1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
|
/**
* @memo Routines for constructing the VDSlib vertex tree.
* @name Building the vertex tree
*
* These routines provide a flexible interface for specifying the geometry
* of the original model, and for constructing the VDSlib vertex tree upon
* the vertices of that underlying high-resolution model.<p>
*
* Building a vertex tree begins with a call to \Ref{vdsBeginVertexTree}()
* and ends with a call to \Ref{vdsEndVertexTree}(). The building process
* consists of two stages: specifying geometry and clustering nodes. All
* geometry must be specified before node clustering begins. <p>
*
* Use \Ref{vdsBeginGeometry}() to signal the beginning of the first
* stage. Geometry (in VDSlib parlance) consists of a list of
* <i>nodes</i>, or vertices in the original model, and a list of
* <i>triangles</i>, whose three corners are specified as indices into the
* list of nodes. Nodes are added with the \Ref{vdsAddNode}() call and
* triangles are added with \Ref{vdsAddTri}(). The nodes referenced by a
* triangle must be added before that triangle can be added. When all
* geometry has been specified, call \Ref{vdsEndGeometry}() to move on to
* the next stage.<p>
*
* The vertex clustering stage simply consists of calls to
* \Ref{vdsClusterNodes}(). This function takes several nodes (up to
* \Ref{VDS_MAXDEGREE}) and clusters them together, assigning the nodes as
* children of a new parent node with coordinates specified by the user
* (it is an error to call \Ref{vdsClusterNodes}() on a node which has
* already been assigned a parent). This parent node may then be
* clustered with other nodes with further calls to
* \Ref{vdsClusterNodes}(), and so on, until all nodes have been clustered
* into a single tree. This is the <i>vertex tree</i>, the fundamental
* data structure of VDSlib. Note that the vertices of the original
* (highest-resolution) model, specified by the user in the first stage,
* form the leaf nodes of the vertex tree. Each internal node thus represents
* some subset of the original vertices, approximating those vertices with
* a single point. <p>
*
* Once the vertex tree has been built with successive calls to
* \Ref{vdsClusterNodes}(), the user calls \Ref{vdsEndVertexTree}() to
* finalize it. The finished vertex tree is now ready for run-time
* maintainance and rendering. <p>
*
* @see build.c
*/
/*@{*/
#include <malloc.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "vds.h"
#include "vdsprivate.h"
#include "vector.h"
#include "path.h"
/*
* Globals
*/
vdsNode *nodearray = NULL;
int vdsNumnodes;
static int maxnodes;
vdsTri *triarray = NULL;
int vdsNumtris;
static int maxtris;
static int curroffset;
static int openflag = 0;
/** Initializes the builder.
* Note: Currently nothing to do here.
*/
void vdsBeginVertexTree()
{
assert(openflag == 0);
openflag = 1;
}
/** Initialize the geometry structures.
* Must be called before calling vdsAddNode() and vdsAddTri(),
* and must be followed by vdsEndGeometry().
*/
void vdsBeginGeometry()
{
assert(openflag == 1);
maxnodes = 1024;
nodearray = (vdsNode *) calloc(maxnodes, sizeof(vdsNode));
vdsNumnodes = 0;
maxtris = 1024;
triarray = (vdsTri *) calloc(maxtris, sizeof(vdsTri));
vdsNumtris = 0;
curroffset = 0;
}
/** When all geometry has been added, prepares VDSlib for node clustering.
* When all geometry (tris & verts) has been added, this
* function prepares the builder for the next phase (merging
* nodes into a tree). Must be called after vdsBeginGeometry(),
* after all vdsAddNode() and vdsAddTri() calls, and before any
* vdsClusterNodes() calls.
* @return A pointer to an array containing all leaf nodes, in case the
* application wants to use this information during clustering.
* Leaf nodes in the array are in the order they were given.
*/
vdsNode *vdsEndGeometry()
{
assert(openflag == 1);
/* Tighten nodearray and triarray to free up unused memory */
nodearray = (vdsNode *) realloc(nodearray, vdsNumnodes * sizeof(vdsNode));
triarray = (vdsTri *) realloc(triarray, vdsNumtris * sizeof(vdsTri));
return nodearray;
}
/** Start a new object, with separate vertex and triangle lists.
* Models are often organized into "objects", where each object
* consists of vertex and triangle lists. An object's triangles
* index corners in that object's vertex list, rather than a
* global vertex list. VDSlib, however, relies on combining
* object vertices into such a global vertex list. This utility
* function allows the user to specify triangles without
* renumbering the corner indices. For example, to load two
* objects into VDSlib, call vdsAddNode() on the vertices of
* object 1, vdsAddTri() on the triangles of object 1, then
* call vdsNewObject(). Finally, add the vertices and triangles
* of object 2. VDSlib will automatically offset the indices
* of object 2's triangle corners. <p>
*
* <b>Note:</b> vdsNewObject() must be called between vdsBeginGeometry()
* and vdsEndGeometry().
*/
void vdsNewObject()
{
curroffset = vdsNumnodes;
}
/** Add a vertex of the original model as a leaf node of the VDS vertex tree.
* Given a vertex coordinate, creates a vdsNode to represent the
* vertex as a leaf node in the vertex tree.
* @param x The X coordinate of the vertex
* @param y The Y coordinate of the vertex
* @param z The Z coordinate of the vertex
* @return A pointer to the created node, in case the user wishes to
* create a vertex->data field. <b>NOTE</b>: This pointer is
* only guaranteed valid until the next call to vdsAddNode()
* or vdsEndGeometry().
*
* <b>Note:</b> vdsAddNode() must be called between vdsBeginGeometry()
* and vdsEndGeometry().
*/
vdsNode *vdsAddNode(vdsFloat x, vdsFloat y, vdsFloat z)
{
assert(openflag == 1);
nodearray[vdsNumnodes].coord[0] = x;
nodearray[vdsNumnodes].coord[1] = y;
nodearray[vdsNumnodes].coord[2] = z;
vdsNumnodes++;
/* Resize array if necessary */
if (vdsNumnodes == maxnodes)
{
vdsNode *tmparray = (vdsNode *) calloc(maxnodes*2, sizeof(vdsNode));
memcpy(tmparray, nodearray, vdsNumnodes * sizeof(vdsNode));
free(nodearray);
nodearray = tmparray;
maxnodes *= 2;
}
return &nodearray[vdsNumnodes - 1];
}
/** Add a triangle of the original model.
* Given a triangle (specified as three corner indices into a
* vertex list) creates a vdsTri struct with the given attributes.
* Later, when vdsEndVertexTree() is called, each tri will be
* copied directly into the subtri array of the appropriate node.
* Note that the vertices index by the triangle must already have
* been added via vdsAddNode().
* @return A pointer to the created vdsTri struct, in case the user
* wishes to create a tri->data field. <b>NOTE</b>: This pointer
* is only guaranteed valid until the next call to vdsAddTri()
* or vdsEndGeometry().
*
* <b>Note:</b> vdsAddTri() must be called between vdsBeginGeometry()
* and vdsEndGeometry().
*/
vdsTri *vdsAddTri(int v0, int v1, int v2,
vdsVec3 n0, vdsVec3 n1, vdsVec3 n2,
vdsByte3 c0, vdsByte3 c1, vdsByte3 c2)
{
assert(openflag == 1);
triarray[vdsNumtris].corners[0].index = v0 + curroffset;
triarray[vdsNumtris].corners[1].index = v1 + curroffset;
triarray[vdsNumtris].corners[2].index = v2 + curroffset;
assert(v0 + curroffset < vdsNumnodes); /* Sanity check */
assert(v1 + curroffset < vdsNumnodes); /* Sanity check */
assert(v2 + curroffset < vdsNumnodes); /* Sanity check */
VEC3_COPY(triarray[vdsNumtris].normal[0], n0);
VEC3_COPY(triarray[vdsNumtris].normal[1], n1);
VEC3_COPY(triarray[vdsNumtris].normal[2], n2);
BYTE3_COPY(triarray[vdsNumtris].color[0], c0);
BYTE3_COPY(triarray[vdsNumtris].color[1], c1);
BYTE3_COPY(triarray[vdsNumtris].color[2], c2);
vdsNumtris ++;
/* Resize array if necessary */
if (vdsNumtris == maxtris)
{
vdsTri *tmparray = (vdsTri *) calloc(maxtris * 2, sizeof(vdsTri));
memcpy(tmparray, triarray, vdsNumtris * sizeof(vdsTri));
free(triarray);
triarray = tmparray;
maxtris *= 2;
}
return &triarray[vdsNumtris - 1];
}
/** Cluster a set of nodes under a single new node.
* Attaches the given list of nodes to a new parent node, with
* a representative vertex at the specified coordinates.
* @param nnodes The number of nodes being merged
* @param nodes Nodes being merged (it is an error if any of these
* nodes already has a parent node)
* @param XYZ The coordinates of the new node's repvert
* @return A pointer to the newly created parent node. <b>NOTE</b>:
* This pointer is only valid until the vdsEndVertexTree() call.
*/
vdsNode *vdsClusterNodes(int nnodes, vdsNode **nodes,
vdsFloat x, vdsFloat y, vdsFloat z)
{
int i;
vdsNode *parent = (vdsNode *) calloc(1, sizeof(vdsNode));
assert(nnodes <= VDS_MAXDEGREE);
assert(nodes[0] != NULL);
parent->children = nodes[0];
parent->children->parent = parent;
for (i=1;i<nnodes;i++)
{
assert(nodes[i] != NULL);
assert(nodes[i]->parent == NULL);
nodes[i]->parent = parent;
nodes[i-1]->sibling = nodes[i];
}
nodes[nnodes-1]->sibling = NULL;
parent->coord[0] = x;
parent->coord[1] = y;
parent->coord[2] = z;
return parent;
}
/*
* Function: idEqual
* Description: Returns 1 if the two given vdsNodeIds are equal, 0 otherwise
*/
static int idEqual(vdsNodeId n1, vdsNodeId n2)
{
if (n1.depth != n2.depth)
{
return 0;
}
else
{
if (n1.path != n2.path)
{
return 0;
}
else
{
return 1;
}
}
}
/*
* Function: assignNodeIds
* Description: Recursively descends vertex tree, assigning node paths & depths
* and initializing node->status to Inactive (since 0 == Boundary
* for speed reasons).
* Arguments: node - the node rooting the given subtree
* nodeId - the node id of the given node
* idArray - array in which we put ids of leaf nodes
*/
static int assignNodeIds(vdsNode *node, vdsNodeId nodeId, vdsNodeId *idArray)
{
int i,j;
vdsNode *child;
vdsNodeId childId;
static int maxdepth = 0;
static int maxdegree = 0;
node->status = Inactive;
node->depth = nodeId.depth;
j = 0;
child = node->children;
while (child != NULL)
{
childId.depth = nodeId.depth + 1;
PATH_COPY(childId.path, nodeId.path);
PATH_SET_BRANCH(childId.path, nodeId.depth, j);
assignNodeIds(child, childId, idArray);
j++;
child = child->sibling;
}
/*
* If this is a leaf node (i.e., a vertex in original model) store its
* NodeId in idArray[]. Later we will convert tri->corners to reference
* these nodes by NodeId rather than index in nodearray[].
*/
if (j == 0)
{
int index = node - nodearray; /* pointer arithmetic */
idArray[index] = nodeId;
}
if (j > maxdegree) { maxdegree = j; }
if (nodeId.depth > maxdepth) { maxdepth = nodeId.depth; }
assert (maxdegree <= VDS_MAXDEGREE);
assert(maxdepth <= VDS_MAXDEPTH);
return maxdepth;
}
/*
* Function: verifyRootedTree
* Description: Verifies that all the leaf nodes in nodearray belong to a
* tree rooted at root. Must be called after assignNodeIds().
*/
static void verifyRootedTree(vdsNode *root)
{
int i;
vdsNode *node;
for (i=0;i<vdsNumnodes;i++)
{
node = &nodearray[i];
if (node->depth == 0 && node != root)
{
fprintf(stderr, "\tError: leaf node #%d is not part of the same\n"
"\trooted tree as previous nodes\n", i);
exit(1);
}
}
}
/*
* Function: computeSubtris
* Description: Processes the tris in triarray and assigns each as the subtri
* of the deepest node in the vertex tree to cluster two or more
* corners of the triangle. Subtris are stored temporarily in
* the node->vistris linked list.
*/
static void computeSubtris(vdsNode *root)
{
int i;
for (i=0;i<vdsNumtris;i++)
{
vdsTri *t = &triarray[i];
vdsNodeId c0, c1, c2; /* The 3 corners of the triangle */
vdsNodeId com01, com02, com12; /* Common ancestor of c0c1,c1c2,c0c2*/
vdsNode *N = NULL; /* The node t is a subtri of */
c0 = t->corners[0].id;
c1 = t->corners[1].id;
c2 = t->corners[2].id;
com01 = vdsFindCommonId(c0, c1, VDS_MAXDEPTH);
com02 = vdsFindCommonId(c0, c2, VDS_MAXDEPTH);
com12 = vdsFindCommonId(c1, c2, VDS_MAXDEPTH);
/* t is a subtri of the deepest common ancestor of its corner nodes */
if (com01.depth >= com02.depth)
{
if (com01.depth >= com12.depth)
{
N = vdsFindNode(com01, root);
}
else
{
N = vdsFindNode(com12, root);
}
}
else
{
if (com02.depth >= com12.depth)
{
N = vdsFindNode(com02, root);
}
else
{
N = vdsFindNode(com12, root);
}
}
/* t is a subtri of node N; add it to the N->vistris linked list */
t->next = N->vistris;
if (t->next != NULL) { t->next->prev = t; }
N->vistris = t;
N->nsubtris++;
}
}
/*
* Function: moveTrisToNodes
* Description: After all subtris have been associated with nodes via the
* node->vistris linked list, this function traverses the tree
* and reallocates each node to include room for the subtris
* directly in the node->subtris[] field. The triangle data
* is then copied into this field, allowing triarray to be freed.
* After reallocating the node, corrects parent/child pointers.
* Note: Since leaf nodes of the vertex tree (the original vertices
* of the model) are reallocated, nodearray can now be freed.
*/
static vdsNode *moveTrisToNodes(vdsNode *N)
{
vdsTri *t, *nextt;
int whichtri, numchildren;
vdsNode *newN, *child;
/* Reallocate node and adjust child pointers */
newN = (vdsNode *) malloc(sizeof(vdsNode)+N->nsubtris*sizeof(vdsTri));
memcpy(newN, N, sizeof(vdsNode));
child = N->children;
numchildren = 0;
while (child != NULL)
{
child->parent = newN;
numchildren++;
child = child->sibling;
}
/* Adjust parent's pointer to this node */
if (N->parent != NULL)
{
vdsNode *pp = N->parent->children;
if (pp == N)
{
N->parent->children = newN;
}
else
{
while (pp->sibling != N) { pp = pp->sibling; }
pp->sibling = newN;
}
}
/* Don't try to free leaf nodes, which belong to nodearray */
if (numchildren) { free(N); }
N = newN;
/* Copy node->vistris list into node->subtris[]; clear linked list ptrs */
t = N->vistris;
N->vistris = NULL;
whichtri = 0;
while (t != NULL)
{
N->subtris[whichtri] = *t;
whichtri++;
nextt = t->next;
t->next = t->prev = NULL;
t = nextt;
}
/* Recurse on children nodes */
child = N->children;
while (child != NULL)
{
/* since moveTrisToNodes() reallocates nodes, have to reset child */
child = moveTrisToNodes(child);
child = child->sibling;
}
return N;
}
/*
* Function: computeInternalBounds
* Description: Recursively descends the vertex tree, computing each node's
* bounding sphere from its children's bounds.
* Algorithm: Computes the center of the new bounding sphere by averaging
* the centers of the child spheres. For each child sphere,
* find the distance from its center to the averaged parent
* center, plus the radius of the child sphere. The maximum of
* these is used as the radius for the parent sphere.
* XXX: This is certainly suboptimal. Perhaps I should modify and use
* the Graphics Gems code for finding tightly-enclosing spheres?
*/
static void computeInternalBounds(vdsNode *node)
{
vdsNode *child = node->children;
int numchildren = 0;
vdsFloat maxdist = 0;
vdsVec3 center = {0,0,0};
/* If node is a leaf, just return */
if (child == NULL) { return; }
while (child != NULL)
{
computeInternalBounds(child); /* Recurse to compute child sphere */
VEC3_ADD(center,center,child->bound.center);
child = child->sibling;
numchildren++;
}
VEC3_SCALE(center, 1.0/(vdsFloat)numchildren, center);
child = node->children;
while(child != NULL)
{
vdsFloat dist =
VEC3_DISTANCE(center, child->bound.center) + child->bound.radius;
if (dist > maxdist)
{
maxdist = dist;
}
child = child->sibling;
}
VEC3_COPY(node->bound.center, center);
node->bound.radius = maxdist;
}
/* Recursively assign bounding volumes to each node.
*
* Algorithm: For the moment, uses a very simple, crude way of estimating
* bounding spheres: spins through triarray and for each leaf
* node, computes an axis-aligned bounding box that completely
* contains all triangles associated with that node. From this
* AABB bounding spheres are calculated for each leaf node, then
* a recursive postorder traversal builds bounding spheres for
* the internal nodes of the vertex tree.
*/
static void assignNodeBounds(vdsNode *root)
{
typedef struct { vdsVec3 min, max; } Box;
Box *boxes;
int i, j, k;
boxes = (Box *) malloc(vdsNumnodes * sizeof(Box));
for (i=0;i<vdsNumnodes;i++)
{
VEC3_COPY(boxes[i].min, nodearray[i].coord);
VEC3_COPY(boxes[i].max, nodearray[i].coord);
}
for (i=0;i<vdsNumtris;i++) /* iterate over tris */
{
vdsTri *t = &triarray[i];
vdsNode *c0 = &nodearray[t->corners[0].index];
vdsNode *c1 = &nodearray[t->corners[1].index];
vdsNode *c2 = &nodearray[t->corners[2].index];
for (j=0;j<3;j++) /* iterate over corners of tri */
{
int cindex = t->corners[j].index;
vdsNode *corner = &nodearray[cindex];
/* Some effort wasted here testing each corner against itself: */
VEC3_FIND_MAX(boxes[cindex].max, boxes[cindex].max, c0->coord);
VEC3_FIND_MIN(boxes[cindex].min, boxes[cindex].min, c0->coord);
VEC3_FIND_MAX(boxes[cindex].max, boxes[cindex].max, c1->coord);
VEC3_FIND_MIN(boxes[cindex].min, boxes[cindex].min, c1->coord);
VEC3_FIND_MAX(boxes[cindex].max, boxes[cindex].max, c2->coord);
VEC3_FIND_MIN(boxes[cindex].min, boxes[cindex].min, c2->coord);
}
}
/* Calculate bounding spheres from leaf nodes' bounding boxes */
for (i=0;i<vdsNumnodes;i++)
{
vdsNode *N = &nodearray[i];
VEC3_AVERAGE(N->bound.center, boxes[i].min, boxes[i].max);
N->bound.radius = VEC3_DISTANCE(boxes[i].min, boxes[i].max) / 2.0;
}
free(boxes);
/* Recursively calculate internal node bounds from leaf bounds */
computeInternalBounds(root);
}
/** Finalize the VDS vertex tree.
* After all geometry has been added and all leaf nodes (created
* by vdsAddNode()) merged to form a single hierarchy of vdsNodes,
* call vdsEndVertexTree() to process the hierarchy and produce
* a finished vertex tree, ready for simplification/rendering.<p>
*
* Tasks: Performs the following tasks, in order: <p><ll>
* <li> Computes node paths and ids
* <li> Verifies that node hierarchy forms a single rooted tree
* <li> Computes node bounds for fold & visibility tests
* <li> Computes node subtris, attaching via vistris linked list
* <li> Converts vdsTris to use leaf node ids, rather than indices
* <li> Reallocates each node to store subtris directly
* <li> Nullifies node->vistris list and tri next,prev pointers
* <li> Computes triangle container nodes for tri->node field
* <li> Assigns tri->proxies[] pointers to point at root node
* <li> Deletes triarray
* <li> Labels root node Boundary </ll>
* @return Pointer to the root node of the new vertex tree.
*/
vdsNode *vdsEndVertexTree()
{
vdsNode *root;
vdsNodeId rootId = {0,0};
vdsNodeId *ids;
int maxdepth;
int i,j;
assert(openflag == 1);
root = &nodearray[0];
while (root->parent != NULL) { root = root->parent; }
VDS_DEBUG(("Assigning node ids..."));
ids = (vdsNodeId *) calloc(vdsNumtris, sizeof(vdsNodeId));
maxdepth = assignNodeIds(root, rootId, ids);
VDS_DEBUG(("Done.\n"));
VDS_DEBUG(("Verifying that all nodes form a single rooted tree..."));
verifyRootedTree(root);
VDS_DEBUG(("Done.\n"));
VDS_DEBUG(("Assigning node->bound for all nodes..."));
assignNodeBounds(root);
VDS_DEBUG(("Done.\n"));
VDS_DEBUG(("Converting triangles to reference nodes by ID..."));
/* Convert tris to reference node IDs, rather than indices */
for (i=0;i<vdsNumtris;i++)
{
vdsTri *T = &triarray[i];
T->corners[0].id = ids[T->corners[0].index];
T->corners[1].id = ids[T->corners[1].index];
T->corners[2].id = ids[T->corners[2].index];
assert(! idEqual(T->corners[0].id, T->corners[1].id) &&
! idEqual(T->corners[1].id, T->corners[2].id) &&
! idEqual(T->corners[2].id, T->corners[0].id));
}
free(ids);
VDS_DEBUG(("Done.\n"));
VDS_DEBUG(("Computing subtris..."));
computeSubtris(root);
VDS_DEBUG(("Done.\n"));
VDS_DEBUG(("Reallocating nodes and copying triangles into node->subtris "
"fields..."));
root = moveTrisToNodes(root); /* Note: reallocates all nodes */
free(nodearray);
VDS_DEBUG(("Done.\n"));
VDS_DEBUG(("Computing triangle container nodes..."));
vdsComputeTriNodes(root, root);
free(triarray); /* nodearray still holds leaf nodes */
root->status = Boundary; /* root initially on boundary */
root->next = root->prev = root; /* root always on boundary path */
VDS_DEBUG(("Done.\nVertex tree complete! Maximum depth = %d\n", maxdepth));
openflag = 0;
return root;
}
/*@}*/
/***************************************************************************\
Copyright 1999 The University of Virginia.
All Rights Reserved.
Permission to use, copy, modify and distribute this software and its
documentation without fee, and without a written agreement, is
hereby granted, provided that the above copyright notice and the
complete text of this comment appear in all copies, and provided that
the University of Virginia and the original authors are credited in
any publications arising from the use of this software.
IN NO EVENT SHALL THE UNIVERSITY OF VIRGINIA
OR THE AUTHOR OF THIS SOFTWARE BE LIABLE TO ANY PARTY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF VIRGINIA AND/OR THE
AUTHOR OF THIS SOFTWARE HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
The author of the vdslib software library may be contacted at:
US Mail: Dr. David Patrick Luebke
Department of Computer Science
Thornton Hall, University of Virginia
Charlottesville, VA 22903
Phone: (804)924-1021
EMail: luebke@cs.virginia.edu
\*****************************************************************************/
|