primary_header || !drive->gpt.secondary_header ||
!drive->gpt.primary_entries || !drive->gpt.secondary_entries)
return -1;
/* TODO(namnguyen): Remove this and totally trust gpt_drive_sectors. */
if (!(drive->gpt.flags & GPT_FLAG_EXTERNAL)) {
drive->gpt.gpt_drive_sectors = drive->gpt.streaming_drive_sectors;
} /* Else, we trust gpt.gpt_drive_sectors. */
// Read the data.
if (CGPT_OK != Load(drive, drive->gpt.primary_header,
GPT_PMBR_SECTORS,
drive->gpt.sector_bytes, GPT_HEADER_SECTORS)) {
Error("Cannot read primary GPT header\n");
return -1;
}
if (CGPT_OK != Load(drive, drive->gpt.secondary_header,
drive->gpt.gpt_drive_sectors - GPT_PMBR_SECTORS,
drive->gpt.sector_bytes, GPT_HEADER_SECTORS)) {
Error("Cannot read secondary GPT header\n");
return -1;
}
GptHeader* primary_header = (GptHeader*)drive->gpt.primary_header;
if (CheckHeader(primary_header, 0, drive->gpt.streaming_drive_sectors,
drive->gpt.gpt_drive_sectors,
drive->gpt.flags,
drive->gpt.sector_bytes) == 0) {
if (CGPT_OK != Load(drive, drive->gpt.primary_entries,
primary_header->entries_lba,
drive->gpt.sector_bytes,
CalculateEntriesSectors(primary_header,
drive->gpt.sector_bytes))) {
Error("Cannot read primary partition entry array\n");
return -1;
}
} else {
Warning("Primary GPT header is %s\n",
memcmp(primary_header->signature, GPT_HEADER_SIGNATURE_IGNORED,
GPT_HEADER_SIGNATURE_SIZE) ? "invalid" : "being ignored");
}
GptHeader* secondary_header = (GptHeader*)drive->gpt.secondary_header;
if (CheckHeader(secondary_header, 1, drive->gpt.streaming_drive_sectors,
drive->gpt.gpt_drive_sectors,
drive->gpt.flags,
drive->gpt.sector_bytes) == 0) {
if (CGPT_OK != Load(drive, drive->gpt.secondary_entries,
secondary_header->entries_lba,
drive->gpt.sector_bytes,
CalculateEntriesSectors(secondary_header,
drive->gpt.sector_bytes))) {
Error("Cannot read secondary partition entry array\n");
return -1;
}
} else {
Warning("Secondary GPT header is %s\n",
memcmp(primary_header->signature, GPT_HEADER_SIGNATURE_IGNORED,
GPT_HEADER_SIGNATURE_SIZE) ? "invalid" : "being ignored");
}
return 0;
}
static int GptSave(struct drive *drive) {
int errors = 0;
if (!(drive->gpt.ignored & MASK_PRIMARY)) {
if (drive->gpt.modified & GPT_MODIFIED_HEADER1) {
if (CGPT_OK != Save(drive, drive->gpt.primary_header,
GPT_PMBR_SECTORS,
drive->gpt.sector_bytes, GPT_HEADER_SECTORS)) {
errors++;
Error("Cannot write primary header: %s\n", strerror(errno));
}
}
GptHeader* primary_header = (GptHeader*)drive->gpt.primary_header;
if (drive->gpt.modified & GPT_MODIFIED_ENTRIES1) {
if (CGPT_OK != Save(drive, drive->gpt.primary_entries,
primary_header->entries_lba,
drive->gpt.sector_bytes,
CalculateEntriesSectors(primary_header,
drive->gpt.sector_bytes))) {
errors++;
Error("Cannot write primary entries: %s\n", strerror(errno));
}
}
// Sync primary GPT before touching secondary so one is always valid.
if (drive->gpt.modified & (GPT_MODIFIED_HEADER1 | GPT_MODIFIED_ENTRIES1))
if (fsync(drive->fd) < 0 && errno == EIO) {
errors++;
Error("I/O error when trying to write primary GPT\n");
}
}
// Only start writing secondary GPT if primary was written correctly.
if (!errors && !(drive->gpt.ignored & MASK_SECONDARY)) {
if (drive->gpt.modified & GPT_MODIFIED_HEADER2) {
if(CGPT_OK != Save(drive, drive->gpt.secondary_header,
drive->gpt.gpt_drive_sectors - GPT_PMBR_SECTORS,
drive->gpt.sector_bytes, GPT_HEADER_SECTORS)) {
errors++;
Error("Cannot write secondary header: %s\n", strerror(errno));
}
}
GptHeader* secondary_header = (GptHeader*)drive->gpt.secondary_header;
if (drive->gpt.modified & GPT_MODIFIED_ENTRIES2) {
if (CGPT_OK != Save(drive, drive->gpt.secondary_entries,
secondary_header->entries_lba,
drive->gpt.sector_bytes,
CalculateEntriesSectors(secondary_header,
drive->gpt.sector_bytes))) {
errors++;
Error("Cannot write secondary entries: %s\n", strerror(errno));
}
}
}
return errors ? -1 : 0;
}
/*
* Query drive size and bytes per sector. Return zero on success. On error,
* -1 is returned and errno is set appropriately.
*/
static int ObtainDriveSize(int fd, uint64_t* size, uint32_t* sector_bytes) {
struct stat stat;
if (fstat(fd, &stat) == -1) {
return -1;
}
#if !defined(HAVE_MACOS) && !defined(__FreeBSD__) && !defined(__OpenBSD__)
if ((stat.st_mode & S_IFMT) != S_IFREG) {
if (ioctl(fd, BLKGETSIZE64, size) < 0) {
return -1;
}
if (ioctl(fd, BLKSSZGET, sector_bytes) < 0) {
return -1;
}
} else {
*sector_bytes = 512; /* bytes */
*size = stat.st_size;
}
#else
*sector_bytes = 512; /* bytes */
*size = stat.st_size;
#endif
return 0;
}
int DriveOpen(const char *drive_path, struct drive *drive, int mode,
uint64_t drive_size) {
uint32_t sector_bytes;
require(drive_path);
require(drive);
// Clear struct for proper error handling.
memset(drive, 0, sizeof(struct drive));
drive->fd = open(drive_path, mode |
#if !defined(HAVE_MACOS) && !defined(__FreeBSD__) && !defined(__OpenBSD__)
O_LARGEFILE |
#endif
O_NOFOLLOW);
if (drive->fd == -1) {
Error("Can't open %s: %s\n", drive_path, strerror(errno));
return CGPT_FAILED;
}
uint64_t gpt_drive_size;
if (ObtainDriveSize(drive->fd, &gpt_drive_size, §or_bytes) != 0) {
Error("Can't get drive size and bytes per sector for %s: %s\n",
drive_path, strerror(errno));
goto error_close;
}
drive->gpt.gpt_drive_sectors = gpt_drive_size / sector_bytes;
if (drive_size == 0) {
drive->size = gpt_drive_size;
drive->gpt.flags = 0;
} else {
drive->size = drive_size;
drive->gpt.flags = GPT_FLAG_EXTERNAL;
}
if (GptLoad(drive, sector_bytes)) {
goto error_close;
}
// We just load the data. Caller must validate it.
return CGPT_OK;
error_close:
(void) DriveClose(drive, 0);
return CGPT_FAILED;
}
int DriveClose(struct drive *drive, int update_as_needed) {
int errors = 0;
if (update_as_needed) {
if (GptSave(drive)) {
errors++;
}
}
free(drive->gpt.primary_header);
drive->gpt.primary_header = NULL;
free(drive->gpt.primary_entries);
drive->gpt.primary_entries = NULL;
free(drive->gpt.secondary_header);
drive->gpt.secondary_header = NULL;
free(drive->gpt.secondary_entries);
drive->gpt.secondary_entries = NULL;
// Sync early! Only sync file descriptor here, and leave the whole system sync
// outside cgpt because whole system sync would trigger tons of disk accesses
// and timeout tests.
fsync(drive->fd);
close(drive->fd);
return errors ? CGPT_FAILED : CGPT_OK;
}
/* GUID conversion functions. Accepted format:
*
* "C12A7328-F81F-11D2-BA4B-00A0C93EC93B"
*
* Returns CGPT_OK if parsing is successful; otherwise CGPT_FAILED.
*/
int StrToGuid(const char *str, Guid *guid) {
uint32_t time_low;
uint16_t time_mid;
uint16_t time_high_and_version;
unsigned int chunk[11];
if (11 != sscanf(str, "%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X",
chunk+0,
chunk+1,
chunk+2,
chunk+3,
chunk+4,
chunk+5,
chunk+6,
chunk+7,
chunk+8,
chunk+9,
chunk+10)) {
printf("FAILED\n");
return CGPT_FAILED;
}
time_low = chunk[0] & 0xffffffff;
time_mid = chunk[1] & 0xffff;
time_high_and_version = chunk[2] & 0xffff;
guid->u.Uuid.time_low = htole32(time_low);
guid->u.Uuid.time_mid = htole16(time_mid);
guid->u.Uuid.time_high_and_version = htole16(time_high_and_version);
guid->u.Uuid.clock_seq_high_and_reserved = chunk[3] & 0xff;
guid->u.Uuid.clock_seq_low = chunk[4] & 0xff;
guid->u.Uuid.node[0] = chunk[5] & 0xff;
guid->u.Uuid.node[1] = chunk[6] & 0xff;
guid->u.Uuid.node[2] = chunk[7] & 0xff;
guid->u.Uuid.node[3] = chunk[8] & 0xff;
guid->u.Uuid.node[4] = chunk[9] & 0xff;
guid->u.Uuid.node[5] = chunk[10] & 0xff;
return CGPT_OK;
}
void GuidToStr(const Guid *guid, char *str, unsigned int buflen) {
require(buflen >= GUID_STRLEN);
require(snprintf(str, buflen,
"%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X",
le32toh(guid->u.Uuid.time_low),
le16toh(guid->u.Uuid.time_mid),
le16toh(guid->u.Uuid.time_high_and_version),
guid->u.Uuid.clock_seq_high_and_reserved,
guid->u.Uuid.clock_seq_low,
guid->u.Uuid.node[0], guid->u.Uuid.node[1],
guid->u.Uuid.node[2], guid->u.Uuid.node[3],
guid->u.Uuid.node[4], guid->u.Uuid.node[5]) == GUID_STRLEN-1);
}
/* Convert possibly unterminated UTF16 string to UTF8.
* Caller must prepare enough space for UTF8, which could be up to
* twice the byte length of UTF16 string plus the terminating '\0'.
* See the following table for encoding lengths.
*
* Code point UTF16 UTF8
* 0x0000-0x007F 2 bytes 1 byte
* 0x0080-0x07FF 2 bytes 2 bytes
* 0x0800-0xFFFF 2 bytes 3 bytes
* 0x10000-0x10FFFF 4 bytes 4 bytes
*
* This function uses a simple state meachine to convert UTF-16 char(s) to
* a code point. Once a code point is parsed out, the state machine throws
* out sequencial UTF-8 chars in one time.
*
* Return: CGPT_OK --- all character are converted successfully.
* CGPT_FAILED --- convert error, i.e. output buffer is too short.
*/
int UTF16ToUTF8(const uint16_t *utf16, unsigned int maxinput,
uint8_t *utf8, unsigned int maxoutput)
{
size_t s16idx, s8idx;
uint32_t code_point = 0;
int code_point_ready = 1; // code point is ready to output.
int retval = CGPT_OK;
if (!utf16 || !maxinput || !utf8 || !maxoutput)
return CGPT_FAILED;
maxoutput--; /* plan for termination now */
for (s16idx = s8idx = 0;
s16idx < maxinput && utf16[s16idx] && maxoutput;
s16idx++) {
uint16_t codeunit = le16toh(utf16[s16idx]);
if (code_point_ready) {
if (codeunit >= 0xD800 && codeunit <= 0xDBFF) {
/* high surrogate, need the low surrogate. */
code_point_ready = 0;
code_point = (codeunit & 0x03FF) + 0x0040;
} else {
/* BMP char, output it. */
code_point = codeunit;
}
} else {
/* expect the low surrogate */
if (codeunit >= 0xDC00 && codeunit <= 0xDFFF) {
code_point = (code_point << 10) | (codeunit & 0x03FF);
code_point_ready = 1;
} else {
/* the second code unit is NOT the low surrogate. Unexpected. */
code_point_ready = 0;
retval = CGPT_FAILED;
break;
}
}
/* If UTF code point is ready, output it. */
if (code_point_ready) {
require(code_point <= 0x10FFFF);
if (code_point <= 0x7F && maxoutput >= 1) {
maxoutput -= 1;
utf8[s8idx++] = code_point & 0x7F;
} else if (code_point <= 0x7FF && maxoutput >= 2) {
maxoutput -= 2;
utf8[s8idx++] = 0xC0 | (code_point >> 6);
utf8[s8idx++] = 0x80 | (code_point & 0x3F);
} else if (code_point <= 0xFFFF && maxoutput >= 3) {
maxoutput -= 3;
utf8[s8idx++] = 0xE0 | (code_point >> 12);
utf8[s8idx++] = 0x80 | ((code_point >> 6) & 0x3F);
utf8[s8idx++] = 0x80 | (code_point & 0x3F);
} else if (code_point <= 0x10FFFF && maxoutput >= 4) {
maxoutput -= 4;
utf8[s8idx++] = 0xF0 | (code_point >> 18);
utf8[s8idx++] = 0x80 | ((code_point >> 12) & 0x3F);
utf8[s8idx++] = 0x80 | ((code_point >> 6) & 0x3F);
utf8[s8idx++] = 0x80 | (code_point & 0x3F);
} else {
/* buffer underrun */
retval = CGPT_FAILED;
break;
}
}
}
utf8[s8idx++] = 0;
return retval;
}
/* Convert UTF8 string to UTF16. The UTF8 string must be null-terminated.
* Caller must prepare enough space for UTF16, including a terminating 0x0000.
* See the following table for encoding lengths. In any case, the caller
* just needs to prepare the byte length of UTF8 plus the terminating 0x0000.
*
* Code point UTF16 UTF8
* 0x0000-0x007F 2 bytes 1 byte
* 0x0080-0x07FF 2 bytes 2 bytes
* 0x0800-0xFFFF 2 bytes 3 bytes
* 0x10000-0x10FFFF 4 bytes 4 bytes
*
* This function converts UTF8 chars to a code point first. Then, convrts it
* to UTF16 code unit(s).
*
* Return: CGPT_OK --- all character are converted successfully.
* CGPT_FAILED --- convert error, i.e. output buffer is too short.
*/
int UTF8ToUTF16(const uint8_t *utf8, uint16_t *utf16, unsigned int maxoutput)
{
size_t s16idx, s8idx;
uint32_t code_point = 0;
unsigned int expected_units = 1;
unsigned int decoded_units = 1;
int retval = CGPT_OK;
if (!utf8 || !utf16 || !maxoutput)
return CGPT_FAILED;
maxoutput--; /* plan for termination */
for (s8idx = s16idx = 0;
utf8[s8idx] && maxoutput;
s8idx++) {
uint8_t code_unit;
code_unit = utf8[s8idx];
if (expected_units != decoded_units) {
/* Trailing bytes of multi-byte character */
if ((code_unit & 0xC0) == 0x80) {
code_point = (code_point << 6) | (code_unit & 0x3F);
++decoded_units;
} else {
/* Unexpected code unit. */
retval = CGPT_FAILED;
break;
}
} else {
/* parsing a new code point. */
decoded_units = 1;
if (code_unit <= 0x7F) {
code_point = code_unit;
expected_units = 1;
} else if (code_unit <= 0xBF) {
/* 0x80-0xBF must NOT be the heading byte unit of a new code point. */
retval = CGPT_FAILED;
break;
} else if (code_unit >= 0xC2 && code_unit <= 0xDF) {
code_point = code_unit & 0x1F;
expected_units = 2;
} else if (code_unit >= 0xE0 && code_unit <= 0xEF) {
code_point = code_unit & 0x0F;
expected_units = 3;
} else if (code_unit >= 0xF0 && code_unit <= 0xF4) {
code_point = code_unit & 0x07;
expected_units = 4;
} else {
/* illegal code unit: 0xC0-0xC1, 0xF5-0xFF */
retval = CGPT_FAILED;
break;
}
}
/* If no more unit is needed, output the UTF16 unit(s). */
if ((retval == CGPT_OK) &&
(expected_units == decoded_units)) {
/* Check if the encoding is the shortest possible UTF-8 sequence. */
switch (expected_units) {
case 2:
if (code_point <= 0x7F) retval = CGPT_FAILED;
break;
case 3:
if (code_point <= 0x7FF) retval = CGPT_FAILED;
break;
case 4:
if (code_point <= 0xFFFF) retval = CGPT_FAILED;
break;
}
if (retval == CGPT_FAILED) break; /* leave immediately */
if ((code_point <= 0xD7FF) ||
(code_point >= 0xE000 && code_point <= 0xFFFF)) {
utf16[s16idx++] = code_point;
maxoutput -= 1;
} else if (code_point >= 0x10000 && code_point <= 0x10FFFF &&
maxoutput >= 2) {
utf16[s16idx++] = 0xD800 | ((code_point >> 10) - 0x0040);
utf16[s16idx++] = 0xDC00 | (code_point & 0x03FF);
maxoutput -= 2;
} else {
/* Three possibilities fall into here. Both are failure cases.
* a. surrogate pair (non-BMP characters; 0xD800~0xDFFF)
* b. invalid code point > 0x10FFFF
* c. buffer underrun
*/
retval = CGPT_FAILED;
break;
}
}
}
/* A null-terminator shows up before the UTF8 sequence ends. */
if (expected_units != decoded_units) {
retval = CGPT_FAILED;
}
utf16[s16idx++] = 0;
return retval;
}
/* global types to compare against */
const Guid guid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE;
const Guid guid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL;
const Guid guid_chromeos_rootfs = GPT_ENT_TYPE_CHROMEOS_ROOTFS;
const Guid guid_basic_data = GPT_ENT_TYPE_BASIC_DATA;
const Guid guid_linux_data = GPT_ENT_TYPE_LINUX_FS;
const Guid guid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED;
const Guid guid_efi = GPT_ENT_TYPE_EFI;
const Guid guid_unused = GPT_ENT_TYPE_UNUSED;
const Guid guid_chromeos_minios = GPT_ENT_TYPE_CHROMEOS_MINIOS;
const Guid guid_chromeos_hibernate = GPT_ENT_TYPE_CHROMEOS_HIBERNATE;
const static struct {
const Guid *type;
const char *name;
const char *description;
} supported_types[] = {
{&guid_chromeos_firmware, "firmware", "ChromeOS firmware"},
{&guid_chromeos_kernel, "kernel", "ChromeOS kernel"},
{&guid_chromeos_rootfs, "rootfs", "ChromeOS rootfs"},
{&guid_linux_data, "data", "Linux data"},
{&guid_basic_data, "basicdata", "Basic data"},
{&guid_chromeos_reserved, "reserved", "ChromeOS reserved"},
{&guid_efi, "efi", "EFI System Partition"},
{&guid_unused, "unused", "Unused (nonexistent) partition"},
{&guid_chromeos_minios, "minios", "ChromeOS miniOS"},
{&guid_chromeos_hibernate, "hibernate", "ChromeOS hibernate"},
};
/* Resolves human-readable GPT type.
* Returns CGPT_OK if found.
* Returns CGPT_FAILED if no known type found. */
int ResolveType(const Guid *type, char *buf) {
int i;
for (i = 0; i < ARRAY_COUNT(supported_types); ++i) {
if (!memcmp(type, supported_types[i].type, sizeof(Guid))) {
strcpy(buf, supported_types[i].description);
return CGPT_OK;
}
}
return CGPT_FAILED;
}
int SupportedType(const char *name, Guid *type) {
int i;
for (i = 0; i < ARRAY_COUNT(supported_types); ++i) {
if (!strcmp(name, supported_types[i].name)) {
memcpy(type, supported_types[i].type, sizeof(Guid));
return CGPT_OK;
}
}
return CGPT_FAILED;
}
void PrintTypes(void) {
int i;
printf("The partition type may also be given as one of these aliases:\n\n");
for (i = 0; i < ARRAY_COUNT(supported_types); ++i) {
printf(" %-10s %s\n", supported_types[i].name,
supported_types[i].description);
}
printf("\n");
}
static GptHeader* GetGptHeader(const GptData *gpt) {
if (gpt->valid_headers & MASK_PRIMARY)
return (GptHeader*)gpt->primary_header;
else if (gpt->valid_headers & MASK_SECONDARY)
return (GptHeader*)gpt->secondary_header;
else
return 0;
}
uint32_t GetNumberOfEntries(const struct drive *drive) {
GptHeader *header = GetGptHeader(&drive->gpt);
if (!header)
return 0;
return header->number_of_entries;
}
GptEntry *GetEntry(GptData *gpt, int secondary, uint32_t entry_index) {
GptHeader *header = GetGptHeader(gpt);
uint8_t *entries;
uint32_t stride = header->size_of_entry;
require(stride);
require(entry_index < header->number_of_entries);
if (secondary == PRIMARY) {
entries = gpt->primary_entries;
} else if (secondary == SECONDARY) {
entries = gpt->secondary_entries;
} else { /* ANY_VALID */
require(secondary == ANY_VALID);
if (gpt->valid_entries & MASK_PRIMARY) {
entries = gpt->primary_entries;
} else {
require(gpt->valid_entries & MASK_SECONDARY);
entries = gpt->secondary_entries;
}
}
return (GptEntry*)(&entries[stride * entry_index]);
}
void SetRequired(struct drive *drive, int secondary, uint32_t entry_index,
int required) {
require(required >= 0 && required <= CGPT_ATTRIBUTE_MAX_REQUIRED);
GptEntry *entry;
entry = GetEntry(&drive->gpt, secondary, entry_index);
SetEntryRequired(entry, required);
}
int GetRequired(struct drive *drive, int secondary, uint32_t entry_index) {
GptEntry *entry;
entry = GetEntry(&drive->gpt, secondary, entry_index);
return GetEntryRequired(entry);
}
void SetLegacyBoot(struct drive *drive, int secondary, uint32_t entry_index,
int legacy_boot) {
require(legacy_boot >= 0 && legacy_boot <= CGPT_ATTRIBUTE_MAX_LEGACY_BOOT);
GptEntry *entry;
entry = GetEntry(&drive->gpt, secondary, entry_index);
SetEntryLegacyBoot(entry, legacy_boot);
}
int GetLegacyBoot(struct drive *drive, int secondary, uint32_t entry_index) {
GptEntry *entry;
entry = GetEntry(&drive->gpt, secondary, entry_index);
return GetEntryLegacyBoot(entry);
}
void SetPriority(struct drive *drive, int secondary, uint32_t entry_index,
int priority) {
require(priority >= 0 && priority <= CGPT_ATTRIBUTE_MAX_PRIORITY);
GptEntry *entry;
entry = GetEntry(&drive->gpt, secondary, entry_index);
SetEntryPriority(entry, priority);
}
int GetPriority(struct drive *drive, int secondary, uint32_t entry_index) {
GptEntry *entry;
entry = GetEntry(&drive->gpt, secondary, entry_index);
return GetEntryPriority(entry);
}
void SetTries(struct drive *drive, int secondary, uint32_t entry_index,
int tries) {
require(tries >= 0 && tries <= CGPT_ATTRIBUTE_MAX_TRIES);
GptEntry *entry;
entry = GetEntry(&drive->gpt, secondary, entry_index);
SetEntryTries(entry, tries);
}
int GetTries(struct drive *drive, int secondary, uint32_t entry_index) {
GptEntry *entry;
entry = GetEntry(&drive->gpt, secondary, entry_index);
return GetEntryTries(entry);
}
void SetSuccessful(struct drive *drive, int secondary, uint32_t entry_index,
int success) {
require(success >= 0 && success <= CGPT_ATTRIBUTE_MAX_SUCCESSFUL);
GptEntry *entry;
entry = GetEntry(&drive->gpt, secondary, entry_index);
SetEntrySuccessful(entry, success);
}
int GetSuccessful(struct drive *drive, int secondary, uint32_t entry_index) {
GptEntry *entry;
entry = GetEntry(&drive->gpt, secondary, entry_index);
return GetEntrySuccessful(entry);
}
void SetRaw(struct drive *drive, int secondary, uint32_t entry_index,
uint32_t raw) {
GptEntry *entry;
entry = GetEntry(&drive->gpt, secondary, entry_index);
entry->attrs.fields.gpt_att = (uint16_t)raw;
}
void UpdateAllEntries(struct drive *drive) {
RepairEntries(&drive->gpt, MASK_PRIMARY);
RepairHeader(&drive->gpt, MASK_PRIMARY);
drive->gpt.modified |= (GPT_MODIFIED_HEADER1 | GPT_MODIFIED_ENTRIES1 |
GPT_MODIFIED_HEADER2 | GPT_MODIFIED_ENTRIES2);
UpdateCrc(&drive->gpt);
}
int IsUnused(struct drive *drive, int secondary, uint32_t index) {
GptEntry *entry;
entry = GetEntry(&drive->gpt, secondary, index);
return GuidIsZero(&entry->type);
}
int IsKernel(struct drive *drive, int secondary, uint32_t index) {
GptEntry *entry;
entry = GetEntry(&drive->gpt, secondary, index);
return GuidEqual(&entry->type, &guid_chromeos_kernel);
}
#define TOSTRING(A) #A
const char *GptError(int errnum) {
const char *error_string[] = {
TOSTRING(GPT_SUCCESS),
TOSTRING(GPT_ERROR_NO_VALID_KERNEL),
TOSTRING(GPT_ERROR_INVALID_HEADERS),
TOSTRING(GPT_ERROR_INVALID_ENTRIES),
TOSTRING(GPT_ERROR_INVALID_SECTOR_SIZE),
TOSTRING(GPT_ERROR_INVALID_SECTOR_NUMBER),
TOSTRING(GPT_ERROR_INVALID_UPDATE_TYPE)
};
if (errnum < 0 || errnum >= ARRAY_COUNT(error_string))
return "<illegal value>";
return error_string[errnum];
}
/* Update CRC value if necessary. */
void UpdateCrc(GptData *gpt) {
GptHeader *primary_header, *secondary_header;
primary_header = (GptHeader*)gpt->primary_header;
secondary_header = (GptHeader*)gpt->secondary_header;
if (gpt->modified & GPT_MODIFIED_ENTRIES1 &&
memcmp(primary_header, GPT_HEADER_SIGNATURE2,
GPT_HEADER_SIGNATURE_SIZE)) {
size_t entries_size = primary_header->size_of_entry *
primary_header->number_of_entries;
primary_header->entries_crc32 =
Crc32(gpt->primary_entries, entries_size);
}
if (gpt->modified & GPT_MODIFIED_ENTRIES2) {
size_t entries_size = secondary_header->size_of_entry *
secondary_header->number_of_entries;
secondary_header->entries_crc32 =
Crc32(gpt->secondary_entries, entries_size);
}
if (gpt->modified & GPT_MODIFIED_HEADER1) {
primary_header->header_crc32 = 0;
primary_header->header_crc32 = Crc32(
(const uint8_t *)primary_header, sizeof(GptHeader));
}
if (gpt->modified & GPT_MODIFIED_HEADER2) {
secondary_header->header_crc32 = 0;
secondary_header->header_crc32 = Crc32(
(const uint8_t *)secondary_header, sizeof(GptHeader));
}
}
/* Two headers are NOT bitwise identical. For example, my_lba pointers to header
* itself so that my_lba in primary and secondary is definitely different.
* Only the following fields should be identical.
*
* first_usable_lba
* last_usable_lba
* number_of_entries
* size_of_entry
* disk_uuid
*
* If any of above field are not matched, overwrite secondary with primary since
* we always trust primary.
* If any one of header is invalid, copy from another. */
int IsSynonymous(const GptHeader* a, const GptHeader* b) {
if ((a->first_usable_lba == b->first_usable_lba) &&
(a->last_usable_lba == b->last_usable_lba) &&
(a->number_of_entries == b->number_of_entries) &&
(a->size_of_entry == b->size_of_entry) &&
(!memcmp(&a->disk_uuid, &b->disk_uuid, sizeof(Guid))))
return 1;
return 0;
}
/* Primary entries and secondary entries should be bitwise identical.
* If two entries tables are valid, compare them. If not the same,
* overwrites secondary with primary (primary always has higher priority),
* and marks secondary as modified.
* If only one is valid, overwrites invalid one.
* If all are invalid, does nothing.
* This function returns bit masks for GptData.modified field.
* Note that CRC is NOT re-computed in this function.
*/
uint8_t RepairEntries(GptData *gpt, const uint32_t valid_entries) {
/* If we have an alternate GPT header signature, don't overwrite
* the secondary GPT with the primary one as that might wipe the
* partition table. Also don't overwrite the primary one with the
* secondary one as that will stop Windows from booting. */
GptHeader* h = (GptHeader*)(gpt->primary_header);
if (!memcmp(h->signature, GPT_HEADER_SIGNATURE2, GPT_HEADER_SIGNATURE_SIZE))
return 0;
if (gpt->valid_headers & MASK_PRIMARY) {
h = (GptHeader*)gpt->primary_header;
} else if (gpt->valid_headers & MASK_SECONDARY) {
h = (GptHeader*)gpt->secondary_header;
} else {
/* We cannot trust any header, don't update entries. */
return 0;
}
size_t entries_size = h->number_of_entries * h->size_of_entry;
if (valid_entries == MASK_BOTH) {
if (memcmp(gpt->primary_entries, gpt->secondary_entries, entries_size)) {
memcpy(gpt->secondary_entries, gpt->primary_entries, entries_size);
return GPT_MODIFIED_ENTRIES2;
}
} else if (valid_entries == MASK_PRIMARY) {
memcpy(gpt->secondary_entries, gpt->primary_entries, entries_size);
return GPT_MODIFIED_ENTRIES2;
} else if (valid_entries == MASK_SECONDARY) {
memcpy(gpt->primary_entries, gpt->secondary_entries, entries_size);
return GPT_MODIFIED_ENTRIES1;
}
return 0;
}
/* The above five fields are shared between primary and secondary headers.
* We can recover one header from another through copying those fields. */
static void CopySynonymousParts(GptHeader* target, const GptHeader* source) {
target->first_usable_lba = source->first_usable_lba;
target->last_usable_lba = source->last_usable_lba;
target->number_of_entries = source->number_of_entries;
target->size_of_entry = source->size_of_entry;
memcpy(&target->disk_uuid, &source->disk_uuid, sizeof(Guid));
}
/* This function repairs primary and secondary headers if possible.
* If both headers are valid (CRC32 is correct) but
* a) indicate inconsistent usable LBA ranges,
* b) inconsistent partition entry size and number,
* c) inconsistent disk_uuid,
* we will use the primary header to overwrite secondary header.
* If primary is invalid (CRC32 is wrong), then we repair it from secondary.
* If secondary is invalid (CRC32 is wrong), then we repair it from primary.
* This function returns the bitmasks for modified header.
* Note that CRC value is NOT re-computed in this function. UpdateCrc() will
* do it later.
*/
uint8_t RepairHeader(GptData *gpt, const uint32_t valid_headers) {
GptHeader *primary_header, *secondary_header;
primary_header = (GptHeader*)gpt->primary_header;
secondary_header = (GptHeader*)gpt->secondary_header;
if (valid_headers == MASK_BOTH) {
if (!IsSynonymous(primary_header, secondary_header)) {
CopySynonymousParts(secondary_header, primary_header);
return GPT_MODIFIED_HEADER2;
}
} else if (valid_headers == MASK_PRIMARY) {
memcpy(secondary_header, primary_header, sizeof(GptHeader));
secondary_header->my_lba = gpt->gpt_drive_sectors - 1; /* the last sector */
secondary_header->alternate_lba = primary_header->my_lba;
secondary_header->entries_lba = secondary_header->my_lba -
CalculateEntriesSectors(primary_header, gpt->sector_bytes);
return GPT_MODIFIED_HEADER2;
} else if (valid_headers == MASK_SECONDARY) {
memcpy(primary_header, secondary_header, sizeof(GptHeader));
primary_header->my_lba = GPT_PMBR_SECTORS; /* the second sector on drive */
primary_header->alternate_lba = secondary_header->my_lba;
/* TODO (namnguyen): Preserve (header, entries) padding space. */
primary_header->entries_lba = primary_header->my_lba + GPT_HEADER_SECTORS;
return GPT_MODIFIED_HEADER1;
}
return 0;
}
int CgptGetNumNonEmptyPartitions(CgptShowParams *params) {
struct drive drive;
int gpt_retval;
int retval;
if (params == NULL)
return CGPT_FAILED;
if (CGPT_OK != DriveOpen(params->drive_name, &drive, O_RDONLY,
params->drive_size))
return CGPT_FAILED;
if (GPT_SUCCESS != (gpt_retval = GptValidityCheck(&drive.gpt))) {
Error("GptValidityCheck() returned %d: %s\n",
gpt_retval, GptError(gpt_retval));
retval = CGPT_FAILED;
goto done;
}
params->num_partitions = 0;
int numEntries = GetNumberOfEntries(&drive);
int i;
for(i = 0; i < numEntries; i++) {
GptEntry *entry = GetEntry(&drive.gpt, ANY_VALID, i);
if (GuidIsZero(&entry->type))
continue;
params->num_partitions++;
}
retval = CGPT_OK;
done:
DriveClose(&drive, 0);
return retval;
}
int GuidEqual(const Guid *guid1, const Guid *guid2) {
return (0 == memcmp(guid1, guid2, sizeof(Guid)));
}
int GuidIsZero(const Guid *gp) {
return GuidEqual(gp, &guid_unused);
}
void PMBRToStr(struct pmbr *pmbr, char *str, unsigned int buflen) {
char buf[GUID_STRLEN];
if (GuidIsZero(&pmbr->boot_guid)) {
require(snprintf(str, buflen, "PMBR") < buflen);
} else {
GuidToStr(&pmbr->boot_guid, buf, sizeof(buf));
require(snprintf(str, buflen, "PMBR (Boot GUID: %s)", buf) < buflen);
}
}
/*
* This is here because some CGPT functionality is provided in libvboot_host.a
* for other host utilities. GenerateGuid() is implemented (in cgpt.c which is
* *not* linked into libvboot_host.a) by calling into libuuid. We don't want to
* mandate libuuid as a dependency for every utilitity that wants to link
* libvboot_host.a, since they usually don't use the functionality that needs
* to generate new UUIDs anyway (just other functionality implemented in the
* same files).
*/
#ifndef HAVE_MACOS
__attribute__((weak)) int GenerateGuid(Guid *newguid) { return CGPT_FAILED; };
#endif
|