File: invmatrix.c

package info (click to toggle)
vdslib 0.9-6.1
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 312 kB
  • ctags: 402
  • sloc: ansic: 2,902; makefile: 128; lex: 25
file content (189 lines) | stat: -rw-r--r-- 4,735 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
/*
Matrix Inversion
by Richard Carling
from "Graphics Gems", Academic Press, 1990
*/

#define SMALL_NUMBER	1.e-8
/* 
 *   inverse( original_matrix, inverse_matrix )
 * 
 *    calculate the inverse of a 4x4 matrix
 *
 *     -1     
 *     A  = ___1__ adjoint A
 *         det A
 */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

typedef float Matrix4[4][4];

static void adjoint(Matrix4 in, Matrix4 out);
static float det4x4(Matrix4 m);
static float det3x3(float a1, float a2, float a3,
		    float b1, float b2, float b3,
		    float c1, float c2, float c3 );
static float det2x2( float a, float b, float c, float d);

void mat4Inverse( Matrix4 dst, Matrix4 src ) 
{
    int i, j;
    float det;

    /* calculate the adjoint matrix */

    adjoint( src, dst );

    /*  calculate the 4x4 determinent
     *  if the determinent is zero, 
     *  then the inverse matrix is not unique.
     */

    det = det4x4( src );

    if ( fabs( det ) < SMALL_NUMBER) {
        printf("Non-singular matrix, no inverse!\n");
        exit(12);
    }

    /* scale the adjoint matrix to get the inverse */

    for (i=0; i<4; i++)
        for(j=0; j<4; j++)
	    dst[i][j] = dst[i][j] / det;
}


/* 
 *   adjoint( original_matrix, inverse_matrix )
 * 
 *     calculate the adjoint of a 4x4 matrix
 *
 *      Let  a   denote the minor determinant of matrix A obtained by
 *           ij
 *
 *      deleting the ith row and jth column from A.
 *
 *                    i+j
 *     Let  b   = (-1)    a
 *          ij            ji
 *
 *    The matrix B = (b  ) is the adjoint of A
 *                     ij
 */

static void adjoint( Matrix4 in, Matrix4 out ) 
{
    float a1, a2, a3, a4, b1, b2, b3, b4;
    float c1, c2, c3, c4, d1, d2, d3, d4;

    /* assign to individual variable names to aid  */
    /* selecting correct values  */

	a1 = in[0][0]; b1 = in[0][1]; 
	c1 = in[0][2]; d1 = in[0][3];

	a2 = in[1][0]; b2 = in[1][1]; 
	c2 = in[1][2]; d2 = in[1][3];

	a3 = in[2][0]; b3 = in[2][1];
	c3 = in[2][2]; d3 = in[2][3];

	a4 = in[3][0]; b4 = in[3][1]; 
	c4 = in[3][2]; d4 = in[3][3];


    /* row column labeling reversed since we transpose rows & columns */

    out[0][0]  =   det3x3( b2, b3, b4, c2, c3, c4, d2, d3, d4);
    out[1][0]  = - det3x3( a2, a3, a4, c2, c3, c4, d2, d3, d4);
    out[2][0]  =   det3x3( a2, a3, a4, b2, b3, b4, d2, d3, d4);
    out[3][0]  = - det3x3( a2, a3, a4, b2, b3, b4, c2, c3, c4);
        
    out[0][1]  = - det3x3( b1, b3, b4, c1, c3, c4, d1, d3, d4);
    out[1][1]  =   det3x3( a1, a3, a4, c1, c3, c4, d1, d3, d4);
    out[2][1]  = - det3x3( a1, a3, a4, b1, b3, b4, d1, d3, d4);
    out[3][1]  =   det3x3( a1, a3, a4, b1, b3, b4, c1, c3, c4);
        
    out[0][2]  =   det3x3( b1, b2, b4, c1, c2, c4, d1, d2, d4);
    out[1][2]  = - det3x3( a1, a2, a4, c1, c2, c4, d1, d2, d4);
    out[2][2]  =   det3x3( a1, a2, a4, b1, b2, b4, d1, d2, d4);
    out[3][2]  = - det3x3( a1, a2, a4, b1, b2, b4, c1, c2, c4);
        
    out[0][3]  = - det3x3( b1, b2, b3, c1, c2, c3, d1, d2, d3);
    out[1][3]  =   det3x3( a1, a2, a3, c1, c2, c3, d1, d2, d3);
    out[2][3]  = - det3x3( a1, a2, a3, b1, b2, b3, d1, d2, d3);
    out[3][3]  =   det3x3( a1, a2, a3, b1, b2, b3, c1, c2, c3);
}
/*
 * float = det4x4( matrix )
 * 
 * calculate the determinent of a 4x4 matrix.
 */
static float det4x4( Matrix4 m ) 
{
    float ans;
    float a1, a2, a3, a4, b1, b2, b3, b4, c1, c2, c3, c4, d1, d2, d3, 			d4;

    /* assign to individual variable names to aid selecting */
	/*  correct elements */

	a1 = m[0][0]; b1 = m[0][1]; 
	c1 = m[0][2]; d1 = m[0][3];

	a2 = m[1][0]; b2 = m[1][1]; 
	c2 = m[1][2]; d2 = m[1][3];

	a3 = m[2][0]; b3 = m[2][1]; 
	c3 = m[2][2]; d3 = m[2][3];

	a4 = m[3][0]; b4 = m[3][1]; 
	c4 = m[3][2]; d4 = m[3][3];

    ans = a1 * det3x3( b2, b3, b4, c2, c3, c4, d2, d3, d4)
        - b1 * det3x3( a2, a3, a4, c2, c3, c4, d2, d3, d4)
        + c1 * det3x3( a2, a3, a4, b2, b3, b4, d2, d3, d4)
        - d1 * det3x3( a2, a3, a4, b2, b3, b4, c2, c3, c4);
    return ans;
}



/*
 * float = det3x3(  a1, a2, a3, b1, b2, b3, c1, c2, c3 )
 * 
 * calculate the determinent of a 3x3 matrix
 * in the form
 *
 *     | a1,  b1,  c1 |
 *     | a2,  b2,  c2 |
 *     | a3,  b3,  c3 |
 */

static float det3x3( float a1, float a2, float a3,
		     float b1, float b2, float b3,
		     float c1, float c2, float c3 )
{
    float ans;

    ans = a1 * det2x2( b2, b3, c2, c3 )
        - b1 * det2x2( a2, a3, c2, c3 )
        + c1 * det2x2( a2, a3, b2, b3 );
    return ans;
}

/*
 * float = det2x2( float a, float b, float c, float d )
 * 
 * calculate the determinent of a 2x2 matrix.
 */

static float det2x2( float a, float b, float c, float d)
{
    float ans;
    ans = a * d - b * c;
    return ans;
}