1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
/*
* EmbreeNavigator.h
*
* Created on: May 18, 2018
* Author: swenzel
*/
#ifndef VECGEOM_NAVIGATION_EMBREENAVIGATOR_H_
#define VECGEOM_NAVIGATION_EMBREENAVIGATOR_H_
#include "VecGeom/base/Global.h"
#include "VecGeom/volumes/PlacedVolume.h"
#include "VecGeom/base/Vector3D.h"
#include "VecGeom/management/GeoManager.h"
#include "VecGeom/navigation/NavigationState.h"
#include "VecGeom/base/Transformation3D.h"
#include "VecGeom/management/EmbreeManager.h"
#include "VecGeom/navigation/VNavigator.h"
#include "VecGeom/navigation/HybridSafetyEstimator.h"
#include "VecGeom/navigation/SimpleABBoxNavigator.h"
#include <vector>
#include <stack>
namespace vecgeom {
inline namespace VECGEOM_IMPL_NAMESPACE {
extern double g_step;
extern LogicalVolume const *g_lvol;
extern VPlacedVolume const *g_pvol;
extern VPlacedVolume const *g_lastexited;
extern Vector3D<double> const *g_pos;
extern Vector3D<double> const *g_dir;
extern Vector3D<float> const *g_normals;
extern int g_count;
extern std::vector<int> *g_geomIDs;
extern EmbreeManager::BoxIdDistancePair_t *g_hitlist;
// A navigator using Intel Embree as the underlying acceleration library to
// exclude hit targets quickly
template <bool MotherIsConvex = false>
class EmbreeNavigator : public VNavigatorHelper<EmbreeNavigator<MotherIsConvex>, MotherIsConvex> {
private:
EmbreeManager &fAccelerationManager;
EmbreeNavigator()
: VNavigatorHelper<EmbreeNavigator<MotherIsConvex>, MotherIsConvex>(SimpleABBoxSafetyEstimator::Instance()),
fAccelerationManager(EmbreeManager::Instance())
{
}
static VPlacedVolume const *LookupDaughter(LogicalVolume const *lvol, int const daughterIndex)
{
return lvol->GetDaughters()[daughterIndex];
}
// a simple sort class (based on insertionsort)
template <typename T> //, typename Cmp>
static void insertionsort(T *arr, unsigned int N)
{
for (unsigned short i = 1; i < N; ++i) {
T value = arr[i];
short hole = i;
for (; hole > 0 && value.second < arr[hole - 1].second; --hole)
arr[hole] = arr[hole - 1];
arr[hole] = value;
}
}
/**
* Returns hitlist of daughter candidates (pairs of [daughter index, step to bounding box]) crossed by ray.
*/
size_t GetHitCandidates_v(EmbreeManager::EmbreeAccelerationStructure const &accstructure,
Vector3D<Precision> const &point, Vector3D<Precision> const &dir,
EmbreeManager::BoxIdDistancePair_t *hitlist, float step) const
{
if (accstructure.fNumberObjects == 0) return false;
// we need to setup an Embree ray
RTCRayHit ray;
ray.ray.flags = 0;
ray.ray.org_x = point.x();
ray.ray.org_y = point.y();
ray.ray.org_z = point.z();
ray.ray.dir_x = dir.x();
ray.ray.dir_y = dir.y();
ray.ray.dir_z = dir.z();
ray.ray.tnear = 0.f;
ray.ray.tfar = 1E20f; // step is the current limit
g_normals = accstructure.fNormals;
g_hitlist = hitlist;
g_count = 0;
g_geomIDs->clear(); // = geom_seen;
RTCIntersectContext context;
// we can't do a real capture ... so we do it via global variables
auto hitFilter = [](const RTCFilterFunctionNArguments *args) {
// check if a hit in this Embree structure leads to a hit
// in the real geometry
const auto hit = (RTCHit *)args->hit;
int *hitvalid = args->valid;
const auto id = hit->geomID;
// if (g_geomIDs[id]) {
// hitvalid[0] = 0;
// return;
// }
// g_geomIDs[id] = true;
if (std::find(g_geomIDs->begin(), g_geomIDs->end(), id) != g_geomIDs->end()) {
hitvalid[0] = 0;
return;
}
g_geomIDs->push_back(id);
const auto ray = (RTCRay *)args->ray;
const auto normalID = id * 6 + hit->primID;
const auto normal = g_normals[normalID];
const bool backface = ray->dir_x * normal.x() + ray->dir_y * normal.y() + ray->dir_z * normal.z() > 0;
float dist = backface ? -1.f : ray->tfar;
// no need to sort twice !!! (in principle this thing is giving sorted inters??)
// std::cerr << "putting " << id << " " << dist << " " << ray->tfar << "\n";
g_hitlist[g_count++] = HybridManager2::BoxIdDistancePair_t(id, dist);
// we strictly take all hits
hitvalid[0] = 0;
};
rtcInitIntersectContext(&context);
context.filter = hitFilter;
rtcIntersect1(accstructure.fScene, &context, &ray);
// at this moment we have the result
return g_count;
}
public:
// a generic looper function that
// given an acceleration structure (an aligned bounding box hierarchy),
// a hit-query will be performed, the intersected boxes sorted, looped over
// and a user hook called for processing
// the user hook needs to indicate with a boolean return value whether to continue looping (false)
// or whether we are done (true) and can exit
// FIXME: might be generic enough to work for all possible kinds of BVH structures
// FIXME: offer various sorting directions, etc.
template <typename AccStructure, typename Func>
VECGEOM_FORCE_INLINE
void BVHSortedIntersectionsLooper(AccStructure const &accstructure, Vector3D<Precision> const &localpoint,
Vector3D<Precision> const &localdir, float stepmax, Func &&userhook) const
{
// The following construct reserves stackspace for objects
// of type IdDistPair_t WITHOUT initializing those objects
using IdDistPair_t = HybridManager2::BoxIdDistancePair_t;
char stackspace[VECGEOM_MAXFACETS * sizeof(IdDistPair_t)];
IdDistPair_t *hitlist = reinterpret_cast<IdDistPair_t *>(&stackspace);
auto ncandidates = GetHitCandidates_v(accstructure, localpoint, localdir, hitlist, stepmax);
// sort candidates according to their bounding volume hit distance
insertionsort(hitlist, ncandidates);
// for (int c = 0; c < ncandidates; ++c) {
// std::cerr << "CAND " << 0 << hitlist[c].first << " " << hitlist[c].second << "\n";
// }
for (size_t index = 0; index < ncandidates; ++index) {
auto hitbox = hitlist[index];
// here we got the hit candidates
// now we execute user specific code to process this "hitbox"
auto done = userhook(hitbox);
if (done) break;
}
}
VECGEOM_FORCE_INLINE
virtual bool CheckDaughterIntersections(LogicalVolume const *lvol, Vector3D<Precision> const &localpoint,
Vector3D<Precision> const &localdir, NavigationState const *in_state,
NavigationState * /*out_state*/, Precision &step,
VPlacedVolume const *&hitcandidate) const override
{
if (lvol->GetDaughtersp()->size() == 0) return false;
auto &accstructure = *fAccelerationManager.GetAccStructure(lvol);
BVHSortedIntersectionsLooper(
accstructure, localpoint, localdir, step, [&](HybridManager2::BoxIdDistancePair_t hitbox) {
// only consider those hitboxes which are within potential reach of this step
if (!(step < hitbox.second)) {
VPlacedVolume const *candidate = LookupDaughter(lvol, hitbox.first);
Precision ddistance = candidate->DistanceToIn(localpoint, localdir, step);
const auto valid = !IsInf(ddistance) && ddistance < step &&
!((ddistance <= 0.) && in_state && in_state->GetLastExited() == candidate);
hitcandidate = valid ? candidate : hitcandidate;
step = valid ? ddistance : step;
return false; // not yet done; need to continue in looper
}
return true; // mark done in this case
});
return false;
}
// VECGEOM_FORCE_INLINE
// virtual bool CheckDaughterIntersections(LogicalVolume const *lvol, Vector3D<Precision> const &localpoint,
// Vector3D<Precision> const &localdir, NavigationState const *in_state,
// NavigationState * /*out_state*/, Precision &step,
// VPlacedVolume const *&hitcandidate) const override
// {
// bool stackspace[VECGEOM_MAXFACETS * sizeof(bool)]; // alternatives are a thread_local static vector?
//
// if (lvol->GetDaughtersp()->size() == 0) return false;
// const auto &accstructure = *fAccelerationManager.GetAccStructure(lvol);
//
// for (int i = 0; i < lvol->GetDaughtersp()->size(); ++i) {
// stackspace[i] = false;
// }
//
// // we need to setup an Embree ray
// RTCRayHit ray;
// ray.ray.flags = 0;
// ray.ray.org_x = localpoint.x();
// ray.ray.org_y = localpoint.y();
// ray.ray.org_z = localpoint.z();
// ray.ray.dir_x = localdir.x();
// ray.ray.dir_y = localdir.y();
// ray.ray.dir_z = localdir.z();
// ray.ray.tnear = 0.f;
// ray.ray.tfar = 1E20; // step is the current limit
//
// g_pos = &localpoint;
// g_dir = &localdir;
// g_step = step;
// g_lastexited = in_state ? in_state->GetLastExited() : nullptr;
// g_normals = accstructure.fNormals;
//
// g_lvol = lvol;
// g_pvol = nullptr;
//
// // NOT THREAD SAFE and VERY DANGEROUS; I WOULD INSTEAD VERY MUCH
// // LIKE TO BE ABLE TO CAPTURE THINGS IN THE FILTER LAMBDA
// g_geomIDs = stackspace;
// RTCIntersectContext context;
//
// static int counter = 0;
// std::cerr << "# " << counter++ << "\n";
//
// // we can't do a real capture ... so we do it via global variables
// auto hitFilter = [](const RTCFilterFunctionNArguments *args) {
// // check if a hit in this Embree structure leads to a hit
// // in the real geometry
//
// assert(args->N == 1);
// const auto hit = (RTCHit *)args->hit;
// const auto id = hit->geomID;
// int *hitvalid = args->valid;
//
// // if geometryID (aka bounding volume mesh) already treated we can exit
// if (g_geomIDs[id] == true) {
// hitvalid[0] = 0;
// return;
// }
// g_geomIDs[id] = true;
//
// const auto ray = (RTCRay *)args->ray;
// std::cout << id << " "
// << " " << hit->primID << " " << ray->tfar << " (" << hit->Ng_x << "," << hit->Ng_y << "," <<
// hit->Ng_z
// << ") ";
// const auto normalID = id * 12 + hit->primID;
// const auto normal = g_normals[normalID];
// const bool backface = ray->dir_x * normal.x() + ray->dir_y * normal.y() + ray->dir_z * normal.z() < 0;
// std::cout << "backface " << backface << "\n";
//
// // this is assuming we get the hits in increasing distance order which somehow is not true???
// //if (!backface && g_step < ray->tfar) {
// // we can return early here (and not invalidating the hit) --> we are done!!
// // return;
// //}
//
// const auto candidate = LookupDaughter(g_lvol, id);
// const auto ddistance = candidate->DistanceToIn(*g_pos, *g_dir, g_step);
// const auto valid = !IsInf(ddistance) && ddistance < g_step && !((ddistance <= 0.) && g_lastexited ==
// candidate);
// g_pvol = valid ? candidate : g_pvol;
// g_step = valid ? ddistance : g_step;
// hitvalid[0] = 0;
// };
//
// rtcInitIntersectContext(&context);
// context.filter = hitFilter;
// rtcIntersect1(accstructure.fScene, &context, &ray);
//
// // at this moment we have the result
// hitcandidate = g_pvol;
// step = g_step;
// return false;
// }
static VNavigator *Instance()
{
static EmbreeNavigator instance;
return &instance;
}
static constexpr const char *gClassNameString = "EmbreeNavigator";
typedef SimpleABBoxSafetyEstimator SafetyEstimator_t;
};
} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom
#endif /* VECGEOM_NAVIGATION_EMBREENAVIGATOR_H_ */
|