File: vcf_entry_getters.cpp

package info (click to toggle)
vcftools 0.1.9-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 1,396 kB
  • sloc: perl: 10,233; cpp: 7,950; pascal: 751; makefile: 60; php: 43; sh: 12
file content (421 lines) | stat: -rw-r--r-- 8,436 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
/*
 * vcf_entry_getters.cpp
 *
 *  Created on: Nov 11, 2009
 *      Author: Adam Auton
 *      ($Revision: 230 $)
 */

#include "vcf_entry.h"

// Return the CHROMosome name
string vcf_entry::get_CHROM() const
{
	return CHROM;
}

// Return the CHROMosome name
void vcf_entry::get_CHROM(string &out) const
{
	out = CHROM;
}

int vcf_entry::get_POS() const
{
	return POS;
}

string vcf_entry::get_ID() const
{
	if (ID.size() == 0)
		return ".";
	return ID;
}

string vcf_entry::get_REF() const
{
	return REF;
}

string vcf_entry::get_ALT() const
{
	assert(parsed_ALT == true);

	string out;
	if (ALT.size() == 0)
		out = ".";
	else
	{
		out = ALT[0];
		for (unsigned int ui=1; ui<ALT.size(); ui++)
			out += "," + ALT[ui];
	}
	return out;
}

bool vcf_entry::is_SNP() const
{
	assert(parsed_ALT == true);

	if (REF.size() != 1)
		return false;	// Reference isn't a single base

	if (ALT.size() == 0)
		return false;	// No alternative allele

	for (unsigned int ui=0; ui<ALT.size(); ui++)
		if (ALT[ui].size() != 1)
			return false;	// Alternative allele isn't a single base

	return true;
}

bool vcf_entry::is_biallelic_SNP() const
{
	assert(parsed_ALT == true);

	if (REF.size() != 1)
		return false;	// Reference isn't a single base

	if (ALT.size() != 1)
		return false;	// Not biallelic

	if (ALT[0].size() != 1)
		return false;	// Alternative allele isn't a single base

	return true;
}

bool vcf_entry::is_diploid(const vector<bool> &include_indv, const vector<bool> &include_genotype) const
{
	for (unsigned int ui=0; ui<N_indv; ui++)
	{
		if ((include_indv[ui] == true) && (include_genotype[ui] == true))
		{
			assert(parsed_GT[ui] == true);
			if (ploidy[ui] != 2)
				return false;
		}
	}
	return true;
}

void vcf_entry::get_allele(int allele_num, string &out) const
{
	assert(parsed_ALT == true);

	if (allele_num == 0)
		out = REF;
	else if ((allele_num < 0) || (unsigned(allele_num - 1) >=  ALT.size()))
		out = ".";
	else
		out = ALT[allele_num-1];
}

string vcf_entry::get_ALT_allele(int allele_num) const
{
	assert(parsed_ALT == true);

	if ((allele_num < 0) || (unsigned(allele_num) >=  ALT.size()))
		return ".";
	return ALT[allele_num];
}

void vcf_entry::get_alleles_vector(vector<string> &out) const
{
	assert(parsed_ALT == true);
	out.resize(ALT.size()+1);
	out[0] = REF;
	copy(ALT.begin(), ALT.end(), out.begin()+1);
}

double vcf_entry::get_QUAL() const
{
	return QUAL;
}


string vcf_entry::get_FILTER() const
{
	assert(parsed_FILTER == true);

	ostringstream out;
	if ((passed_filters == false) && (FILTER.size() == 0))
		out << ".";
	else if (passed_filters == true)
		out << "PASS";
	else
	{
		out << FILTER[0];
		for (unsigned int ui=1; ui<FILTER.size(); ui++)
		{
			out << ";" << FILTER[ui];
		}
	}
	return out.str();
}

void vcf_entry::get_FILTER_vector(vector<string> &out) const
{
	assert(parsed_FILTER == true);
	out = FILTER;
}


string vcf_entry::get_INFO(const set<string> &INFO_to_keep) const
{
	assert(parsed_INFO == true);

	ostringstream out;
	bool first=true;
	if ((INFO.size() > 0) && (INFO_to_keep.size() > 0))
	{
		string key;
		for (unsigned int ui=0; ui<INFO.size();ui++)
		{
			key = INFO[ui].first;
			if (INFO_to_keep.find(key) != INFO_to_keep.end())
			{
				if (first != true)
					out << ";";
				out << key << "=" << INFO[ui].second;
				first = false;
			}
		}
	}

	if (first == true)
	{	// Didn't find any INFO fields to keep
		out.str(".");
	}
	return out.str();
}

string vcf_entry::get_INFO_value(const string &key) const
{
	assert(parsed_INFO == true);

	for (unsigned int ui=0; ui<INFO.size(); ui++)
	{
		if (INFO[ui].first == key)
			return INFO[ui].second;
	}
	return "?";
}

string vcf_entry::get_FORMAT() const
{
	assert(parsed_FORMAT == true);

	string out;
	bool first = true;
	for (unsigned int ui=0; ui<FORMAT.size(); ui++)
	{
		if (first == false)
			out += ":";
		out += FORMAT[ui];
		first = false;
	}
	return out;
}

// Return the alleles of a genotype as a pair of strings.
void vcf_entry::get_indv_GENOTYPE_strings(unsigned int indv, pair<string, string> &out) const
{
	assert(parsed_GT[indv] == true);

	static string out_allele1, out_allele2;

	get_allele(GENOTYPE[indv].first, out_allele1);
	get_allele(GENOTYPE[indv].second, out_allele2);
	out = make_pair(out_allele1, out_allele2);
}


void vcf_entry::get_indv_GENOTYPE_ids(unsigned int indv, pair<int, int> &out) const
{
	assert(parsed_GT[indv] == true);
	out = GENOTYPE[indv];
}

char vcf_entry::get_indv_PHASE(unsigned int indv) const
{
	assert(parsed_GT[indv] == true);
	return PHASE[indv];
}

int vcf_entry::get_indv_DEPTH(unsigned int indv) const
{
	assert(parsed_DP[indv] == true);
	if (DEPTH.size() == 0)
		return -1;
	return DEPTH[indv];
}

double vcf_entry::get_indv_GQUALITY(unsigned int indv) const
{
	assert(parsed_GQ[indv] == true);
	if (GQUALITY.size() == 0)
		return -1;
	return GQUALITY[indv];
}

void vcf_entry::get_indv_GFILTER_vector(unsigned int indv, vector<string> &out) const
{
	assert(parsed_FT[indv] == true);
	if (GFILTER.size() > 0)
		out = GFILTER[indv];
	else
		out.resize(0);
}

void vcf_entry::get_indv_GFILTER(unsigned int indv, string &out) const
{
	assert(parsed_FT[indv] == true);

	if ((GFILTER.size() > 0) && (GFILTER[indv].size()>0))
	{
		out="";
		for (unsigned int ui=0; ui<GFILTER[indv].size(); ui++)
		{
			if (ui!=0)
				out += ";";
			out += GFILTER[indv][ui];
		}
	}
	else
		out = ".";
}

int vcf_entry::get_indv_ploidy(unsigned int indv) const
{
	assert (parsed_GT[indv]==true);
	return ploidy[indv];
}

void vcf_entry::read_indv_generic_entry(unsigned int indv, const string &FORMAT_id, string &out)
{
	if (fully_parsed == false)
		parse_full_entry(true);

	if (parsed_FORMAT == false)
		set_FORMAT(FORMAT_str);

	out = ".";

	if (FORMAT_to_idx.find(FORMAT_id) != FORMAT_to_idx.end())
	{
		unsigned int idx = FORMAT_to_idx[FORMAT_id];
		static string tmpstr;
		static istringstream ss;
		ss.clear();
		ss.str(GENOTYPE_str[indv]);

		for (unsigned int ui=0; ui <= idx; ui++)
		{
			getline(ss, tmpstr, ':');
			if (ui == idx)
			{
				out = tmpstr;
				break;
			}
			if (!ss.good())
				break;
		}
	}
}

bool vcf_entry::FORMAT_id_exists(const string &FORMAT_id)
{
	assert(parsed_FORMAT == true);
	if (FORMAT_to_idx.find(FORMAT_id) != FORMAT_to_idx.end())
		return true;
	return false;
}

unsigned int vcf_entry::get_N_alleles() const
{
	assert(parsed_ALT == true);
	return (ALT.size()+1);
}

unsigned int vcf_entry::get_N_chr(const vector<bool> &include_indv, const vector<bool> &include_genotype) const
{
	unsigned int out=0;

	for (unsigned int ui=0; ui<N_indv; ui++)
	{
		if ((include_indv[ui] == true) && (include_genotype[ui] == true))
		{
			assert(parsed_GT[ui] == true);
			out += ploidy[ui];
		}
	}
	return out;
}


// Return the frequency (counts) of each allele.
void vcf_entry::get_allele_counts(vector<int> &out, unsigned int &N_non_missing_chr_out, const vector<bool> &include_indv, const vector<bool> &include_genotype) const
{
	pair<int,int> genotype;
	vector<int> allele_counts(get_N_alleles(), 0);
	N_non_missing_chr_out = 0;

	for (unsigned int ui=0; ui<N_indv; ui++)
	{
		if ((include_indv[ui] == true) && (include_genotype[ui] == true))
		{
			assert(parsed_GT[ui] == true);
			get_indv_GENOTYPE_ids(ui, genotype);
			if (genotype.first != -1)
			{
				allele_counts[genotype.first]++;
				N_non_missing_chr_out++;
			}
			if (genotype.second != -1)
			{
				allele_counts[genotype.second]++;
				N_non_missing_chr_out++;
			}
		}
	}
	out = allele_counts;
}

// Return the counts of homozygote1, heterozygotes, and homozygote2
void vcf_entry::get_genotype_counts(const vector<bool> &include_indv, const vector<bool> &include_genotype, unsigned int &out_N_hom1, unsigned int &out_N_het, unsigned int &out_N_hom2) const
{
	out_N_hom1 = 0; out_N_hom2 = 0; out_N_het = 0;
	pair<int, int> genotype;
	if (ALT.size() > 1)
		LOG.error("Tried to return the genotype counts of a non-biallelic SNP", 99);

	for (unsigned int ui=0; ui<N_indv; ui++)
	{
		if ((include_indv[ui] == true) && (include_genotype[ui] == true))
		{
			assert(parsed_GT[ui] == true);
			get_indv_GENOTYPE_ids(ui, genotype);
			if ((genotype.first != -1) && (genotype.second != -1))
			{
				if (genotype.first != genotype.second)
				{
					out_N_het++;
				}
				else if (genotype.first == 0)
				{
					out_N_hom1++;
				}
				else if (genotype.first == 1)
				{
					out_N_hom2++;
				}
				else
				{
					LOG.error("Unknown allele in genotype", 98);
				}
			}
		}
	}
}