1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright 2023 Red Hat
*/
#include "funnel-requestqueue.h"
#include <linux/atomic.h>
#include <linux/cache.h>
#include "event-count.h"
#include "funnel-queue.h"
#include "logger.h"
#include "memory-alloc.h"
#include "thread-utils.h"
#include "time-utils.h"
/*
* This queue will attempt to handle requests in reasonably sized batches
* instead of reacting immediately to each new request. The wait time between
* batches is dynamically adjusted up or down to try to balance responsiveness
* against wasted thread run time.
*
* If the wait time becomes long enough, the queue will become dormant and must
* be explicitly awoken when a new request is enqueued. The enqueue operation
* updates "newest" in the funnel queue via xchg (which is a memory barrier),
* and later checks "dormant" to decide whether to do a wakeup of the worker
* thread.
*
* When deciding to go to sleep, the worker thread sets "dormant" and then
* examines "newest" to decide if the funnel queue is idle. In dormant mode,
* the last examination of "newest" before going to sleep is done inside the
* wait_event_interruptible macro(), after a point where one or more memory
* barriers have been issued. (Preparing to sleep uses spin locks.) Even if the
* funnel queue's "next" field update isn't visible yet to make the entry
* accessible, its existence will kick the worker thread out of dormant mode
* and back into timer-based mode.
*
* Unbatched requests are used to communicate between different zone threads
* and will also cause the queue to awaken immediately.
*/
enum {
NANOSECOND = 1,
MICROSECOND = 1000 * NANOSECOND,
MILLISECOND = 1000 * MICROSECOND,
DEFAULT_WAIT_TIME = 10 * MICROSECOND,
MINIMUM_WAIT_TIME = DEFAULT_WAIT_TIME / 2,
MAXIMUM_WAIT_TIME = MILLISECOND,
MINIMUM_BATCH = 32,
MAXIMUM_BATCH = 64,
};
struct uds_request_queue {
/* The name of queue */
const char *name;
/* Function to process a request */
uds_request_queue_processor_fn processor;
/* Queue of new incoming requests */
struct funnel_queue *main_queue;
/* Queue of old requests to retry */
struct funnel_queue *retry_queue;
/* Signal to wake the worker thread */
struct event_count *work_event;
/* The thread id of the worker thread */
struct thread *thread;
/* True if the worker was started */
bool started;
/* When true, requests can be enqueued */
bool running;
/* A flag set when the worker is waiting without a timeout */
atomic_t dormant;
/*
* The following fields are mutable state private to the worker thread.
* The first field is aligned to avoid cache line sharing with
* preceding fields.
*/
/* Requests processed since last wait */
uint64_t current_batch __aligned(L1_CACHE_BYTES);
/* The amount of time to wait to accumulate a batch of requests */
uint64_t wait_nanoseconds;
/* The relative time at which to wake when waiting with a timeout */
ktime_t wake_rel_time;
};
/**********************************************************************/
static void adjust_wait_time(struct uds_request_queue *queue)
{
uint64_t delta = queue->wait_nanoseconds / 4;
if (queue->current_batch < MINIMUM_BATCH)
queue->wait_nanoseconds += delta;
else if (queue->current_batch > MAXIMUM_BATCH)
queue->wait_nanoseconds -= delta;
}
/**
* Decide if the queue should wait with a timeout or enter the dormant mode
* of waiting without a timeout. If timing out, returns an relative wake
* time to pass to the wait call, otherwise returns NULL. (wake_rel_time is a
* queue field to make it easy for this function to return NULL).
*
* @param queue the request queue
*
* @return a pointer the relative wake time, or NULL if there is no timeout
**/
static ktime_t *get_wake_time(struct uds_request_queue *queue)
{
if (queue->wait_nanoseconds >= MAXIMUM_WAIT_TIME) {
if (atomic_read(&queue->dormant)) {
/* The thread is going dormant. */
queue->wait_nanoseconds = DEFAULT_WAIT_TIME;
return NULL;
}
queue->wait_nanoseconds = MAXIMUM_WAIT_TIME;
atomic_set_release(&queue->dormant, true);
} else if (queue->wait_nanoseconds < MINIMUM_WAIT_TIME) {
queue->wait_nanoseconds = MINIMUM_WAIT_TIME;
}
queue->wake_rel_time = queue->wait_nanoseconds;
return &queue->wake_rel_time;
}
/**
* Poll the underlying lock-free queues for a request to process. Requests in
* the retry queue have higher priority, so that queue is polled first.
*
* @param queue the request queue being serviced
*
* @return a dequeued request, or NULL if no request was available
**/
static struct uds_request *poll_queues(struct uds_request_queue *queue)
{
struct funnel_queue_entry *entry;
entry = vdo_funnel_queue_poll(queue->retry_queue);
if (entry != NULL)
return container_of(entry, struct uds_request, queue_link);
entry = vdo_funnel_queue_poll(queue->main_queue);
if (entry != NULL)
return container_of(entry, struct uds_request, queue_link);
return NULL;
}
/*
* Remove the next request to be processed from the queue, waiting for a
* request if necessary.
*/
static struct uds_request *dequeue_request(struct uds_request_queue *queue)
{
for (;;) {
struct uds_request *request;
event_token_t wait_token;
ktime_t *wake_time;
bool shutting_down;
queue->current_batch++;
request = poll_queues(queue);
if (request != NULL)
return request;
/* Prepare to wait for more work to arrive. */
wait_token = event_count_prepare(queue->work_event);
shutting_down = !READ_ONCE(queue->running);
if (shutting_down)
/*
* Ensure that we see any remaining requests that were
* enqueued before shutting down. The corresponding
* write barrier is in uds_request_queue_finish().
*/
smp_rmb();
/*
* Poll again in case a request was enqueued just before we got
* the event key.
*/
request = poll_queues(queue);
if ((request != NULL) || shutting_down) {
event_count_cancel(queue->work_event, wait_token);
return request;
}
/* Wait for more work to arrive. */
adjust_wait_time(queue);
wake_time = get_wake_time(queue);
event_count_wait(queue->work_event, wait_token, wake_time);
if (wake_time == NULL) {
/*
* The queue has been roused from dormancy. Clear the
* flag so enqueuers can stop broadcasting. No fence is
* needed for this transition.
*/
atomic_set(&queue->dormant, false);
queue->wait_nanoseconds = DEFAULT_WAIT_TIME;
}
queue->current_batch = 0;
}
}
/**********************************************************************/
static void request_queue_worker(void *arg)
{
struct uds_request_queue *queue = (struct uds_request_queue *) arg;
struct uds_request *request;
vdo_log_debug("%s queue starting", queue->name);
while ((request = dequeue_request(queue)) != NULL)
queue->processor(request);
vdo_log_debug("%s queue done", queue->name);
}
/**********************************************************************/
int uds_make_request_queue(const char *queue_name,
uds_request_queue_processor_fn processor,
struct uds_request_queue **queue_ptr)
{
int result;
struct uds_request_queue *queue;
result = vdo_allocate(1, struct uds_request_queue, __func__, &queue);
if (result != VDO_SUCCESS)
return result;
queue->name = queue_name;
queue->processor = processor;
queue->running = true;
queue->current_batch = 0;
queue->wait_nanoseconds = DEFAULT_WAIT_TIME;
result = vdo_make_funnel_queue(&queue->main_queue);
if (result != UDS_SUCCESS) {
uds_request_queue_finish(queue);
return result;
}
result = vdo_make_funnel_queue(&queue->retry_queue);
if (result != UDS_SUCCESS) {
uds_request_queue_finish(queue);
return result;
}
result = make_event_count(&queue->work_event);
if (result != UDS_SUCCESS) {
uds_request_queue_finish(queue);
return result;
}
result = vdo_create_thread(request_queue_worker,
queue,
queue_name,
&queue->thread);
if (result != VDO_SUCCESS) {
uds_request_queue_finish(queue);
return result;
}
queue->started = true;
smp_mb();
*queue_ptr = queue;
return UDS_SUCCESS;
}
/**********************************************************************/
static inline void wake_up_worker(struct uds_request_queue *queue)
{
event_count_broadcast(queue->work_event);
}
/**********************************************************************/
void uds_request_queue_enqueue(struct uds_request_queue *queue,
struct uds_request *request)
{
struct funnel_queue *sub_queue;
bool unbatched = request->unbatched;
sub_queue = request->requeued ? queue->retry_queue : queue->main_queue;
vdo_funnel_queue_put(sub_queue, &request->queue_link);
/*
* We must wake the worker thread when it is dormant. A read fence
* isn't needed here since we know the queue operation acts as one.
*/
if (atomic_read(&queue->dormant) || unbatched)
wake_up_worker(queue);
}
/**********************************************************************/
void uds_request_queue_finish(struct uds_request_queue *queue)
{
if (queue == NULL)
return;
/*
* This memory barrier ensures that any requests we queued will be
* seen. The point is that when dequeue_request() sees the following
* update to the running flag, it will also be able to see any change
* we made to a next field in the funnel queue entry. The corresponding
* read barrier is in dequeue_request().
*/
smp_wmb();
WRITE_ONCE(queue->running, false);
if (queue->started) {
wake_up_worker(queue);
vdo_join_threads(queue->thread);
}
free_event_count(queue->work_event);
vdo_free_funnel_queue(queue->main_queue);
vdo_free_funnel_queue(queue->retry_queue);
vdo_free(queue);
}
|