1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
|
/*
* vcf_entry.cpp
*
* Created on: Aug 19, 2009
* Author: Adam Auton
* ($Revision: 230 $)
*/
#include "vcf_entry.h"
map<string, Field_description> vcf_entry::INFO_map;
map<string, string> vcf_entry::FILTER_map;
map<string, Field_description> vcf_entry::FORMAT_map;
// Create a VCF on the basis of a data line.
vcf_entry::vcf_entry(const unsigned int N_indv, const string &line)
: N_indv(N_indv),
data_stream(line),
basic_parsed(false), fully_parsed(false),
parsed_ALT(false), parsed_FILTER(false),
parsed_INFO(false), parsed_FORMAT(false),
CHROM(""), POS(-1), REF(""), QUAL(-1),
passed_filters(false),
parsed_GT(N_indv, false), parsed_GQ(N_indv, false), parsed_DP(N_indv, false),
parsed_FT(N_indv, false),
ALT_str(""), FILTER_str(""), INFO_str(""), FORMAT_str(""), QUAL_str("")
{
}
// Create an empty VCF entry
vcf_entry::vcf_entry(const unsigned int N_indv)
: N_indv(N_indv),
data_stream("0\t0\t.\tN\t.\t.\t.\t."),
basic_parsed(false), fully_parsed(false),
parsed_ALT(false), parsed_FILTER(false),
parsed_INFO(false), parsed_FORMAT(false),
CHROM(""), POS(-1), REF(""), QUAL(-1),
passed_filters(false),
parsed_GT(N_indv, false), parsed_GQ(N_indv, false), parsed_DP(N_indv, false),
parsed_FT(N_indv, false),
ALT_str(""), FILTER_str(""), INFO_str(""), FORMAT_str(""), QUAL_str("")
{
}
vcf_entry::~vcf_entry() {}
// Reset the VCF entry object with a new data line
void vcf_entry::reset(const string &vcf_data_line)
{
basic_parsed = false;
fully_parsed = false;
parsed_ALT = false;
parsed_FILTER = false;
parsed_INFO = false;
parsed_FORMAT = false;
data_stream.clear();
data_stream.str(vcf_data_line);
fill(parsed_GT.begin(), parsed_GT.end(), false);
fill(parsed_GQ.begin(), parsed_GQ.end(), false);
fill(parsed_DP.begin(), parsed_DP.end(), false);
fill(parsed_FT.begin(), parsed_FT.end(), false);
}
// Tokenize the basic information in a VCF data line (at the tab level)
void vcf_entry::parse_basic_entry(bool parse_ALT, bool parse_FILTER, bool parse_INFO)
{
// The following would break on spaces too, which caused a bug :-(
//data_stream >> CHROM >> POS >> ID >> REF >> ALT_str >> QUAL_str >> FILTER_str >> INFO_str;
getline(data_stream, CHROM, '\t');
getline(data_stream, ID, '\t');
POS = atoi(ID.c_str());
getline(data_stream, ID, '\t');
getline(data_stream, REF, '\t');
getline(data_stream, ALT_str, '\t');
getline(data_stream, QUAL_str, '\t');
getline(data_stream, FILTER_str, '\t');
getline(data_stream, INFO_str, '\t');
QUAL = str2double(QUAL_str);
// Convert to uppercase for consistency
// Note that VCF v4.1 allows mixtures of lower/upper case in REF and ALT.
// However, the spec specifically states that tools using VCF are not required
// to preserve the case.
std::transform(REF.begin(), REF.end(), REF.begin(), ::toupper);
std::transform(ALT_str.begin(), ALT_str.end(),ALT_str.begin(), ::toupper);
parsed_ALT = false;
parsed_FILTER = false;
parsed_INFO = false;
basic_parsed = true;
if (parse_ALT)
set_ALT(ALT_str);
if (parse_FILTER)
set_FILTER(FILTER_str);
if (parse_INFO)
set_INFO(INFO_str);
}
// Tokenize the genotype information (at the 'tab' level) in the VCF entry
void vcf_entry::parse_full_entry(bool parse_FORMAT)
{
if (basic_parsed == false)
parse_basic_entry();
//data_stream >> FORMAT_str;
getline(data_stream, FORMAT_str, '\t');
if (parse_FORMAT)
set_FORMAT(FORMAT_str);
string tmpstr; tmpstr.reserve(64);
GENOTYPE_str.resize(N_indv, tmpstr);
for (unsigned int ui=0; ui<N_indv; ui++)
//data_stream >> GENOTYPE_str[ui];
getline(data_stream, GENOTYPE_str[ui], '\t');
// The following line copies the GENOTYPE fields from the stringstream into the GENOTYPE_str vector.
// Is actually slower than the above code.
//copy(istream_iterator<string>(data_stream), istream_iterator<string>(), GENOTYPE_str.begin());
fully_parsed = true;
}
// Tokenize a given genotype entry into it's component parts
void vcf_entry::parse_genotype_entry(unsigned int indv, bool GT, bool GQ, bool DP, bool FT)
{
if (fully_parsed == false)
parse_full_entry(true);
if (parsed_FORMAT == false)
set_FORMAT(FORMAT_str);
static string tmpstr;
static istringstream ss;
ss.clear(); ss.str(GENOTYPE_str[indv]);
int N_required = GT + GQ + DP + FT;
int N_got = 0;
int i=0;
while (getline(ss, tmpstr, ':'))
{
if (GT && (i == GT_idx)) // (FORMAT[ui] == "GT")
{
set_indv_GENOTYPE_and_PHASE(indv, tmpstr);
N_got++;
}
else if (GQ && (i == GQ_idx)) // (FORMAT[ui] == "GQ")
{
set_indv_GQUALITY(indv, str2double(tmpstr));
N_got++;
}
else if (DP && (i == DP_idx)) // (FORMAT[ui] == "DP")
{
set_indv_DEPTH(indv, str2int(tmpstr));
N_got++;
}
else if (FT && (i == FT_idx)) // (FORMAT[ui] == "FT")
{
set_indv_GFILTER(indv, tmpstr);
N_got++;
}
if (N_got == N_required)
break;
i++;
}
// Set missing return values if requested a value, but couldn't find it
if (GT && (parsed_GT[indv] == false))
{
set_indv_GENOTYPE_and_PHASE(indv, make_pair(-1,-1), '/');
}
if (GQ && (parsed_GQ[indv] == false))
{
set_indv_GQUALITY(indv, -1);
}
if (DP && (parsed_DP[indv] == false))
{
set_indv_DEPTH(indv, -1);
}
if (FT && (parsed_FT[indv] == false))
{
set_indv_GFILTER(indv, "");
}
}
// Read the VCF entry and fully populate the object
void vcf_entry::parse_genotype_entries(bool GT, bool GQ, bool DP, bool FT)
{
for (unsigned int ui=0; ui<N_indv; ui++)
parse_genotype_entry(ui, GT, GQ, DP, FT);
}
void vcf_entry::print(ostream &out)
{
vector<bool> include_indv(N_indv, true);
vector<bool> include_genotype(N_indv, true);
set<string> INFO_to_keep;
print(out, INFO_to_keep, false, include_indv, include_genotype);
}
void vcf_entry::print(ostream &out, const set<string> &INFO_to_keep, bool keep_all_INFO)
{
vector<bool> include_indv(N_indv, true);
vector<bool> include_genotype(N_indv, true);
print(out, INFO_to_keep, keep_all_INFO, include_indv, include_genotype);
}
// Output VCF entry to output stream
void vcf_entry::print(ostream &out, const set<string> &INFO_to_keep, bool keep_all_INFO, const vector<bool> &include_indv, const vector<bool> &include_genotype)
{
if (fully_parsed == false)
parse_full_entry();
out << get_CHROM() << '\t' << POS << '\t' << get_ID() << '\t' << REF << '\t' << get_ALT();
out << '\t' << double2str(QUAL);
out << '\t' << get_FILTER();
if (keep_all_INFO == false)
out << '\t' << get_INFO(INFO_to_keep);
else
out << '\t' << INFO_str;
pair<int, int> genotype;
string GFILTER_tmp;
if (FORMAT.size() > 0)
{
char PHASE;
out << '\t' << get_FORMAT();
for (unsigned int ui=0; ui<N_indv; ui++)
{
if (include_indv[ui] == false)
continue;
out << '\t';
for (int count=0; count<(int)FORMAT.size(); count++)
{
if (count == GT_idx) // (FORMAT[count] == "GT")
{
if (count != 0) out << ':';
if (include_genotype[ui] == true)
{
get_indv_GENOTYPE_ids(ui, genotype);
PHASE = get_indv_PHASE(ui);
if ((genotype.first != -1) && (genotype.second != -1))
out << int2str(genotype.first) << PHASE << int2str(genotype.second);
else if ((PHASE == '|') && (genotype.second == -1))
out << int2str(genotype.first); // Handle haploid case
else
out << int2str(genotype.first) << PHASE << int2str(genotype.second);
}
else
out << "./.";
}
else if (count == GQ_idx) //(FORMAT[count] == "GQ")
{
if (count != 0) out << ':';
out << double2str(get_indv_GQUALITY(ui));
}
else if (count == DP_idx) // (FORMAT[count] == "DP")
{
if (count != 0) out << ':';
out << int2str(get_indv_DEPTH(ui));
}
else if (count == FT_idx) // (FORMAT[count] == "FT")
{
if (count != 0) out << ':';
get_indv_GFILTER(ui, GFILTER_tmp);
out << GFILTER_tmp;
}
else
{ // Unknown FORMAT so just replicate original output
if (count != 0) out << ':';
read_indv_generic_entry(ui, FORMAT[count], GFILTER_tmp);
out << GFILTER_tmp;
}
}
}
}
// out << endl;
out << '\n'; // endl flushes the buffer, which is slow. This (should be) quicker.
}
// Set the include_genotype flag on the basis of depth
void vcf_entry::filter_genotypes_by_depth(vector<bool> &include_genotype_out, int min_depth, int max_depth)
{
if (fully_parsed == false)
parse_full_entry();
//if (FORMAT_to_idx.find("DP") != FORMAT_to_idx.end())
if (DP_idx != -1)
{ // Have depth info
int depth;
include_genotype_out.resize(N_indv, true);
for (unsigned int ui=0; ui<N_indv; ui++)
{
if (parsed_DP[ui] == false)
parse_genotype_entry(ui, false, false, true);
depth = get_indv_DEPTH(ui);
if ((depth < min_depth) || (depth > max_depth))
include_genotype_out[ui] = false;
}
}
}
// Filter specific genotypes by quality
void vcf_entry::filter_genotypes_by_quality(vector<bool> &include_genotype_out, double min_genotype_quality)
{
if (fully_parsed == false)
parse_full_entry();
//if (FORMAT_to_idx.find("GQ") != FORMAT_to_idx.end())
if (GQ_idx != -1)
{ // Have quality info
double quality;
include_genotype_out.resize(N_indv, true);
for (unsigned int ui=0; ui<N_indv; ui++)
{
if (parsed_GQ[ui] == false)
parse_genotype_entry(ui, false, true);
quality = get_indv_GQUALITY(ui);
if (quality < min_genotype_quality)
include_genotype_out[ui] = false;
}
}
}
// Exclude genotypes with a filter flag.
void vcf_entry::filter_genotypes_by_filter_status(vector<bool> &include_genotype_out, const set<string> &filter_flags_to_remove, bool remove_all)
{
if (fully_parsed == false)
parse_full_entry();
string filter;
vector<string> GFILTERs;
//if (FORMAT_to_idx.find("FT") != FORMAT_to_idx.end())
if (FT_idx != -1)
{ // Have GFilter info
include_genotype_out.resize(N_indv, true);
for (unsigned int ui=0; ui<N_indv; ui++)
{
if (parsed_FT[ui] == false)
parse_genotype_entry(ui, false, false, false, true);
get_indv_GFILTER_vector(ui, GFILTERs);
if ((remove_all == true) && (GFILTERs.size() > 0))
include_genotype_out[ui] = false;
else
{
for (unsigned int uj=0; uj<GFILTERs.size(); uj++)
if (filter_flags_to_remove.find(GFILTERs[uj]) != filter_flags_to_remove.end())
include_genotype_out[ui] = false;
}
}
}
}
/*
// This function implements an exact SNP test of Hardy-Weinberg
// Equilibrium as described in Wigginton, JE, Cutler, DJ, and
// Abecasis, GR (2005) A Note on Exact Tests of Hardy-Weinberg
// Equilibrium. American Journal of Human Genetics. 76: 000 - 000
//
// Written by Jan Wigginton
*/
double vcf_entry::SNPHWE(int obs_hets, int obs_hom1, int obs_hom2)
{
if (obs_hom1 + obs_hom2 + obs_hets == 0 ) return 1;
if (obs_hom1 < 0 || obs_hom2 < 0 || obs_hets < 0)
LOG.error("Internal error: negative count in HWE test", 91);
int obs_homc = obs_hom1 < obs_hom2 ? obs_hom2 : obs_hom1;
int obs_homr = obs_hom1 < obs_hom2 ? obs_hom1 : obs_hom2;
int rare_copies = 2 * obs_homr + obs_hets;
int genotypes = obs_hets + obs_homc + obs_homr;
double * het_probs = (double *) malloc((size_t) (rare_copies + 1) * sizeof(double));
if (het_probs == NULL)
LOG.error("Internal error: SNP-HWE: Unable to allocate array", 90);
for (int i = 0; i <= rare_copies; i++)
het_probs[i] = 0.0;
/* start at midpoint */
int mid = rare_copies * (2 * genotypes - rare_copies) / (2 * genotypes);
/* check to ensure that midpoint and rare alleles have same parity */
if ((rare_copies & 1) ^ (mid & 1))
mid++;
int curr_hets = mid;
int curr_homr = (rare_copies - mid) / 2;
int curr_homc = genotypes - curr_hets - curr_homr;
het_probs[mid] = 1.0;
double sum = het_probs[mid];
for (curr_hets = mid; curr_hets > 1; curr_hets -= 2)
{
het_probs[curr_hets - 2] = het_probs[curr_hets] * curr_hets * (curr_hets - 1.0) / (4.0 * (curr_homr + 1.0) * (curr_homc + 1.0));
sum += het_probs[curr_hets - 2];
/* 2 fewer heterozygotes for next iteration -> add one rare, one common homozygote */
curr_homr++;
curr_homc++;
}
curr_hets = mid;
curr_homr = (rare_copies - mid) / 2;
curr_homc = genotypes - curr_hets - curr_homr;
for (curr_hets = mid; curr_hets <= rare_copies - 2; curr_hets += 2)
{
het_probs[curr_hets + 2] = het_probs[curr_hets] * 4.0 * curr_homr * curr_homc /((curr_hets + 2.0) * (curr_hets + 1.0));
sum += het_probs[curr_hets + 2];
/* add 2 heterozygotes for next iteration -> subtract one rare, one common homozygote */
curr_homr--;
curr_homc--;
}
for (int i = 0; i <= rare_copies; i++)
het_probs[i] /= sum;
/* alternate p-value calculation for p_hi/p_lo
double p_hi = het_probs[obs_hets];
for (int i = obs_hets + 1; i <= rare_copies; i++)
p_hi += het_probs[i];
double p_lo = het_probs[obs_hets];
for (int i = obs_hets - 1; i >= 0; i--)
p_lo += het_probs[i];
double p_hi_lo = p_hi < p_lo ? 2.0 * p_hi : 2.0 * p_lo;
*/
double p_hwe = 0.0;
/* p-value calculation for p_hwe */
for (int i = 0; i <= rare_copies; i++)
{
if (het_probs[i] > het_probs[obs_hets])
continue;
p_hwe += het_probs[i];
}
p_hwe = p_hwe > 1.0 ? 1.0 : p_hwe;
free(het_probs);
return p_hwe;
}
int vcf_entry::str2int(const string &in, const int missing_value)
{
if ((in.size() == 0) || (in == "."))
return missing_value;
else
return atoi(in.c_str());
}
double vcf_entry::str2double(const string &in, const double missing_value)
{
if ((in.size() == 0) || (in == "."))
return missing_value;
else
return atof(in.c_str());
}
string vcf_entry::int2str(const int in, const int missing_value)
{
if (in == missing_value)
return ".";
else
{
static ostringstream out;
out.str(""); out.clear();
out << in;
return out.str();
}
}
string vcf_entry::double2str(const double in, const double missing_value)
{
if (in == missing_value)
return ".";
else
{
static ostringstream out;
out.str(""); out.clear();
out << in;
return out.str();
}
}
void vcf_entry::tokenize(const string &in, char token, vector<string> &out)
{
out.resize(0);
istringstream ss(in);
string tmp;
while( getline(ss, tmp, token) )
{
out.push_back(tmp);
}
}
|