1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
/// @file CoaxialConesStruct.h
/// @author Raman Sehgal (raman.sehgal@cern.ch)
#ifndef VECGEOM_VOLUMES_COAXIALCONESSTRUCT_H_
#define VECGEOM_VOLUMES_COAXIALCONESSTRUCT_H_
#include "VecGeom/base/Global.h"
#include "VecGeom/base/Vector3D.h"
#include "VecGeom/base/Vector.h"
#include "VecGeom/volumes/ConeStruct.h"
namespace vecgeom {
inline namespace VECGEOM_IMPL_NAMESPACE {
template <typename T = double>
struct CoaxialConesStruct {
// CoaxialCone parameters
unsigned int fNumOfCones;
T fDz;
T fSPhi;
T fDPhi;
Vector<T> fRmin1Vect;
Vector<T> fRmax1Vect;
Vector<T> fRmin2Vect;
Vector<T> fRmax2Vect;
/*
** A function to Print the sequence of Coaxial cones,
** Useful for debugging the Coaxial cones
*/
void Print() const
{
for (unsigned int i = 0; i < fConeStructVector.size(); i++) {
std::cout << std::endl << "====== Index of cone struct : " << i << " ======" << std::endl;
fConeStructVector[i]->Print();
std::cout << std::endl;
}
}
VECCORE_ATT_HOST_DEVICE
CoaxialConesStruct() {}
VECCORE_ATT_HOST_DEVICE
CoaxialConesStruct(unsigned int numOfCones, T *rmin1Vect, T *rmax1Vect, T *rmin2Vect, T *rmax2Vect, T dz, T sphi,
T dphi)
: fNumOfCones(numOfCones), fDz(dz), fSPhi(sphi), fDPhi(dphi)
{
for (unsigned int i = 0; i < fNumOfCones; i++) {
fRmin1Vect.push_back(rmin1Vect[i]);
fRmax1Vect.push_back(rmax1Vect[i]);
fRmin2Vect.push_back(rmin2Vect[i]);
fRmax2Vect.push_back(rmax2Vect[i]);
}
for (unsigned int i = 0; i < fNumOfCones; i++) {
fConeStructVector.push_back(
new ConeStruct<T>(fRmin1Vect[i], fRmax1Vect[i], fRmin2Vect[i], fRmax2Vect[i], dz, sphi, dphi));
if (i == 0) {
fMinR = fRmin1Vect[i] < fRmin2Vect[i] ? fRmin1Vect[i] : fRmin2Vect[i];
}
if (i == fNumOfCones - 1) {
fMaxR = fRmax1Vect[i] > fRmax2Vect[i] ? fRmax1Vect[i] : fRmax2Vect[i];
}
}
}
VECCORE_ATT_HOST_DEVICE
CoaxialConesStruct(Vector<Precision> rmin1Vect, Vector<Precision> rmax1Vect, Vector<Precision> rmin2Vect,
Vector<Precision> rmax2Vect, T dz, T sphi, T dphi)
: fNumOfCones(rmin1Vect.size()), fDz(dz), fSPhi(sphi), fDPhi(dphi), fRmin1Vect(rmin1Vect), fRmax1Vect(rmax1Vect),
fRmin2Vect(rmin2Vect), fRmax2Vect(rmax2Vect)
{
for (unsigned int i = 0; i < fNumOfCones; i++) {
fConeStructVector.push_back(
new ConeStruct<T>(fRmin1Vect[i], fRmax1Vect[i], fRmin2Vect[i], fRmax2Vect[i], dz, sphi, dphi));
if (i == 0) {
fMinR = fRmin1Vect[i] < fRmin2Vect[i] ? fRmin1Vect[i] : fRmin2Vect[i];
}
if (i == fNumOfCones - 1) {
fMaxR = fRmax1Vect[i] > fRmax2Vect[i] ? fRmax1Vect[i] : fRmax2Vect[i];
}
}
}
// Vector of Cones
Vector<ConeStruct<T> *> fConeStructVector;
T fSurfaceArea; // area of the surface
T fCubicVolume; // volume
T fMaxR;
T fMinR;
// Precalculated cached values
VECCORE_ATT_HOST_DEVICE
Precision Capacity()
{
Precision volume = 0.;
for (unsigned int i = 0; i < fConeStructVector.size(); i++) {
volume += fConeStructVector[i]->Capacity();
}
return volume;
}
VECCORE_ATT_HOST_DEVICE
Precision ConicalSurfaceArea()
{
Precision conicalSurfaceArea = 0.;
Precision mmin, mmax, dmin, dmax;
for (unsigned int i = 0; i < fConeStructVector.size(); i++) {
mmin = (fConeStructVector[i]->fRmin1 + fConeStructVector[i]->fRmin2) * 0.5;
mmax = (fConeStructVector[i]->fRmax1 + fConeStructVector[i]->fRmax2) * 0.5;
dmin = (fConeStructVector[i]->fRmin2 - fConeStructVector[i]->fRmin1);
dmax = (fConeStructVector[i]->fRmax2 - fConeStructVector[i]->fRmax1);
conicalSurfaceArea +=
fConeStructVector[i]->fDPhi *
(mmin * vecCore::math::Sqrt(dmin * dmin + 4 * fConeStructVector[i]->fDz * fConeStructVector[i]->fDz) +
mmax * vecCore::math::Sqrt(dmax * dmax + 4 * fConeStructVector[i]->fDz * fConeStructVector[i]->fDz));
}
return conicalSurfaceArea;
}
VECCORE_ATT_HOST_DEVICE
Precision SurfaceAreaLowerZPlanes(int index)
{
return fConeStructVector[index]->fDPhi * 0.5 *
(fConeStructVector[index]->fRmax1 * fConeStructVector[index]->fRmax1 -
fConeStructVector[index]->fRmin1 * fConeStructVector[index]->fRmin1);
}
VECCORE_ATT_HOST_DEVICE
Precision SurfaceAreaUpperZPlanes(int index)
{
return fConeStructVector[index]->fDPhi * 0.5 *
(fConeStructVector[index]->fRmax2 * fConeStructVector[index]->fRmax2 -
fConeStructVector[index]->fRmin2 * fConeStructVector[index]->fRmin2);
}
VECCORE_ATT_HOST_DEVICE
Precision SurfaceAreaOfZPlanes()
{
Precision surfaceAreaOfZPlanes = 0.;
for (unsigned int i = 0; i < fConeStructVector.size(); i++) {
surfaceAreaOfZPlanes = SurfaceAreaLowerZPlanes(i) + SurfaceAreaUpperZPlanes(i);
}
return surfaceAreaOfZPlanes;
}
VECCORE_ATT_HOST_DEVICE
Precision SurfaceArea() { return (ConicalSurfaceArea() + SurfaceAreaOfZPlanes()); }
VECCORE_ATT_HOST_DEVICE
bool Normal(Vector3D<Precision> const &p, Vector3D<Precision> &norm) const
{
norm.Set(0.);
bool valid = false;
for (unsigned int i = 0; i < fConeStructVector.size(); i++) {
bool validNormal = false;
Vector3D<Precision> normal(0., 0., 0.);
validNormal = fConeStructVector[i]->Normal(p, normal);
if (validNormal) {
norm += normal;
}
valid |= validNormal;
}
if (valid) {
norm.Normalize();
} else {
norm.Set(0., 0., 1.);
}
return valid;
}
};
} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom
#endif
|