File: atomic.h

package info (click to toggle)
vdo 8.3.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,536 kB
  • sloc: ansic: 21,023; sh: 349; makefile: 314; perl: 242
file content (516 lines) | stat: -rw-r--r-- 16,122 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
/*
 * Copyright Red Hat
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 * 02110-1301, USA.
 */

#ifndef LINUX_ATOMIC_H
#define LINUX_ATOMIC_H

#include <linux/types.h>

// The atomic interfaces are chosen to exactly match those interfaces defined
// by the Linux kernel.  The rest of this file is the matching user-mode
// implementation.

typedef struct {
  int32_t value;
} atomic_t;

typedef struct {
  int64_t value;
} atomic64_t;

#define ATOMIC_INIT(i)  { (i) }

/*****************************************************************************
 * Beginning of the barrier methods.
 *****************************************************************************/

/**
 * Stop GCC from moving memory operations across a point in the instruction
 * stream.  This is how the kernel uses this method.
 **/
static inline void barrier(void)
{
  /*
   * asm volatile cannot be removed, and the memory clobber tells the
   * compiler not to move memory accesses past the asm.  We don't
   * actually need any instructions issued on x86_64, as synchronizing
   * instructions are ordered with respect to both loads and stores,
   * with some irrelevant-to-us exceptions.
   */
  __asm__ __volatile__("" : : : "memory");
}

/**
 * Provide a memory barrier.
 *
 * Generate a full memory fence for the compiler and CPU. Load and store
 * operations issued before the fence will not be re-ordered with operations
 * issued after the fence.
 *
 * We also use this method in association with the __sync builtins. In earlier
 * versions of GCC (at least through 4.6), the __sync operations didn't
 * actually act as the memory barriers the compiler documentation says they
 * should. Even as of GCC 8, it looks like the Linux kernel developers
 * disagree with the compiler developers as to what constitutes a barrier at
 * least on s390x, where the kernel uses explicit barriers after certain
 * atomic operations and GCC does not.
 *
 * Rather than investigate the current status of barriers in GCC (which is an
 * architecture-specific issue), and since in user mode the performance of
 * these operations is not critical, we can afford to be cautious and insert
 * extra barriers, until such time as we have more time to investigate and
 * gain confidence in the current state of GCC barriers.
 **/
static inline void smp_mb(void)
{
#if defined __x86_64__
  /*
   * X86 full fence. Supposedly __sync_synchronize() will do this, but
   * either the GCC documentation is a lie or GCC is broken.
   *
   * FIXME: http://blogs.sun.com/dave/entry/atomic_fetch_and_add_vs says
   * atomicAdd of zero may be a better way to spell this on current CPUs.
   */
  __asm__ __volatile__("mfence" : : : "memory");
#elif defined __aarch64__
  __asm__ __volatile__("dmb ish" : : : "memory");
#elif defined __s390__
  __asm__ __volatile__("bcr 14,0" : : : "memory");
#elif defined __PPC__
  __asm__ __volatile__("sync" : : : "memory");
#elif defined __riscv
  __asm__ __volatile__("fence rw,rw" : : : "memory");
#elif defined __loongarch64
  __asm__ __volatile__("dbar 0" : : : "memory");
#else
#error "no fence defined"
#endif
}

/**
 * Provide a read memory barrier.
 *
 * Memory load operations that precede this fence will be prevented from
 * changing order with any that follow this fence, by either the compiler or
 * the CPU. This can be used to ensure that the load operations accessing the
 * fields of a structure are not re-ordered so they actually take effect before
 * a pointer to the structure is resolved.
 **/
static inline void smp_rmb(void)
{
#if defined __x86_64__
  // The implementation on x86 is more aggressive than necessary.
  __asm__ __volatile__("lfence" : : : "memory");
#elif defined __aarch64__
  __asm__ __volatile__("dmb ishld" : : : "memory");
#elif defined __s390__
  __asm__ __volatile__("bcr 14,0" : : : "memory");
#elif defined __PPC__
  __asm__ __volatile__("lwsync" : : : "memory");
#elif defined __riscv
  __asm__ __volatile__("fence r,r" : : : "memory");
#elif defined __loongarch64
  __asm__ __volatile__("dbar 0" : : : "memory");
#else
#error "no fence defined"
#endif
}

/**
 * Provide a write memory barrier.
 *
 * Memory store operations that precede this fence will be prevented from
 * changing order with any that follow this fence, by either the compiler or
 * the CPU. This can be used to ensure that the store operations initializing
 * the fields of a structure are not re-ordered so they actually take effect
 * after a pointer to the structure is published.
 **/
static inline void smp_wmb(void)
{
#if defined __x86_64__
  // The implementation on x86 is more aggressive than necessary.
  __asm__ __volatile__("sfence" : : : "memory");
#elif defined __aarch64__
  __asm__ __volatile__("dmb ishst" : : : "memory");
#elif defined __s390__
  __asm__ __volatile__("bcr 14,0" : : : "memory");
#elif defined __PPC__
  __asm__ __volatile__("lwsync" : : : "memory");
#elif defined __riscv
  __asm__ __volatile__("fence w,w" : : : "memory");
#elif defined __loongarch64
  __asm__ __volatile__("dbar 0" : : : "memory");
#else
#error "no fence defined"
#endif
}

/**
 * Provide a memory barrier before an atomic read-modify-write operation
 * that does not imply one.
 **/
static inline void smp_mb__before_atomic(void)
{
#if defined(__x86_64__) || defined(__s390__)
  // Atomic operations are already serializing on x86 and s390
  barrier();
#else
  smp_mb();
#endif
}

/**
 * Provide a memory barrier after an atomic read-modify-write operation
 * that does not imply one.
 **/
static inline void smp_mb__after_atomic(void)
{
#if defined(__x86_64__) || defined(__s390__)
  // Atomic operations are already serializing on x86 and s390
  barrier();
#else
  smp_mb();
#endif
}

/*****************************************************************************
 * Beginning of the methods for defeating compiler optimization.
 *****************************************************************************/

#define READ_ONCE(x)        (x)
#define WRITE_ONCE(x, val)  ((x) = (val))

/*****************************************************************************
 * Beginning of the 32 bit atomic support.
 *****************************************************************************/

/*
 * As noted above, there are a lot of explicit barriers here, in places
 * where we need barriers. Ideally, GCC should just Get It Right on all the
 * platforms. But there have been bugs in the past, and it looks like there
 * might be one still (in GCC 8) at least on s390 (no bug report filed yet),
 * and researching it may take more time than we have available before we have
 * to ship. It also requires manual inspection for each platform, as there's
 * no good general way to test whether the compiler gets the barriers correct.
 */

/**
 * Add a signed int to a 32-bit atomic variable.  The addition is atomic, but
 * there are no memory barriers implied by this method.
 *
 * @param delta  the value to be added to (or subtracted from) the variable
 * @param atom   a pointer to the atomic variable
 **/
static inline void atomic_add(int delta, atomic_t *atom)
{
  /*
   * According to the kernel documentation, the addition is atomic, but there
   * are no memory barriers implied by this method.
   *
   * The x86 implementation does do memory barriers.
   */
  __sync_add_and_fetch(&atom->value, delta);
}

/**
 * Add a signed int to a 32-bit atomic variable.  The addition is properly
 * atomic, and there are memory barriers.
 *
 * @param atom   a pointer to the atomic variable
 * @param delta  the value to be added (or subtracted) from the variable
 *
 * @return the new value of the atom after the add operation
 **/
static inline int atomic_add_return(int delta, atomic_t *atom)
{
  smp_mb();
  int result = __sync_add_and_fetch(&atom->value, delta);
  smp_mb();
  return result;
}

/**
 * Compare and exchange a 32-bit atomic variable.  The operation is properly
 * atomic and performs a memory barrier.
 *
 * @param atom  a pointer to the atomic variable
 * @param old   the value that must be present to perform the swap
 * @param new   the value to be swapped for the required value
 *
 * @return the old value
 **/
static inline int atomic_cmpxchg(atomic_t *atom, int old, int new)
{
  smp_mb();
  int result = __sync_val_compare_and_swap(&atom->value, old, new);
  smp_mb();
  return result;
}

/**
 * Increment a 32-bit atomic variable, without any memory barriers.
 *
 * @param atom   a pointer to the atomic variable
 **/
static inline void atomic_inc(atomic_t *atom)
{
  /*
   * According to the kernel documentation, the addition is atomic, but there
   * are no memory barriers implied by this method.
   *
   * The x86 implementation does do memory barriers.
   */
  __sync_add_and_fetch(&atom->value, 1);
}

/**
 * Increment a 32-bit atomic variable.  The addition is properly atomic, and
 * there are memory barriers.
 *
 * @param atom  a pointer to the atomic variable
 *
 * @return the new value of the atom after the increment
 **/
static inline long atomic_inc_return(atomic_t *atom)
{
  return atomic_add_return(1, atom);
}


/**
 * Decrement a 32-bit atomic variable, without any memory barriers.
 *
 * @param atom   a pointer to the atomic variable
 **/
static inline void atomic_dec(atomic_t *atom)
{
  /*
   * According to the kernel documentation, the subtraction is atomic, but
   * there are no memory barriers implied by this method.
   *
   * The x86 implementation does do memory barriers.
   */
  __sync_sub_and_fetch(&atom->value, 1);
}

/**
 * Read a 32-bit atomic variable, without any memory barriers.
 *
 * @param atom   a pointer to the atomic variable
 **/
static inline int atomic_read(const atomic_t *atom)
{
  return READ_ONCE(atom->value);
}

/**
 * Read a 32-bit atomic variable, with an acquire memory barrier.
 *
 * @param atom  a pointer to the atomic variable
 **/
static inline int atomic_read_acquire(const atomic_t *atom)
{
  int value = READ_ONCE(atom->value);
  smp_mb();
  return value;
}

/**
 * Set a 32-bit atomic variable, without any memory barriers.
 *
 * @param atom   a pointer to the atomic variable
 * @param value  the value to set it to
 **/
static inline void atomic_set(atomic_t *atom, int value)
{
  atom->value = value;
}

/**
 * Set a 32-bit atomic variable, with a release memory barrier.
 *
 * @param atom   a pointer to the atomic variable
 * @param value  the value to set it to
**/
static inline void atomic_set_release(atomic_t *atom, int value)
{
  smp_mb();
  atomic_set(atom, value);
}

/*****************************************************************************
 * Beginning of the 64 bit atomic support.
 *****************************************************************************/

/**
 * Add a signed long to a 64-bit atomic variable.  The addition is atomic, but
 * there are no memory barriers implied by this method.
 *
 * @param delta  the value to be added to (or subtracted from) the variable
 * @param atom   a pointer to the atomic variable
 **/
static inline void atomic64_add(long delta, atomic64_t *atom)
{
  /*
   * According to the kernel documentation, the addition is atomic, but there
   * are no memory barriers implied by this method.
   *
   * The x86 implementation does do memory barriers.
   */
  __sync_add_and_fetch(&atom->value, delta);
}

/**
 * Add a signed long to a 64-bit atomic variable.  The addition is properly
 * atomic, and there are memory barriers.
 *
 * @param atom   a pointer to the atomic variable
 * @param delta  the value to be added (or subtracted) from the variable
 *
 * @return the new value of the atom after the add operation
 **/
static inline long atomic64_add_return(long delta, atomic64_t *atom)
{
  smp_mb();
  long result = __sync_add_and_fetch(&atom->value, delta);
  smp_mb();
  return result;
}

/**
 * Compare and exchange a 64-bit atomic variable.  The operation is properly
 * atomic and performs a memory barrier.
 *
 * @param atom  a pointer to the atomic variable
 * @param old   the value that must be present to perform the swap
 * @param new   the value to be swapped for the required value
 *
 * @return the old value
 **/
static inline long atomic64_cmpxchg(atomic64_t *atom, long old, long new)
{
  smp_mb();
  long result = __sync_val_compare_and_swap(&atom->value, old, new);
  smp_mb();
  return result;
}

/**
 * Increment a 64-bit atomic variable, without any memory barriers.
 *
 * @param atom   a pointer to the atomic variable
 **/
static inline void atomic64_inc(atomic64_t *atom)
{
  /*
   * According to the kernel documentation, the addition is atomic, but there
   * are no memory barriers implied by this method.
   *
   * The x86 implementation does do memory barriers.
   */
  __sync_add_and_fetch(&atom->value, 1);
}

/**
 * Increment a 64-bit atomic variable.  The addition is properly atomic, and
 * there are memory barriers.
 *
 * @param atom  a pointer to the atomic variable
 *
 * @return the new value of the atom after the increment
 **/
static inline long atomic64_inc_return(atomic64_t *atom)
{
  return atomic64_add_return(1, atom);
}

/**
 * Read a 64-bit atomic variable, without any memory barriers.
 *
 * @param atom   a pointer to the atomic variable
 **/
static inline long atomic64_read(const atomic64_t *atom)
{
  return READ_ONCE(atom->value);
}

/**
 * Read a 64-bit atomic variable, with an acquire memory barrier.
 *
 * @param atom  a pointer to the atomic variable
 **/
static inline long atomic64_read_acquire(const atomic64_t *atom)
{
  long value = READ_ONCE(atom->value);
  smp_mb();
  return value;
}

/**
 * Set a 64-bit atomic variable, without any memory barriers.
 *
 * @param atom   a pointer to the atomic variable
 * @param value  the value to set it to
 **/
static inline void atomic64_set(atomic64_t *atom, long value)
{
  atom->value = value;
}

/**
 * Set a 64-bit atomic variable, with a release memory barrier.
 *
 * @param atom   a pointer to the atomic variable
 * @param value  the value to set it to
**/
static inline void atomic64_set_release(atomic64_t *atom, long value)
{
  smp_mb();
  atomic64_set(atom, value);
}

/*****************************************************************************
 * Generic exchange support.
 *****************************************************************************/

/*
 * Exchange a location's value atomically, with a full memory barrier.
 *
 * The location is NOT an "atomic*_t" type, but any primitive type for which
 * an exchange can be done atomically. (This varies by processor, but
 * generally a word-sized or pointer-sized value is supported.) As this uses a
 * type-generic compiler interface, it must be implemented as a macro.
 *
 * @param PTR     a pointer to the location to be updated
 * @param NEWVAL  the new value to be stored
 *
 * @return the old value
 */
#define xchg(PTR,NEWVAL)                                                \
  __extension__ ({                                                      \
    __typeof__(*(PTR)) __xchg_result;                                   \
    __typeof__(*(PTR)) __xchg_new_value = (NEWVAL);                     \
    smp_mb();  /* paranoia, for old gcc bugs */                         \
    __xchg_result = __atomic_exchange_n((PTR), __xchg_new_value,        \
                                        __ATOMIC_SEQ_CST);              \
    smp_mb();  /* more paranoia */                                      \
    __xchg_result;                                                      \
  })

#endif /* LINUX_ATOMIC_H */