1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
/*{{{
Copyright (C) 2013 Matthias Kretz <kretz@kde.org>
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
}}}*/
#include <array>
#include <memory>
#include <Vc/Vc>
#include "../tsc.h"
using Vc::float_v;
/*
* This example shows how an arbitrary problem scales depending on working-set size and FLOPs per
* load/store. Understanding this can help to create better implementations.
*/
/*
* The Runner is a method to generate the different scenarios with all parameters to the Work
* available as constant expressions.
* The idea is to have the compiler able to optimize as much as possible so that the actual workload
* alone is benchmarked.
*
* The Runner recursively calls operator() on the Work template class with varying arguments for N
* and FLOPs.
*/
template<template<std::size_t N, std::size_t M, int, int> class Work, std::size_t N = 256, std::size_t M = 4> struct Runner
{
static void run() {
Work<N, M, (N > 4096 ? 1 : 4096 / N), 2>()();
Work<N, M, (N > 4096 ? 1 : 4096 / N), 3>()();
Work<N, M, (N > 4096 ? 1 : 4096 / N), 4>()();
Work<N, M, (N > 4096 ? 1 : 4096 / N), 6>()();
Work<N, M, (N > 4096 ? 1 : 4096 / N), 9>()();
Work<N, M, (N > 4096 ? 1 : 4096 / N), 13>()();
Work<N, M, (N > 4096 ? 1 : 4096 / N), 19>()();
Work<N, M, (N > 4096 ? 1 : 4096 / N), 28>()();
Work<N, M, (N > 4096 ? 1 : 4096 / N), 42>()();
Work<N, M, (N > 4096 ? 1 : 4096 / N), 63>()();
Work<N, M, (N > 4096 ? 1 : 4096 / N), 94>()();
Work<N, M, (N > 4096 ? 1 : 4096 / N), 141>()();
Work<N, M, (N > 4096 ? 1 : 4096 / N), 211>()();
Runner<Work, N * 2, M>::run();
}
};
template <template <std::size_t N, std::size_t M, int, int> class Work, std::size_t M>
struct Runner<Work, 256 * 1024 * 32, // don't make this number larger, otherwise GCC6
// blows up with Vc::Scalar to 10GB of memory usage
M> {
static void run() {
}
};
/*
* The Flops helper struct generates code that executes FLOPs many floating-point SIMD instructions
* (add, sub, and mul)
*/
template<int FLOPs> struct Flops
{
inline float_v operator()(float_v a, float_v b, float_v c)
{
typedef Flops<(FLOPs - 5) / 2> F1;
typedef Flops<(FLOPs - 4) / 2> F2;
return F1()(a + b, a * b, c) + F2()(a * c, b + c, a);
}
};
template<> inline float_v Flops<2>::operator()(float_v a, float_v b, float_v c)
{
return a * b + c;
}
template<> inline float_v Flops<3>::operator()(float_v a, float_v b, float_v c)
{
return a * b + (c - a);
}
template<> inline float_v Flops<4>::operator()(float_v a, float_v b, float_v c)
{
return (a * b + c) + a * c;
}
template<> inline float_v Flops<5>::operator()(float_v a, float_v b, float_v c)
{
return a * b + (a + c) + a * c;
}
template<> inline float_v Flops<6>::operator()(float_v a, float_v b, float_v c)
{
return (a * b + (a + c)) + (a * c - b);
}
template<> inline float_v Flops<7>::operator()(float_v a, float_v b, float_v c)
{
return (a * b + (a + c)) + (a * c - (b + c));
}
template<> inline float_v Flops<8>::operator()(float_v a, float_v b, float_v c)
{
return (a * b + (a + c) + b) + (a * c - (b + c));
}
/*
* This is the benchmark code. It is called from Runner and uses Flops to do the work.
*/
template<std::size_t _N, std::size_t M, int Repetitions, int FLOPs>
struct ScaleWorkingSetSize
{
void operator()()
{
constexpr std::size_t N = _N / sizeof(float_v) + 3 * 16 / float_v::Size;
typedef std::array<std::array<float_v, N>, M> Cont;
auto data = Vc::make_unique<Cont, Vc::AlignOnPage>();
for (auto &arr : *data) {
for (auto &value : arr) {
value = float_v::Random();
}
}
TimeStampCounter tsc;
double throughput = 0.;
for (std::size_t i = 0; i < 2 + 512 / N; ++i) {
tsc.start();
// ------------- start of the benchmarked code ---------------
for (int repetitions = 0; repetitions < Repetitions; ++repetitions) {
for (std::size_t m = 0; m < M; ++m) {
for (std::size_t n = 0; n < N; ++n) {
(*data)[m][n] = Flops<FLOPs>()((*data)[(m + 1) % M][n],
(*data)[(m + 2) % M][n],
(*data)[(m + 3) % M][n]);
}
}
}
// -------------- end of the benchmarked code ----------------
tsc.stop();
throughput = std::max(throughput, (Repetitions * M * N * float_v::Size * FLOPs) / static_cast<double>(tsc.cycles()));
}
const long bytes = N * M * sizeof(float_v);
printf("%10lu Byte | %4.2f FLOP/Byte | %4.1f FLOP/cycle\n", bytes, static_cast<double>(float_v::Size * FLOPs) / (4 * sizeof(float_v)), throughput
);
}
};
int Vc_CDECL main()
{
ScaleWorkingSetSize<256, 4, 10, 2>()();
printf("%10s | %4s | %4s\n", "Working-Set Size", "FLOPs per Byte", "Throughput (FLOPs/Cycle)");
Runner<ScaleWorkingSetSize>::run();
return 0;
}
|