1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
|
/*
* ConeStruct.h
*
* Created on: May 09, 2017
* Author: Raman Sehgal
*/
#ifndef VECGEOM_CONESTRUCT_H_
#define VECGEOM_CONESTRUCT_H_
#include "VecGeom/base/Global.h"
#include "VecGeom/volumes/Wedge_Evolution.h"
namespace vecgeom {
VECGEOM_DEVICE_DECLARE_CONV_TEMPLATE(struct, ConeStruct, typename);
inline namespace VECGEOM_IMPL_NAMESPACE {
// a plain and lightweight struct to encapsulate data members of a Cone
template <typename T = double>
struct ConeStruct {
// Cone defining parameters
T fRmin1;
T fRmax1;
T fRmin2;
T fRmax2;
T fDz;
T fSPhi;
T fDPhi;
/* These new data members are introduced to store the original paramters of
* Cone, which may change in the case where rmin is equal to rmax.
* These are basically required by the Extent functions to do more accurate
* bounding box calculations.
*/
T _frmin1;
T _frmin2;
T _frmax1;
T _frmax2;
evolution::Wedge fPhiWedge;
// vectors characterizing the normals of phi planes
// makes task to detect phi sektors very efficient
Vector3D<Precision> fNormalPhi1;
Vector3D<Precision> fNormalPhi2;
Precision fAlongPhi1x;
Precision fAlongPhi1y;
Precision fAlongPhi2x;
Precision fAlongPhi2y;
// Some Cached value, try to reduce them
// Some precomputed values to avoid divisions etc
Precision fInnerSlope; // "gradient" of inner surface in z direction
Precision fOuterSlope; // "gradient" of outer surface in z direction
Precision fInnerOffset;
Precision fOuterOffset;
Precision fInnerTolerance; // tolerance on radial direction for inner surface
Precision fOuterTolerance; // tolerance on radial direction for outer surface
// Values to be cached
Precision fSqRmin1, fSqRmin2;
Precision fSqRmax1, fSqRmax2;
Precision fTolIz, fTolOz;
Precision fInnerConeApex;
Precision fTanInnerApexAngle;
Precision fOuterConeApex;
Precision fTanOuterApexAngle;
Precision fSecRMin;
Precision fSecRMax;
Precision fInvSecRMin;
Precision fInvSecRMax;
Precision fTanRMin;
Precision fTanRMax;
Precision fZNormInner;
Precision fZNormOuter;
Precision fConeTolerance;
/* Some additional variable to store original Rmax
* for the cases when Rmax is modified because of Rmin==Rmax
*/
Precision fOriginalRmax1;
Precision fOriginalRmax2;
VECCORE_ATT_HOST_DEVICE
Precision Capacity() const
{
return (fDz * fDPhi / 3.) *
(fRmax1 * fRmax1 + fRmax2 * fRmax2 + fRmax1 * fRmax2 - fRmin1 * fRmin1 - fRmin2 * fRmin2 - fRmin1 * fRmin2);
}
VECCORE_ATT_HOST_DEVICE
void CalculateCached()
{
fOriginalRmax1 = fRmax1;
fOriginalRmax2 = fRmax2;
if (fRmin1 == fRmax1) {
fRmax1 += kConeTolerance;
}
if (fRmin2 == fRmax2) {
fRmax2 += kConeTolerance;
}
fSqRmin1 = fRmin1 * fRmin1;
fSqRmax1 = fRmax1 * fRmax1;
fSqRmin2 = fRmin2 * fRmin2;
fSqRmax2 = fRmax2 * fRmax2;
fConeTolerance = 1e-7;
fTanRMin = (fRmin2 - fRmin1) * 0.5 / fDz;
fSecRMin = std::sqrt(1.0 + fTanRMin * fTanRMin);
fInvSecRMin = 1. / NonZero(fSecRMin);
fTanRMax = (fRmax2 - fRmax1) * 0.5 / fDz;
fSecRMax = std::sqrt(1.0 + fTanRMax * fTanRMax);
fInvSecRMax = 1. / NonZero(fSecRMax);
// check this very carefully
fInnerSlope = -(fRmin1 - fRmin2) / (2. * fDz);
fOuterSlope = -(fRmax1 - fRmax2) / (2. * fDz);
fInnerOffset = fRmin2 - fInnerSlope * fDz;
fOuterOffset = fRmax2 - fOuterSlope * fDz;
fInnerTolerance = kConeTolerance * fSecRMin;
fOuterTolerance = kConeTolerance * fSecRMax;
if (fRmin2 > fRmin1) {
fInnerConeApex = 2 * fDz * fRmin1 / (fRmin2 - fRmin1);
fTanInnerApexAngle = fRmin2 / (2 * fDz + fInnerConeApex);
} else { // Should we add a check if(fRmin1 > fRmin2)
fInnerConeApex = 2 * fDz * fRmin2 / NonZero(fRmin1 - fRmin2);
fTanInnerApexAngle = fRmin1 / (2 * fDz + fInnerConeApex);
}
if (fRmin1 == 0. || fRmin2 == 0.) fInnerConeApex = 0.;
if (fRmin1 == 0.) fTanInnerApexAngle = fRmin2 / (2 * fDz);
if (fRmin2 == 0.) fTanInnerApexAngle = fRmin1 / (2 * fDz);
if (fRmax2 > fRmax1) {
fOuterConeApex = 2 * fDz * fRmax1 / (fRmax2 - fRmax1);
fTanOuterApexAngle = fRmax2 / (2 * fDz + fOuterConeApex);
} else { // Should we add a check if(fRmax1 > fRmax2)
fOuterConeApex = 2 * fDz * fRmax2 / NonZero(fRmax1 - fRmax2);
fTanOuterApexAngle = fRmax1 / (2 * fDz + fOuterConeApex);
}
if (fRmax1 == 0. || fRmax2 == 0.) fOuterConeApex = 0.;
if (fRmax1 == 0.) fTanOuterApexAngle = fRmax2 / (2 * fDz);
if (fRmax2 == 0.) fTanOuterApexAngle = fRmax1 / (2 * fDz);
fZNormInner = fTanRMin / NonZero(fSecRMin);
fZNormOuter = -fTanRMax / NonZero(fSecRMax);
fTolIz = fDz - kHalfTolerance;
fTolOz = fDz + kHalfTolerance;
// DetectConvexity();
}
VECCORE_ATT_HOST_DEVICE
void Print() const
{
printf("ConeStruct : {rmin1 %.2f, rmax1 %.2f, rmin2 %.2f, "
"rmax2 %.2f, dz %.2f, phistart %.2f, deltaphi %.2f}",
fRmin1, fRmax1, fRmin2, fRmax2, fDz, fSPhi, fDPhi);
}
void Print(std::ostream &os) const { os << "UnplacedCone; please implement Print to outstream\n"; }
VECCORE_ATT_HOST_DEVICE
bool IsFullPhi() const { return fDPhi == kTwoPi; }
VECCORE_ATT_HOST_DEVICE
bool Normal(Vector3D<Precision> const &p, Vector3D<Precision> &norm) const
{
int noSurfaces = 0;
Precision rho, pPhi;
Precision distZ, distRMin, distRMax;
Precision distSPhi = kInfLength, distEPhi = kInfLength;
Precision pRMin, widRMin;
Precision pRMax, widRMax;
// const double kHalfTolerance = 0.5 * kTolerance;
Vector3D<Precision> sumnorm(0., 0., 0.), nZ = Vector3D<Precision>(0., 0., 1.);
Vector3D<Precision> nR, nr(0., 0., 0.), nPs, nPe;
norm = sumnorm;
// do not use an extra fabs here -- negative/positive distZ tells us when point is outside or inside
distZ = vecCore::math::Abs(p.z()) - fDz;
rho = vecCore::math::Sqrt(p.x() * p.x() + p.y() * p.y());
pRMin = rho - p.z() * fTanRMin;
widRMin = fRmin2 - fDz * fTanRMin;
if (vecCore::math::Abs(_frmin1 - _frmin2) < fInnerTolerance)
distRMin = (rho - _frmin2);
else
distRMin = (pRMin - widRMin) / fSecRMin;
pRMax = rho - p.z() * fTanRMax;
widRMax = fRmax2 - fDz * fTanRMax;
if (vecCore::math::Abs(_frmax1 - _frmax2) < fOuterTolerance)
distRMax = (rho - _frmax2);
else
distRMax = (pRMax - widRMax) / fSecRMax;
bool inside = distZ < kTolerance && distRMax < fOuterTolerance;
if (fRmin1 || fRmin2) inside &= distRMin > -fInnerTolerance;
distZ = std::fabs(distZ);
distRMax = std::fabs(distRMax);
distRMin = std::fabs(distRMin);
// keep track of nearest normal, needed in case point is not on a surface
Precision distNearest = distZ;
Vector3D<Precision> normNearest = nZ;
if (p.z() < 0.) normNearest.Set(0, 0, -1.);
if (!IsFullPhi()) {
if (rho) { // Protected against (0,0,z)
pPhi = vecCore::math::ATan2(p.y(), p.x());
if (pPhi < fSPhi - kHalfTolerance)
pPhi += 2 * kPi;
else if (pPhi > fSPhi + fDPhi + kHalfTolerance)
pPhi -= 2 * kPi;
distSPhi = rho * (pPhi - fSPhi);
distEPhi = rho * (pPhi - fSPhi - fDPhi);
inside = inside && (distSPhi > -kTolerance) && (distEPhi < kTolerance);
distSPhi = vecCore::math::Abs(distSPhi);
distEPhi = vecCore::math::Abs(distEPhi);
}
else if (!(fRmin1) || !(fRmin2)) {
distSPhi = 0.;
distEPhi = 0.;
}
nPs = Vector3D<Precision>(vecCore::math::Sin(fSPhi), -vecCore::math::Cos(fSPhi), 0);
nPe = Vector3D<Precision>(-vecCore::math::Sin(fSPhi + fDPhi), vecCore::math::Cos(fSPhi + fDPhi), 0);
}
if (rho > kHalfTolerance) {
nR = Vector3D<Precision>(p.x() / rho / fSecRMax, p.y() / rho / fSecRMax, -fTanRMax / fSecRMax);
if (fRmin1 || fRmin2) {
nr = Vector3D<Precision>(-p.x() / rho / fSecRMin, -p.y() / rho / fSecRMin, fTanRMin / fSecRMin);
}
}
if (inside && distZ <= kHalfTolerance) {
noSurfaces++;
if (p.z() >= 0.)
sumnorm += nZ;
else
sumnorm.Set(0, 0, -1.);
}
if (inside && distRMax <= fOuterTolerance) {
noSurfaces++;
sumnorm += nR;
} else if (noSurfaces == 0 && distRMax < distNearest) {
distNearest = distRMax;
normNearest = nR;
}
if (fRmin1 || fRmin2) {
if (inside && distRMin <= fInnerTolerance) {
noSurfaces++;
sumnorm += nr;
} else if (noSurfaces == 0 && distRMin < distNearest) {
distNearest = distRMin;
normNearest = nr;
}
}
if (!IsFullPhi()) {
if (inside && distSPhi <= kHalfTolerance) {
noSurfaces++;
sumnorm += nPs;
} else if (noSurfaces == 0 && distSPhi < distNearest) {
distNearest = distSPhi;
normNearest = nPs;
}
if (inside && distEPhi <= kHalfTolerance) {
noSurfaces++;
sumnorm += nPe;
} else if (noSurfaces == 0 && distEPhi < distNearest) {
// No more check on distNearest, no need to assign to it.
// distNearest = distEPhi;
normNearest = nPe;
}
}
// Final checks
if (noSurfaces == 0)
norm = normNearest;
else if (noSurfaces == 1)
norm = sumnorm;
else
norm = sumnorm.Unit();
bool valid = noSurfaces != 0;
if (noSurfaces > 2) {
// return valid=false for noSurfaces > 2
valid = false;
}
return valid;
}
VECCORE_ATT_HOST_DEVICE
void SetAndCheckSPhiAngle(Precision sPhi)
{
// Ensure fSphi in 0-2PI or -2PI-0 range if shape crosses 0
if (sPhi < 0) {
fSPhi = kTwoPi - std::fmod(std::fabs(sPhi), kTwoPi);
} else {
fSPhi = std::fmod(sPhi, kTwoPi);
}
if (fSPhi + fDPhi > kTwoPi) {
fSPhi -= kTwoPi;
}
// Update Wedge
fPhiWedge.SetStartPhi(fSPhi);
// Update cached values.
GetAlongVectorToPhiSector(fSPhi, fAlongPhi1x, fAlongPhi1y);
GetAlongVectorToPhiSector(fSPhi + fDPhi, fAlongPhi2x, fAlongPhi2y);
}
VECCORE_ATT_HOST_DEVICE
void SetAndCheckDPhiAngle(Precision dPhi)
{
if (dPhi >= kTwoPi - 0.5 * kAngTolerance) {
fDPhi = kTwoPi;
fSPhi = 0;
} else {
if (dPhi > 0) {
fDPhi = dPhi;
} else {
// std::ostringstream message;
// message << "Invalid dphi.\n"
// << "Negative or zero delta-Phi (" << dPhi << ")\n";
// std::cout<<"UnplacedTube::CheckDPhiAngle(): Fatal error: "<< message.str().c_str() <<"\n";
}
}
// Update Wedge
fPhiWedge.SetDeltaPhi(fDPhi);
// Update cached values.
GetAlongVectorToPhiSector(fSPhi, fAlongPhi1x, fAlongPhi1y);
GetAlongVectorToPhiSector(fSPhi + fDPhi, fAlongPhi2x, fAlongPhi2y);
}
VECCORE_ATT_HOST_DEVICE
static void GetAlongVectorToPhiSector(Precision phi, Precision &x, Precision &y)
{
x = std::cos(phi);
y = std::sin(phi);
}
void SetRmin1(Precision const &arg)
{
fRmin1 = arg;
CalculateCached();
}
void SetRmax1(Precision const &arg)
{
fRmax1 = arg;
CalculateCached();
}
void SetRmin2(Precision const &arg)
{
fRmin2 = arg;
CalculateCached();
}
void SetRmax2(Precision const &arg)
{
fRmax2 = arg;
CalculateCached();
}
void SetDz(Precision const &arg)
{
fDz = arg;
CalculateCached();
}
void SetSPhi(Precision const &arg)
{
fSPhi = arg;
SetAndCheckSPhiAngle(fSPhi);
// DetectConvexity();
}
void SetDPhi(Precision const &arg)
{
fDPhi = arg;
SetAndCheckDPhiAngle(fDPhi);
// DetectConvexity();
}
VECCORE_ATT_HOST_DEVICE
Precision GetTolIz() const { return fTolIz; }
VECCORE_ATT_HOST_DEVICE
Precision GetTolOz() const { return fTolOz; }
VECCORE_ATT_HOST_DEVICE
Precision GetConeTolerane() const { return fConeTolerance; }
VECCORE_ATT_HOST_DEVICE
evolution::Wedge const &GetWedge() const { return fPhiWedge; }
// constructors
VECCORE_ATT_HOST_DEVICE
ConeStruct(T const &_rmin1, T const &_rmax1, T const &_rmin2, T const &_rmax2, T const &_z, T const &_sphi,
T const &_dphi)
: fRmin1(_rmin1 < 0.0 ? 0.0 : _rmin1), fRmax1(_rmax1), fRmin2(_rmin2 < 0.0 ? 0.0 : _rmin2), fRmax2(_rmax2),
fDz(_z), fSPhi(_sphi), fDPhi(_dphi), _frmin1(_rmin1), _frmin2(_rmin2), _frmax1(_rmax1), _frmax2(_rmax2),
fPhiWedge(_dphi, _sphi)
{
SetAndCheckDPhiAngle(_dphi);
SetAndCheckSPhiAngle(_sphi);
CalculateCached();
// DetectConvexity();
}
};
} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom
#endif
|