File: HybridSafetyEstimator.h

package info (click to toggle)
vecgeom 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,928 kB
  • sloc: cpp: 88,717; ansic: 6,894; python: 1,035; sh: 582; sql: 538; makefile: 29
file content (347 lines) | stat: -rw-r--r-- 15,007 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
/*
 *  HybridSafetyEstimator.h
 *
 *  Created on: 22.11.2015
 *      Author: sandro.wenzel@cern.ch
 *
 *  (based on prototype implementation by Yang Zhang (Sep 2015)
 */

#ifndef NAVIGATION_HYBRIDSAFETYESTIMATOR_H_
#define NAVIGATION_HYBRIDSAFETYESTIMATOR_H_

#include "VecGeom/navigation/VSafetyEstimator.h"
#include "VecGeom/management/HybridManager2.h"

namespace vecgeom {
inline namespace VECGEOM_IMPL_NAMESPACE {

//! a safety estimator using a (vectorized) search through bounding boxes to exclude certain daughter volumes
//! to talk to
class HybridSafetyEstimator : public VSafetyEstimatorHelper<HybridSafetyEstimator> {

private:
  // we keep a reference to the ABBoxManager ( avoids calling Instance() on this guy all the time )
  HybridManager2 &fAccelerationStructureManager;

  HybridSafetyEstimator()
      : VSafetyEstimatorHelper<HybridSafetyEstimator>(), fAccelerationStructureManager(HybridManager2::Instance())
  {
  }

  // convert index to physical daugher
  VPlacedVolume const *LookupDaughter(LogicalVolume const *lvol, int id) const
  {
    assert(id >= 0 && "access with negative index");
    assert(size_t(id) < lvol->GetDaughtersp()->size() && "access beyond size of daughterlist ");
    return lvol->GetDaughtersp()->operator[](id);
  }

public:
  // a simple sort class (based on insertionsort)
  template <typename T> //, typename Cmp>
  static void insertionsort(T *arr, unsigned int N)
  {
    for (unsigned short i = 1; i < N; ++i) {
      T value    = arr[i];
      short hole = i;

      for (; hole > 0 && value.second < arr[hole - 1].second; --hole)
        arr[hole] = arr[hole - 1];

      arr[hole] = value;
    }
  }

  // helper structure to find the candidate set for safety calculations
  size_t GetSafetyCandidates_v(HybridManager2::HybridBoxAccelerationStructure const &accstructure,
                               Vector3D<Precision> const &point, HybridManager2::BoxIdDistancePair_t *boxsafetypairs,
                               Precision upper_squared_limit) const
  {
    size_t count = 0;
    Vector3D<float> pointfloat((float)point.x(), (float)point.y(), (float)point.z());
    int halfvectorsize, numberOfNodes;
    auto boxes_v = fAccelerationStructureManager.GetABBoxes_v(accstructure, halfvectorsize, numberOfNodes);
    auto const *nodeToDaughters = accstructure.fNodeToDaughters;
    constexpr auto kVS          = vecCore::VectorSize<HybridManager2::Float_v>();

    for (int index = 0, nodeindex = 0; index < halfvectorsize * 2; index += 2 * (kVS + 1), nodeindex += kVS) {
      HybridManager2::Float_v safetytoboxsqr =
          ABBoxImplementation::ABBoxSafetySqr(boxes_v[index], boxes_v[index + 1], pointfloat);
      auto closer = safetytoboxsqr < HybridManager2::Float_v(upper_squared_limit);
      if (!vecCore::MaskEmpty(closer)) {
        for (size_t i = 0 /*closer.firstOne()*/; i < kVS; ++i) {
          if (vecCore::MaskLaneAt(closer, i)) {
            safetytoboxsqr =
                ABBoxImplementation::ABBoxSafetySqr(boxes_v[index + 2 * i + 2], boxes_v[index + 2 * i + 3], pointfloat);
            auto closer1 = safetytoboxsqr < HybridManager2::Float_v(upper_squared_limit);
            if (!vecCore::MaskEmpty(closer1)) {
              for (size_t j = 0 /*closer.firstOne()*/; j < kVS; ++j) { // leaf node
                if (vecCore::MaskLaneAt(closer1, j)) {
                  assert(count < VECGEOM_MAXFACETS);
                  boxsafetypairs[count] = HybridManager2::BoxIdDistancePair_t(nodeToDaughters[nodeindex + i][j],
                                                                              vecCore::LaneAt(safetytoboxsqr, j));
                  count++;
                }
              }
            }
          }
        }
      }
    }
    return count;
  }

  // Improved safety estimator that can dynamically reduce the upper search limit.
  // Internally calls ABBoxSafetyRangeSqr that besides validating a candidate
  // if closer than the limit, it also gives the upper limit for the range where
  // the candidate can be surely found. This allows to update the search limit after
  // each check, giving much less final candidates.
  //
  //         current checked
  //         box  _________
  // point       |         |          upper_limit
  //   x---------|candidate|----------|
  //             |_________|
  //   |-------------------|
  //                       updated upper_limit

  size_t GetSafetyCandidates2_v(HybridManager2::HybridBoxAccelerationStructure const &accstructure,
                                Vector3D<Precision> const &point, HybridManager2::BoxIdDistancePair_t *hitlist,
                                Precision upper_squared_limit) const
  {
    using Float_v = vecgeom::VectorBackend::Float_v;
    size_t count  = 0;
    int numberOfNodes, size;
    auto boxes_v                = fAccelerationStructureManager.GetABBoxes_v(accstructure, size, numberOfNodes);
    constexpr auto kVS          = vecCore::VectorSize<HybridManager2::Float_v>();
    auto const *nodeToDaughters = accstructure.fNodeToDaughters;

    Vector3D<float> pointfloat((float)point.x(), (float)point.y(), (float)point.z());

    // Loop internal nodes (internal node = kVS clusters)
    for (size_t index = 0, nodeindex = 0; index < size_t(size) * 2; index += 2 * (kVS + 1), nodeindex += kVS) {
      // index = start index for internal node
      // nodeindex = cluster index
      Float_v distmaxsqr; // Maximum distance that may still touch the box
      Float_v safetytonodesqr =
          ABBoxImplementation::ABBoxSafetyRangeSqr(boxes_v[index], boxes_v[index + 1], pointfloat, distmaxsqr);
      // Find minimum of distmaxsqr
      for (size_t i = 0; i < kVS; ++i) {
        Precision distmaxsqr_s = vecCore::LaneAt(distmaxsqr, i);
        if (distmaxsqr_s < upper_squared_limit) upper_squared_limit = distmaxsqr_s;
      }
      auto hit = safetytonodesqr < ABBoxManager::Real_t(upper_squared_limit);
      if (!vecCore::MaskEmpty(hit)) {
        for (size_t i = 0; i < kVS; ++i) {
          if (vecCore::MaskLaneAt(hit, i)) {
            Float_v safetytoboxsqr = ABBoxImplementation::ABBoxSafetyRangeSqr(
                boxes_v[index + 2 * (i + 1)], boxes_v[index + 2 * (i + 1) + 1], pointfloat, distmaxsqr);

            auto hit1 = safetytoboxsqr < ABBoxManager::Real_t(upper_squared_limit);
            if (!vecCore::MaskEmpty(hit1)) {
              // loop bounding boxes in the cluster
              for (size_t j = 0; j < kVS; ++j) {
                if (vecCore::MaskLaneAt(hit1, j)) {
                  assert(count < VECGEOM_MAXFACETS);
                  hitlist[count]         = HybridManager2::BoxIdDistancePair_t(nodeToDaughters[nodeindex + i][j],
                                                                       vecCore::LaneAt(safetytoboxsqr, j));
                  Precision distmaxsqr_s = vecCore::LaneAt(distmaxsqr, j);
                  // Reduce the upper limit
                  if (distmaxsqr_s < upper_squared_limit) upper_squared_limit = distmaxsqr_s;
                  count++;
                }
              }
            }
          }
        }
      }
    }
    return count;
  }

  template <typename AccStructure, typename Func>
  VECGEOM_FORCE_INLINE
  void BVHSortedSafetyLooper(AccStructure const &accstructure, Vector3D<Precision> const &localpoint, Func &&userhook,
                             Precision upper_squared_limit) const
  {
    // The following construct reserves stackspace for objects
    // of type IdDistPair_t WITHOUT initializing those objects
    using IdDistPair_t = HybridManager2::BoxIdDistancePair_t;
    char stackspace[VECGEOM_MAXFACETS * sizeof(IdDistPair_t)];
    IdDistPair_t *hitlist = reinterpret_cast<IdDistPair_t *>(&stackspace);

    // Get candidates using HybridSafetyEstimator
    //    HybridSafetyEstimator *hse = static_cast<HybridSafetyEstimator*>(HybridSafetyEstimator::Instance());
    //    auto ncandidates = hse->GetSafetyCandidates_v(accstructure, localpoint, hitlist, upper_squared_limit);

    // Get candidates in vectorized mode
    auto ncandidates = GetSafetyCandidates2_v(accstructure, localpoint, hitlist, upper_squared_limit);

    // sort candidates according to their bounding volume safety distance
    insertionsort(hitlist, ncandidates);

    for (size_t index = 0; index < ncandidates; ++index) {
      auto hitbox = hitlist[index];
      // here we got the hit candidates
      // now we execute user specific code to process this "hitbox"
      auto done = userhook(hitbox);
      if (done) break;
    }
  }

  static constexpr const char *gClassNameString = "HybridSafetyEstimator";

  VECGEOM_FORCE_INLINE
  VECCORE_ATT_HOST_DEVICE
  virtual Real_v ComputeSafetyForLocalPoint(Vector3D<Real_v> const &localpoint, VPlacedVolume const *pvol,
                                            Bool_v m) const override
  {
    using vecCore::AssignLane;
    using vecCore::LaneAt;
    Real_v safety(0.);
    if (!vecCore::MaskEmpty(m)) {
      // SIMD safety to mother
      safety = pvol->SafetyToOut(localpoint);

      LogicalVolume const *lvol = pvol->GetLogicalVolume();
      // now loop over the voxelized treatment of safety to in
      for (unsigned int i = 0; i < vecCore::VectorSize<Real_v>(); ++i) {
        if (vecCore::MaskLaneAt(m, i)) {
          AssignLane(safety, i,
                     TreatSafetyToIn(Vector3D<Precision>(LaneAt(localpoint.x(), i), LaneAt(localpoint.y(), i),
                                                         LaneAt(localpoint.z(), i)),
                                     lvol, LaneAt(safety, i)));
        } else {
          AssignLane(safety, i, 0.);
        }
      }
    }
    return safety;
  }

  VECGEOM_FORCE_INLINE
  VECCORE_ATT_HOST_DEVICE
  Precision TreatSafetyToIn(Vector3D<Precision> const &localpoint, LogicalVolume const *lvol, Precision outsafety) const
  {
    // a stack based workspace array
    // The following construct reserves stackspace for objects
    // of type IdDistPair_t WITHOUT initializing those objects
    using IdDistPair_t = HybridManager2::BoxIdDistancePair_t;
    char unitstackspace[VECGEOM_MAXDAUGHTERS * sizeof(IdDistPair_t)];
    IdDistPair_t *boxsafetylist = reinterpret_cast<IdDistPair_t *>(&unitstackspace);

    double safety    = outsafety; // we use the outsafety estimate as starting point
    double safetysqr = safety * safety;

    // safety to bounding boxes
    if (safety > 0. && lvol->GetDaughtersp()->size() > 0) {
      // calculate squared bounding box safeties in vectorized way
      auto ncandidates = GetSafetyCandidates_v(*fAccelerationStructureManager.GetAccStructure(lvol), localpoint,
                                               boxsafetylist, safetysqr);
      // not sorting the candidate list ( which one could do )
      for (unsigned int candidate = 0; candidate < ncandidates; ++candidate) {
        auto boxsafetypair = boxsafetylist[candidate];
        if (boxsafetypair.second < safetysqr) {
          VPlacedVolume const *cand = LookupDaughter(lvol, boxsafetypair.first);
          if (size_t(boxsafetypair.first) > lvol->GetDaughtersp()->size()) break;
          auto candidatesafety = cand->SafetyToIn(localpoint);
#ifdef VERBOSE
          if (candidatesafety * candidatesafety > boxsafetypair.second && boxsafetypair.second > 0)
            std::cerr << "real safety smaller than boxsafety \n";
#endif
          if (candidatesafety < safety) {
            safety    = candidatesafety;
            safetysqr = safety * safety;
          }
        }
      }
    }
    return safety;
  }

  // this is (almost) the same code as in SimpleABBoxSafetyEstimator --> avoid this
  VECGEOM_FORCE_INLINE
  VECCORE_ATT_HOST_DEVICE
  virtual Precision ComputeSafetyForLocalPoint(Vector3D<Precision> const &localpoint,
                                               VPlacedVolume const *pvol) const override
  {
    // safety to mother
    double safety = pvol->SafetyToOut(localpoint);
    if (safety <= 0.) {
      return 0.;
    }
    return TreatSafetyToIn(localpoint, pvol->GetLogicalVolume(), safety);
  }

  VECGEOM_FORCE_INLINE
  VECCORE_ATT_HOST_DEVICE
  virtual Precision ComputeSafetyToDaughtersForLocalPoint(Vector3D<Precision> const &localpoint,
                                                          LogicalVolume const *lvol) const override
  {
    return TreatSafetyToIn(localpoint, lvol, kInfLength);
  }

  // vector interface
  VECGEOM_FORCE_INLINE
  virtual void ComputeSafetyForLocalPoints(SOA3D<Precision> const & /*localpoints*/, VPlacedVolume const * /*pvol*/,
                                           Precision * /*safeties*/) const override
  {
    //    // a stack based workspace array
    //    static __thread ABBoxManager::BoxIdDistancePair_t boxsafetylist[VECGEOM_MAXDAUGHTERS] = {};
    //
    //    // safety to mother -- using vector interface
    //    pvol->SafetyToOut(localpoints, safeties);
    //
    //    // safety to bounding boxes
    //    LogicalVolume const *lvol = pvol->GetLogicalVolume();
    //    if (!(lvol->GetDaughtersp()->size() > 0))
    //      return;
    //
    //    // get bounding boxes (they are the same for all tracks)
    //    int numberofboxes;
    //    auto bboxes = fABBoxManager.GetABBoxes_v(lvol, numberofboxes);
    //
    //    // now loop over particles
    //    for (int i = 0, ntracks = localpoints.size(); i < ntracks; ++i) {
    //      double safety = safeties[i];
    //      if (safeties[i] > 0.) {
    //        double safetysqr = safeties[i] * safeties[i];
    //        auto lpoint = localpoints[i];
    //        // vectorized search through bounding boxes -- quickly excluding many candidates
    //        auto ncandidates = GetSafetyCandidates_v(lpoint, bboxes, numberofboxes, boxsafetylist, safetysqr);
    //        // loop over remaining candidates
    //        for (unsigned int candidate = 0; candidate < ncandidates; ++candidate) {
    //          auto boxsafetypair = boxsafetylist[candidate];
    //          if (boxsafetypair.second < safetysqr) {
    //            VPlacedVolume const *candidate = LookupDaughter(lvol, boxsafetypair.first);
    //            if (boxsafetypair.first > lvol->GetDaughtersp()->size())
    //              break;
    //            auto candidatesafety = candidate->SafetyToIn(lpoint);
    //#ifdef VERBOSE
    //            if (candidatesafety * candidatesafety > boxsafetypair.second && boxsafetypair.second > 0)
    //              std::cerr << "real safety smaller than boxsafety \n";
    //#endif
    //            if (candidatesafety < safety) {
    //              safety = candidatesafety;
    //              safetysqr = safety * safety;
    //            }
    //          }
    //        }
    //      }
    //      // write back result
    //      safeties[i] = safety;
    //    }
  }

  static VSafetyEstimator *Instance()
  {
    static HybridSafetyEstimator instance;
    return &instance;
  }

}; // end class
} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom

#endif /* NAVIGATION_SIMPLEABBOXSAFETYESTIMATOR_H_ */