File: ScalableImage.cpp

package info (click to toggle)
vcmi 1.6.5%2Bdfsg-2
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 32,060 kB
  • sloc: cpp: 238,971; python: 265; sh: 224; xml: 157; ansic: 78; objc: 61; makefile: 49
file content (532 lines) | stat: -rw-r--r-- 18,159 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
/*
 * ScalableImage.cpp, part of VCMI engine
 *
 * Authors: listed in file AUTHORS in main folder
 *
 * License: GNU General Public License v2.0 or later
 * Full text of license available in license.txt file, in main folder
 *
 */
#include "StdInc.h"
#include "ScalableImage.h"

#include "SDLImage.h"
#include "SDL_Extensions.h"

#include "../gui/CGuiHandler.h"

#include "../render/ColorFilter.h"
#include "../render/Colors.h"
#include "../render/Graphics.h"
#include "../render/IRenderHandler.h"
#include "../render/IScreenHandler.h"
#include "../render/CanvasImage.h"

#include "../../lib/constants/EntityIdentifiers.h"

#include <SDL_surface.h>

//First 8 colors in def palette used for transparency
static constexpr std::array<SDL_Color, 8> sourcePalette = {{
	{0,   255, 255, SDL_ALPHA_OPAQUE},
	{255, 150, 255, SDL_ALPHA_OPAQUE},
	{255, 100, 255, SDL_ALPHA_OPAQUE},
	{255, 50,  255, SDL_ALPHA_OPAQUE},
	{255, 0,   255, SDL_ALPHA_OPAQUE},
	{255, 255, 0,   SDL_ALPHA_OPAQUE},
	{180, 0,   255, SDL_ALPHA_OPAQUE},
	{0,   255, 0,   SDL_ALPHA_OPAQUE}
}};

static constexpr std::array<ColorRGBA, 8> targetPalette = {{
	{0, 0, 0, 0  }, // 0 - transparency                  ( used in most images )
	{0, 0, 0, 64 }, // 1 - shadow border                 ( used in battle, adventure map def's )
	{0, 0, 0, 64 }, // 2 - shadow border                 ( used in fog-of-war def's )
	{0, 0, 0, 128}, // 3 - shadow body                   ( used in fog-of-war def's )
	{0, 0, 0, 128}, // 4 - shadow body                   ( used in battle, adventure map def's )
	{0, 0, 0, 0  }, // 5 - selection / owner flag        ( used in battle, adventure map def's )
	{0, 0, 0, 128}, // 6 - shadow body   below selection ( used in battle def's )
	{0, 0, 0, 64 }  // 7 - shadow border below selection ( used in battle def's )
}};

static ui8 mixChannels(ui8 c1, ui8 c2, ui8 a1, ui8 a2)
{
	return c1*a1 / 256 + c2*a2*(255 - a1) / 256 / 256;
}

static ColorRGBA addColors(const ColorRGBA & base, const ColorRGBA & over)
{
	return ColorRGBA(
		mixChannels(over.r, base.r, over.a, base.a),
		mixChannels(over.g, base.g, over.a, base.a),
		mixChannels(over.b, base.b, over.a, base.a),
		static_cast<ui8>(over.a + base.a * (255 - over.a) / 256)
		);
}
static bool colorsSimilar (const SDL_Color & lhs, const SDL_Color & rhs)
{
	// it seems that H3 does not requires exact match to replace colors -> (255, 103, 255) gets interpreted as shadow
	// exact logic is not clear and requires extensive testing with image editing
	// potential reason is that H3 uses 16-bit color format (565 RGB bits), meaning that 3 least significant bits are lost in red and blue component
	static const int threshold = 8;

	int diffR = static_cast<int>(lhs.r) - rhs.r;
	int diffG = static_cast<int>(lhs.g) - rhs.g;
	int diffB = static_cast<int>(lhs.b) - rhs.b;
	int diffA = static_cast<int>(lhs.a) - rhs.a;

	return std::abs(diffR) < threshold && std::abs(diffG) < threshold && std::abs(diffB) < threshold && std::abs(diffA) < threshold;
}

ScalableImageParameters::ScalableImageParameters(const SDL_Palette * originalPalette, EImageBlitMode blitMode)
{
	if (originalPalette)
	{
		palette = SDL_AllocPalette(originalPalette->ncolors);
		SDL_SetPaletteColors(palette, originalPalette->colors, 0, originalPalette->ncolors);
		preparePalette(originalPalette, blitMode);
	}
}

ScalableImageParameters::~ScalableImageParameters()
{
	SDL_FreePalette(palette);
}

void ScalableImageParameters::preparePalette(const SDL_Palette * originalPalette, EImageBlitMode blitMode)
{
	switch(blitMode)
	{
		case EImageBlitMode::ONLY_SHADOW:
		case EImageBlitMode::ONLY_OVERLAY:
			adjustPalette(originalPalette, blitMode, ColorFilter::genAlphaShifter(0), 0);
			break;
	}

	switch(blitMode)
	{
		case EImageBlitMode::SIMPLE:
		case EImageBlitMode::WITH_SHADOW:
		case EImageBlitMode::ONLY_SHADOW:
		case EImageBlitMode::WITH_SHADOW_AND_OVERLAY:
			setShadowTransparency(originalPalette, 1.0);
			break;
		case EImageBlitMode::ONLY_BODY:
		case EImageBlitMode::ONLY_BODY_IGNORE_OVERLAY:
		case EImageBlitMode::ONLY_OVERLAY:
			setShadowTransparency(originalPalette, 0.0);
			break;
	}

	switch(blitMode)
	{
		case EImageBlitMode::ONLY_OVERLAY:
		case EImageBlitMode::WITH_SHADOW_AND_OVERLAY:
			setOverlayColor(originalPalette, Colors::WHITE_TRUE);
			break;
		case EImageBlitMode::ONLY_SHADOW:
		case EImageBlitMode::ONLY_BODY:
			setOverlayColor(originalPalette, Colors::TRANSPARENCY);
			break;
	}
}

void ScalableImageParameters::setOverlayColor(const SDL_Palette * originalPalette, const ColorRGBA & color)
{
	palette->colors[5] = CSDL_Ext::toSDL(addColors(targetPalette[5], color));

	for (int i : {6,7})
	{
		if (colorsSimilar(originalPalette->colors[i], sourcePalette[i]))
			palette->colors[i] = CSDL_Ext::toSDL(addColors(targetPalette[i], color));
	}
}

void ScalableImageParameters::shiftPalette(const SDL_Palette * originalPalette, uint32_t firstColorID, uint32_t colorsToMove, uint32_t distanceToMove)
{
	std::vector<SDL_Color> shifterColors(colorsToMove);

	for(uint32_t i=0; i<colorsToMove; ++i)
		shifterColors[(i+distanceToMove)%colorsToMove] = originalPalette->colors[firstColorID + i];

	SDL_SetPaletteColors(palette, shifterColors.data(), firstColorID, colorsToMove);
}

void ScalableImageParameters::setShadowTransparency(const SDL_Palette * originalPalette, float factor)
{
	ColorRGBA shadow50(0, 0, 0, 128 * factor);
	ColorRGBA shadow25(0, 0, 0,  64 * factor);

	std::array<SDL_Color, 5> colorsSDL = {
		originalPalette->colors[0],
		originalPalette->colors[1],
		originalPalette->colors[2],
		originalPalette->colors[3],
		originalPalette->colors[4]
	};

	// seems to be used unconditionally
	colorsSDL[0] = CSDL_Ext::toSDL(Colors::TRANSPARENCY);
	colorsSDL[1] = CSDL_Ext::toSDL(shadow25);
	colorsSDL[4] = CSDL_Ext::toSDL(shadow50);

	// seems to be used only if color matches
	if (colorsSimilar(originalPalette->colors[2], sourcePalette[2]))
		colorsSDL[2] = CSDL_Ext::toSDL(shadow25);

	if (colorsSimilar(originalPalette->colors[3], sourcePalette[3]))
		colorsSDL[3] = CSDL_Ext::toSDL(shadow50);

	SDL_SetPaletteColors(palette, colorsSDL.data(), 0, colorsSDL.size());
}

void ScalableImageParameters::adjustPalette(const SDL_Palette * originalPalette, EImageBlitMode blitMode, const ColorFilter & shifter, uint32_t colorsToSkipMask)
{
	// If shadow is enabled, following colors must be skipped unconditionally
	if (blitMode == EImageBlitMode::WITH_SHADOW || blitMode == EImageBlitMode::WITH_SHADOW_AND_OVERLAY)
		colorsToSkipMask |= (1 << 0) + (1 << 1) + (1 << 4);

	// Note: here we skip first colors in the palette that are predefined in H3 images
	for(int i = 0; i < palette->ncolors; i++)
	{
		if (i < std::size(sourcePalette) && colorsSimilar(sourcePalette[i], originalPalette->colors[i]))
			continue;

		if(i < std::numeric_limits<uint32_t>::digits && ((colorsToSkipMask >> i) & 1) == 1)
			continue;

		palette->colors[i] = CSDL_Ext::toSDL(shifter.shiftColor(CSDL_Ext::fromSDL(originalPalette->colors[i])));
	}
}

ScalableImageShared::ScalableImageShared(const SharedImageLocator & locator, const std::shared_ptr<const ISharedImage> & baseImage)
	:locator(locator)
{
	scaled[1].body[0] = baseImage;
	assert(scaled[1].body[0] != nullptr);

	loadScaledImages(GH.screenHandler().getScalingFactor(), PlayerColor::CANNOT_DETERMINE);
}

Point ScalableImageShared::dimensions() const
{
	return scaled[1].body[0]->dimensions();
}

void ScalableImageShared::exportBitmap(const boost::filesystem::path & path, const ScalableImageParameters & parameters) const
{
	scaled[1].body[0]->exportBitmap(path, parameters.palette);
}

bool ScalableImageShared::isTransparent(const Point & coords) const
{
	return scaled[1].body[0]->isTransparent(coords);
}

Rect ScalableImageShared::contentRect() const
{
	return scaled[1].body[0]->contentRect();
}

void ScalableImageShared::draw(SDL_Surface * where, const Point & dest, const Rect * src, const ScalableImageParameters & parameters, int scalingFactor)
{
	const auto & getFlippedImage = [&](FlippedImages & images){
		int index = 0;
		if (parameters.flipVertical)
		{
			if (!images[index|1])
				images[index|1] = images[index]->verticalFlip();

			index |= 1;
		}

		if (parameters.flipHorizontal)
		{
			if (!images[index|2])
				images[index|2] = images[index]->horizontalFlip();

			index |= 2;
		}

		return images[index];
	};

	const auto & flipAndDraw = [&](FlippedImages & images, const ColorRGBA & colorMultiplier, uint8_t alphaValue){

		getFlippedImage(images)->draw(where, parameters.palette, dest, src, colorMultiplier, alphaValue, locator.layer);
	};

	bool shadowLoading = scaled.at(scalingFactor).shadow.at(0) && scaled.at(scalingFactor).shadow.at(0)->isLoading();
	bool bodyLoading = scaled.at(scalingFactor).body.at(0) && scaled.at(scalingFactor).body.at(0)->isLoading();
	bool overlayLoading = scaled.at(scalingFactor).overlay.at(0) && scaled.at(scalingFactor).overlay.at(0)->isLoading();
	bool playerLoading = parameters.player != PlayerColor::CANNOT_DETERMINE && scaled.at(scalingFactor).playerColored.at(1+parameters.player.getNum()) && scaled.at(scalingFactor).playerColored.at(1+parameters.player.getNum())->isLoading();

	if (shadowLoading || bodyLoading || overlayLoading || playerLoading)
	{
		getFlippedImage(scaled[1].body)->scaledDraw(where, parameters.palette, dimensions() * scalingFactor, dest, src, parameters.colorMultiplier, parameters.alphaValue, locator.layer);
		return;
	}

	if (scaled.at(scalingFactor).shadow.at(0))
		flipAndDraw(scaled.at(scalingFactor).shadow, Colors::WHITE_TRUE, parameters.alphaValue);

	if (parameters.player != PlayerColor::CANNOT_DETERMINE && scaled.at(scalingFactor).playerColored.at(1+parameters.player.getNum()))
	{
		scaled.at(scalingFactor).playerColored.at(1+parameters.player.getNum())->draw(where, parameters.palette, dest, src, Colors::WHITE_TRUE, parameters.alphaValue, locator.layer);
	}
	else
	{
		if (scaled.at(scalingFactor).body.at(0))
			flipAndDraw(scaled.at(scalingFactor).body, parameters.colorMultiplier, parameters.alphaValue);
	}

	if (scaled.at(scalingFactor).overlay.at(0))
		flipAndDraw(scaled.at(scalingFactor).overlay, parameters.ovelayColorMultiplier, static_cast<int>(parameters.alphaValue) * parameters.ovelayColorMultiplier.a / 255);
}

const SDL_Palette * ScalableImageShared::getPalette() const
{
	return scaled[1].body[0]->getPalette();
}

std::shared_ptr<ScalableImageInstance> ScalableImageShared::createImageReference()
{
	return std::make_shared<ScalableImageInstance>(shared_from_this(), locator.layer);
}

ScalableImageInstance::ScalableImageInstance(const std::shared_ptr<ScalableImageShared> & image, EImageBlitMode blitMode)
	:image(image)
	,parameters(image->getPalette(), blitMode)
	,blitMode(blitMode)
{
	assert(image);
}

void ScalableImageInstance::scaleTo(const Point & size, EScalingAlgorithm algorithm)
{
	scaledImage = nullptr;

	auto newScaledImage = GH.renderHandler().createImage(dimensions(), CanvasScalingPolicy::AUTO);

	newScaledImage->getCanvas().draw(*this, Point(0, 0));
	newScaledImage->scaleTo(size, algorithm);
	scaledImage = newScaledImage;
}

void ScalableImageInstance::exportBitmap(const boost::filesystem::path & path) const
{
	image->exportBitmap(path, parameters);
}

bool ScalableImageInstance::isTransparent(const Point & coords) const
{
	return image->isTransparent(coords);
}

Rect ScalableImageInstance::contentRect() const
{
	return image->contentRect();
}

Point ScalableImageInstance::dimensions() const
{
	if (scaledImage)
		return scaledImage->dimensions() / GH.screenHandler().getScalingFactor();
	return image->dimensions();
}

void ScalableImageInstance::setAlpha(uint8_t value)
{
	parameters.alphaValue = value;
}

void ScalableImageInstance::draw(SDL_Surface * where, const Point & pos, const Rect * src, int scalingFactor) const
{
	if (scaledImage)
		scaledImage->draw(where, pos, src, scalingFactor);
	else
		image->draw(where, pos, src, parameters, scalingFactor);
}

void ScalableImageInstance::setOverlayColor(const ColorRGBA & color)
{
	parameters.ovelayColorMultiplier = color;

	if (parameters.palette)
		parameters.setOverlayColor(image->getPalette(), color);
}

void ScalableImageInstance::playerColored(const PlayerColor & player)
{
	parameters.player = player;

	if (parameters.palette)
		parameters.playerColored(player);

	image->preparePlayerColoredImage(player);
}

void ScalableImageParameters::playerColored(PlayerColor player)
{
	graphics->setPlayerPalette(palette, player);
}

void ScalableImageInstance::shiftPalette(uint32_t firstColorID, uint32_t colorsToMove, uint32_t distanceToMove)
{
	if (parameters.palette)
		parameters.shiftPalette(image->getPalette(),firstColorID, colorsToMove, distanceToMove);
}

void ScalableImageInstance::adjustPalette(const ColorFilter & shifter, uint32_t colorsToSkipMask)
{
	if (parameters.palette)
		parameters.adjustPalette(image->getPalette(), blitMode, shifter, colorsToSkipMask);
}

void ScalableImageInstance::horizontalFlip()
{
	parameters.flipHorizontal = !parameters.flipHorizontal;
}

void ScalableImageInstance::verticalFlip()
{
	parameters.flipVertical = !parameters.flipVertical;
}

std::shared_ptr<const ISharedImage> ScalableImageShared::loadOrGenerateImage(EImageBlitMode mode, int8_t scalingFactor, PlayerColor color, ImageType upscalingSource) const
{
	ImageLocator loadingLocator;

	loadingLocator.image = locator.image;
	loadingLocator.defFile = locator.defFile;
	loadingLocator.defFrame = locator.defFrame;
	loadingLocator.defGroup = locator.defGroup;
	loadingLocator.layer = mode;
	loadingLocator.scalingFactor = scalingFactor;
	loadingLocator.playerColored = color;

	// best case - requested image is already available in filesystem
	auto loadedImage = GH.renderHandler().loadScaledImage(loadingLocator);
	if (loadedImage)
		return loadedImage;

	if (scalingFactor == 1)
	{
		// optional images for 1x resolution - only try load them, don't attempt to generate
		// this block should never be called for 'body' layer - that image is loaded unconditionally before construction
		assert(mode == EImageBlitMode::ONLY_SHADOW || mode == EImageBlitMode::ONLY_OVERLAY || color != PlayerColor::CANNOT_DETERMINE);
		return nullptr;
	}

	// alternatively, find largest pre-scaled image, load it and rescale to desired scaling
	for (int8_t scaling = 4; scaling > 0; --scaling)
	{
		loadingLocator.scalingFactor = scaling;
		auto loadedImage = GH.renderHandler().loadScaledImage(loadingLocator);
		if (loadedImage)
		{
			if (scaling == 1)
			{
				if (mode == EImageBlitMode::ONLY_SHADOW || mode == EImageBlitMode::ONLY_OVERLAY || color != PlayerColor::CANNOT_DETERMINE)
				{
					ScalableImageParameters parameters(getPalette(), mode);
					return loadedImage->scaleInteger(scalingFactor, parameters.palette, mode);
				}
			}
			else
			{
				Point targetSize = scaled[1].body[0]->dimensions() * scalingFactor;
				return loadedImage->scaleTo(targetSize, nullptr);
			}
		}
	}

	ScalableImageParameters parameters(getPalette(), mode);
	// if all else fails - use base (presumably, indexed) image and convert it to desired form
	if (color != PlayerColor::CANNOT_DETERMINE)
		parameters.playerColored(color);

	if (upscalingSource)
		return upscalingSource->scaleInteger(scalingFactor, parameters.palette, mode);
	else
		return scaled[1].body[0]->scaleInteger(scalingFactor, parameters.palette, mode);
}

void ScalableImageShared::loadScaledImages(int8_t scalingFactor, PlayerColor color)
{
	if (scaled[scalingFactor].body[0] == nullptr && scalingFactor != 1)
	{
		switch(locator.layer)
		{
			case EImageBlitMode::OPAQUE:
			case EImageBlitMode::COLORKEY:
			case EImageBlitMode::SIMPLE:
				scaled[scalingFactor].body[0] = loadOrGenerateImage(locator.layer, scalingFactor, PlayerColor::CANNOT_DETERMINE, scaled[1].body[0]);
				break;

			case EImageBlitMode::WITH_SHADOW_AND_OVERLAY:
			case EImageBlitMode::ONLY_BODY:
				scaled[scalingFactor].body[0] = loadOrGenerateImage(EImageBlitMode::ONLY_BODY, scalingFactor, PlayerColor::CANNOT_DETERMINE, scaled[1].body[0]);
				break;

			case EImageBlitMode::WITH_SHADOW:
			case EImageBlitMode::ONLY_BODY_IGNORE_OVERLAY:
				scaled[scalingFactor].body[0] = loadOrGenerateImage(EImageBlitMode::ONLY_BODY_IGNORE_OVERLAY, scalingFactor, PlayerColor::CANNOT_DETERMINE, scaled[1].body[0]);
				break;
		}
	}

	if (color != PlayerColor::CANNOT_DETERMINE && scaled[scalingFactor].playerColored[1+color.getNum()] == nullptr)
	{
		switch(locator.layer)
		{
			case EImageBlitMode::OPAQUE:
			case EImageBlitMode::COLORKEY:
			case EImageBlitMode::SIMPLE:
				scaled[scalingFactor].playerColored[1+color.getNum()] = loadOrGenerateImage(locator.layer, scalingFactor, color, scaled[1].playerColored[1+color.getNum()]);
				break;

			case EImageBlitMode::WITH_SHADOW_AND_OVERLAY:
			case EImageBlitMode::ONLY_BODY:
				scaled[scalingFactor].playerColored[1+color.getNum()] = loadOrGenerateImage(EImageBlitMode::ONLY_BODY, scalingFactor, color, scaled[1].playerColored[1+color.getNum()]);
				break;

			case EImageBlitMode::WITH_SHADOW:
			case EImageBlitMode::ONLY_BODY_IGNORE_OVERLAY:
				scaled[scalingFactor].playerColored[1+color.getNum()] = loadOrGenerateImage(EImageBlitMode::ONLY_BODY_IGNORE_OVERLAY, scalingFactor, color, scaled[1].playerColored[1+color.getNum()]);
				break;
		}
	}

	if (scaled[scalingFactor].shadow[0] == nullptr)
	{
		switch(locator.layer)
		{
			case EImageBlitMode::WITH_SHADOW:
			case EImageBlitMode::ONLY_SHADOW:
			case EImageBlitMode::WITH_SHADOW_AND_OVERLAY:
				scaled[scalingFactor].shadow[0] = loadOrGenerateImage(EImageBlitMode::ONLY_SHADOW, scalingFactor, PlayerColor::CANNOT_DETERMINE, scaled[1].shadow[0]);
				break;
			default:
				break;
		}
	}

	if (scaled[scalingFactor].overlay[0] == nullptr)
	{
		switch(locator.layer)
		{
			case EImageBlitMode::ONLY_OVERLAY:
			case EImageBlitMode::WITH_SHADOW_AND_OVERLAY:
				scaled[scalingFactor].overlay[0] = loadOrGenerateImage(EImageBlitMode::ONLY_OVERLAY, scalingFactor, PlayerColor::CANNOT_DETERMINE, scaled[1].overlay[0]);
				break;
			default:
				break;
		}
	}
}

void ScalableImageShared::preparePlayerColoredImage(PlayerColor color)
{
	loadScaledImages(GH.screenHandler().getScalingFactor(), color);
}