1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
/*
* dgeev.cpp
*
* Created on: 20 Apr 2011
* Author: auton
* ($Revision: 1 $)
*/
#include "dgeev.h"
void dgeev_sort(double *Er, double *Ei, int N)
{
double temp, *E2;
int i, j;
E2 = new double[N];
for (i=0; i<N; i++)
E2[i] = Er[i]*Er[i]+Ei[i]*Ei[i];
for (j=0; j<N; j++)
for (i=0; i<N-1; i++)
if (fabs(E2[i])<fabs(E2[i+1]))
{
temp = E2[i]; E2[i] = E2[i+1]; E2[i+1] = temp;
temp = Er[i]; Er[i] = Er[i+1]; Er[i+1] = temp;
temp = Ei[i]; Ei[i] = Ei[i+1]; Ei[i+1] = temp;
}
delete [] E2;
}
void dgeev_sort(double *Er, double *Ei, double **Evecs, int N)
{
double temp, *E2;
int i, j, k;
E2 = new double[N];
for (i=0; i<N; i++)
E2[i] = Er[i]*Er[i]+Ei[i]*Ei[i];
for (j=0; j<N; j++)
for (i=0; i<N-1; i++)
if (fabs(E2[i])<fabs(E2[i+1]))
{
temp = E2[i]; E2[i] = E2[i+1]; E2[i+1] = temp;
temp = Er[i]; Er[i] = Er[i+1]; Er[i+1] = temp;
temp = Ei[i]; Ei[i] = Ei[i+1]; Ei[i+1] = temp;
for (k=0; k<N; k++)
{
temp = Evecs[k][i];
Evecs[k][i] = Evecs[k][i+1];
Evecs[k][i+1] = temp;
}
}
delete [] E2;
}
double* dgeev_ctof(double **in, int rows, int cols)
{
double *out;
int i, j;
out = new double[rows*cols];
for (i=0; i<rows; i++)
for (j=0; j<cols; j++)
out[i+j*cols] = in[i][j];
return(out);
}
void dgeev_ftoc(double *in, double **out, int rows, int cols)
{
int i, j;
for (i=0; i<rows; i++)
for (j=0; j<cols; j++)
out[i][j] = in[i+j*cols];
}
void dgeev(double **H, int n, double *Er, double *Ei)
{
char jobvl, jobvr;
int lda, ldvl, ldvr, lwork, info;
double *a, *vl, *vr, *work;
jobvl = 'N'; // V/N to calculate/not calculate the left eigenvectors of the matrix H.
jobvr = 'N'; // As above, but for the right eigenvectors.
lda = n; // The leading dimension of the matrix a.
a = dgeev_ctof(H, n, lda); // Convert the matrix H from double pointer C form to single pointer Fortran form.
/* Whether we want them or not, we need to define the matrices
for the eigenvectors, and give their leading dimensions.
We also create a vector for work space. */
ldvl = n;
vl = new double[n*n];
ldvr = n;
vr = new double[n*n];
work = new double[4*n];
lwork = 4*n;
dgeev_(&jobvl, &jobvr, &n, a, &lda, Er, Ei, vl, &ldvl, vr, &ldvr, work, &lwork, &info);
dgeev_sort(Er, Ei, n); //Sort the results by eigenvalue in decreasing magnitude.
delete [] a;
delete [] vl;
delete [] vr;
delete [] work;
}
void dgeev(double **H, int n, double *Er, double *Ei, double **Evecs)
{
char jobvl, jobvr;
int lda, ldvl, ldvr, lwork, info;
double *a, *vl, *vr, *work;
jobvl = 'N';
jobvr = 'V';
lda = n;
a = dgeev_ctof(H, n, lda);
ldvl = n;
vl = new double[n*n];
ldvr = n;
vr = new double[n*n];
work = new double[4*n];
lwork = 4*n;
dgeev_(&jobvl, &jobvr, &n, a, &lda, Er, Ei, vl, &ldvl, vr, &ldvr, work, &lwork, &info);
dgeev_ftoc(vr, Evecs, n, ldvr);
dgeev_sort(Er, Ei, Evecs, n);
delete [] a;
delete [] vl;
delete [] vr;
delete [] work;
}
|