1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
/*
Copyright (C) 2010 Jochen Gerhard <gerhard@compeng.uni-frankfurt.de>
Copyright (C) 2010-2015 Matthias Kretz <kretz@kde.org>
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/*!
Finite difference method example
We calculate central differences for a given function and
compare it to the analytical solution.
*/
//! [includes]
#include <Vc/Vc>
#include <iostream>
#include <iomanip>
#include <cmath>
#include "../tsc.h"
using Vc::float_v;
//! [includes]
#define USE_SCALAR_SINCOS
//! [constants]
static constexpr std::size_t N = 10240000, PrintStep = 1000000;
static constexpr float epsilon = 1e-7f;
static constexpr float lower = 0.f;
static constexpr float upper = 40000.f;
static constexpr float h = (upper - lower) / N;
//! [constants]
//! [functions]
// dfu is the derivative of fu. This is really easy for sine and cosine:
static inline float fu(float x) { return ( std::sin(x) ); }
static inline float dfu(float x) { return ( std::cos(x) ); }
static inline Vc::float_v fu(Vc::float_v::AsArg x) {
#ifdef USE_SCALAR_SINCOS
Vc::float_v r;
for (size_t i = 0; i < Vc::float_v::Size; ++i) {
r[i] = std::sin(x[i]);
}
return r;
#else
return Vc::sin(x);
#endif
}
static inline Vc::float_v dfu(Vc::float_v::AsArg x) {
#ifdef USE_SCALAR_SINCOS
Vc::float_v r;
for (size_t i = 0; i < Vc::float_v::Size; ++i) {
r[i] = std::cos(x[i]);
}
return r;
#else
return Vc::cos(x);
#endif
}
//! [functions]
// It is important for this example that the following variables (especially dy_points) are global
// variables. Else the compiler can optimze all calculations of dy away except for the few places
// where the value is used in printResults.
Vc::Memory<float_v, N> x_points;
Vc::Memory<float_v, N> y_points;
float *Vc_RESTRICT dy_points;
void printResults()
{
std::cout
<< "------------------------------------------------------------\n"
<< std::setw(15) << "fu(x_i)"
<< std::setw(15) << "FD fu'(x_i)"
<< std::setw(15) << "SYM fu'(x)"
<< std::setw(15) << "error %\n";
for (std::size_t i = 0; i < N; i += PrintStep) {
std::cout
<< std::setw(15) << y_points[i]
<< std::setw(15) << dy_points[i]
<< std::setw(15) << dfu(x_points[i])
<< std::setw(15) << std::abs((dy_points[i] - dfu(x_points[i])) / (dfu(x_points[i] + epsilon)) * 100)
<< "\n";
}
std::cout
<< std::setw(15) << y_points[N - 1]
<< std::setw(15) << dy_points[N - 1]
<< std::setw(15) << dfu(x_points[N - 1])
<< std::setw(15) << std::abs((dy_points[N - 1] - dfu(x_points[N - 1])) / (dfu(x_points[N - 1] + epsilon)) * 100)
<< std::endl;
}
int Vc_CDECL main()
{
{
float_v x_i(Vc::IndexesFromZero);
for ( unsigned int i = 0; i < x_points.vectorsCount(); ++i, x_i += float_v::Size ) {
const float_v x = x_i * h;
x_points.vector(i) = x;
y_points.vector(i) = fu(x);
}
}
dy_points = Vc::malloc<float, Vc::AlignOnVector>(N + float_v::Size - 1) + (float_v::Size - 1);
double speedup;
TimeStampCounter timer;
{ ///////// ignore this part - it only wakes up the CPU ////////////////////////////
const float oneOver2h = 0.5f / h;
// set borders explicit as up- or downdifferential
dy_points[0] = (y_points[1] - y_points[0]) / h;
// GCC auto-vectorizes the following loop. It is interesting to see that both Vc::Scalar and
// Vc::SSE are faster, though.
for (std::size_t i = 1; i < N - 1; ++i) {
dy_points[i] = (y_points[i + 1] - y_points[i - 1]) * oneOver2h;
}
dy_points[N - 1] = (y_points[N - 1] - y_points[N - 2]) / h;
} //////////////////////////////////////////////////////////////////////////////////
{
std::cout << "\n" << std::setw(60) << "Classical finite difference method" << std::endl;
timer.start();
const float oneOver2h = 0.5f / h;
// set borders explicit as up- or downdifferential
dy_points[0] = (y_points[1] - y_points[0]) / h;
// GCC auto-vectorizes the following loop. It is interesting to see that both Vc::Scalar and
// Vc::SSE are faster, though.
for (std::size_t i = 1; i < N - 1; ++i) {
dy_points[i] = (y_points[i + 1] - y_points[i - 1]) * oneOver2h;
}
dy_points[N - 1] = (y_points[N - 1] - y_points[N - 2]) / h;
timer.stop();
printResults();
std::cout << "cycle count: " << timer.cycles()
<< " | " << static_cast<double>(N * 2) / timer.cycles() << " FLOP/cycle"
<< " | " << static_cast<double>(N * 2 * sizeof(float)) / timer.cycles() << " Byte/cycle"
<< "\n";
}
speedup = timer.cycles();
{
std::cout << std::setw(60) << "Vectorized finite difference method" << std::endl;
timer.start();
// All the differentials require to calculate (r - l) / 2h, where we calculate 1/2h as a
// constant before the loop to avoid unnecessary calculations. Note that a good compiler can
// already do this for you.
const float_v oneOver2h = 0.5f / h;
// Calculate the left border
dy_points[0] = (y_points[1] - y_points[0]) / h;
// Calculate the differentials streaming through the y and dy memory. The picture below
// should give an idea of what values in y get read and what values are written to dy in
// each iteration:
//
// y [...................................]
// 00001111222233334444555566667777
// 00001111222233334444555566667777
// dy [...................................]
// 00001111222233334444555566667777
//
// The loop is manually unrolled four times to improve instruction level parallelism and
// prefetching on architectures where four vectors fill one cache line. (Note that this
// unrolling breaks auto-vectorization of the Vc::Scalar implementation when compiling with
// GCC.)
// Use streaming stores to reduce the required memory bandwidth. Without streaming
// stores the CPU would first have to load the cache line, where the store occurs, from
// memory into L1, then overwrite the data, and finally write it back to memory. But
// since we never actually need the data that the CPU fetched from memory we'd like to
// keep that bandwidth free for real work. Streaming stores allow us to issue stores
// which the CPU gathers in store buffers to form full cache lines, which then get
// written back to memory directly without the costly read. Thus we make better use of
// the available memory bandwidth.
auto dy = Vc::makeIterator<float_v>(&dy_points[1], Vc::Streaming);
// Prefetches make sure the data which is going to be used in the next iterations is already
// in the L1 cache. The Vc::Prefetch<>() flag provides some sensible default for loops where no
// elements are skipped. You can use Vc::Prefetch<L1, L2, Shared/Exclusive>() instead to set the stride of
// L1 and L2 prefetches manually.
auto y = y_points.begin(Vc::Prefetch<>());
float_v y0 = *y++;
const auto y_it_last = y_points.end();
#ifdef Vc_ICC
#pragma noprefetch
#endif
for (; y < y_it_last; y += 4 , dy += 4) {
// calculate float_v::Size differentials per (left - right) / 2h
float_v y1 = y[0];
float_v y2 = y[1];
float_v y3 = y[2];
static_assert(float_v::Size >= 2, "This code requires a SIMD vector with at least two entries.");
dy[0] = (y0.shifted(2, y1) - y0) * oneOver2h;
y0 = y[3];
dy[1] = (y1.shifted(2, y2) - y1) * oneOver2h;
dy[2] = (y2.shifted(2, y3) - y2) * oneOver2h;
dy[3] = (y3.shifted(2, y0) - y3) * oneOver2h;
}
/* Alternative:
* use the STL transform algorithm. We have to rely on the compiler for unrolling, though.
* At least ICC doesn't produce the best code from this...
*
std::transform(Vc::makeIterator(y_points.vector(1), Vc::Prefetch<>()),
y_points.end(Vc::Prefetch<>()),
Vc::makeIterator<float_v>(&dy_points[1], Vc::Streaming),
[&y0,oneOver2h](float_v y1) -> float_v {
const auto r = (y0.shifted(2, y1) - y0) * oneOver2h;
y0 = y1;
return r;
});
*/
// Process the last vector. Note that this works for any N because Vc::Memory adds padding
// to y_points and dy_points such that the last scalar value is somewhere inside lastVector.
// The correct right border value for dy_points is overwritten in the last step unless N is
// a multiple of float_v::Size + 2.
// y [...................................]
// 8888
// 8888
// dy [...................................]
// 8888
{
const size_t i = y_points.vectorsCount() - 1;
const float_v left = y_points.vector(i, -2);
const float_v right = y_points.lastVector();
((right - left) * oneOver2h).store(&dy_points[i * float_v::Size - 1], Vc::Unaligned);
}
// ... and finally the right border
dy_points[N - 1] = (y_points[N - 1] - y_points[N - 2]) / h;
timer.stop();
printResults();
std::cout << "cycle count: " << timer.cycles()
<< " | " << static_cast<double>(N * 2) / timer.cycles() << " FLOP/cycle"
<< " | " << static_cast<double>(N * 2 * sizeof(float)) / timer.cycles() << " Byte/cycle"
<< "\n";
}
speedup /= timer.cycles();
std::cout << "Speedup: " << speedup << "\n";
//! [cleanup]
Vc::free(dy_points - float_v::Size + 1);
return 0;
}
//! [cleanup]
|