1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
|
/*
* ConeUtilities.h
*
* Created on: June 01, 2017
* Author: Raman Sehgal
*/
#ifndef VECGEOM_CONEUTILITIES_H_
#define VECGEOM_CONEUTILITIES_H_
#include "VecGeom/base/Global.h"
#include "VecGeom/volumes/Wedge_Evolution.h"
#include "VecGeom/base/Vector3D.h"
#include "VecGeom/volumes/ConeStruct.h"
#include "VecGeom/volumes/kernel/GenericKernels.h"
#include "VecGeom/volumes/kernel/shapetypes/ConeTypes.h"
#include "VecGeom/volumes/kernel/TubeImplementation.h"
#include <cstdio>
namespace vecgeom {
inline namespace VECGEOM_IMPL_NAMESPACE {
class UnplacedCone;
template <typename T>
struct ConeStruct;
using UnplacedStruct_t = ConeStruct<Precision>;
namespace ConeUtilities {
/**
* Returns whether a point is inside a cylindrical sector, as defined
* by the two vectors that go along the endpoints of the sector
*
* The same could be achieved using atan2 to calculate the angle formed
* by the point, the origin and the X-axes, but this is a lot faster,
* using only multiplications and comparisons
*
* (-x*starty + y*startx) >= 0: calculates whether going from the start vector to the point
* we are traveling in the CCW direction (taking the shortest direction, of course)
*
* (-endx*y + endy*x) >= 0: calculates whether going from the point to the end vector
* we are traveling in the CCW direction (taking the shortest direction, of course)
*
* For a sector smaller than pi, we need that BOTH of them hold true - if going from start, to the
* point, and then to the end we are travelling in CCW, it's obvious the point is inside the
* cylindrical sector.
*
* For a sector bigger than pi, only one of the conditions needs to be true. This is less obvious why.
* Since the sector angle is greater than pi, it can be that one of the two vectors might be
* farther than pi away from the point. In that case, the shortest direction will be CW, so even
* if the point is inside, only one of the two conditions need to hold.
*
* If going from start to point is CCW, then certainly the point is inside as the sector
* is larger than pi.
*
* If going from point to end is CCW, again, the point is certainly inside.
*
* This function is a frankensteinian creature that can determine which of the two cases (smaller vs
* larger than pi) to use either at compile time (if it has enough information, saving an ifVolumeType
* statement) or at runtime.
**/
#if (1)
template <typename Real_v, typename ShapeType, bool onSurfaceT, bool includeSurface = true>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void PointInCyclicalSector(UnplacedStruct_t const &volume, Real_v const &x, Real_v const &y,
typename vecCore::Mask_v<Real_v> &ret)
{
using namespace ::vecgeom::ConeTypes;
// assert(SectorType<ShapeType>::value != kNoAngle && "ShapeType without a
// sector passed to PointInCyclicalSector");
// typedef Real_v Real_v;
// using vecgeom::ConeTypes::SectorType;
// using vecgeom::ConeTypes::EAngleType;
Real_v startx = volume.fAlongPhi1x; // GetAlongPhi1X();
Real_v starty = volume.fAlongPhi1y; // GetAlongPhi1Y();
Real_v endx = volume.fAlongPhi2x; // GetAlongPhi2X();
Real_v endy = volume.fAlongPhi2y; // GetAlongPhi2Y();
bool smallerthanpi;
if (SectorType<ShapeType>::value == kUnknownAngle)
smallerthanpi = volume.fDPhi <= M_PI;
else
smallerthanpi = SectorType<ShapeType>::value == kOnePi || SectorType<ShapeType>::value == kSmallerThanPi;
Real_v startCheck = (-x * starty) + (y * startx);
Real_v endCheck = (-endx * y) + (endy * x);
if (onSurfaceT) {
// in this case, includeSurface is irrelevant
ret = (Abs(startCheck) <= kConeTolerance) || (Abs(endCheck) <= kConeTolerance);
} else {
if (smallerthanpi) {
if (includeSurface)
ret = (startCheck >= -kConeTolerance) & (endCheck >= -kConeTolerance);
else
ret = (startCheck >= kConeTolerance) & (endCheck >= kConeTolerance);
} else {
if (includeSurface)
ret = (startCheck >= -kConeTolerance) || (endCheck >= -kConeTolerance);
else
ret = (startCheck >= kConeTolerance) || (endCheck >= kConeTolerance);
}
}
}
#endif
#if (1)
template <typename Real_v, bool ForInnerRadius>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static Real_v GetRadiusOfConeAtPoint(UnplacedStruct_t const &cone, Real_v const pointZ)
{
if (ForInnerRadius) {
if (cone.fRmin1 == cone.fRmin2) {
return cone.fRmin1;
} else {
return cone.fInnerSlope * pointZ + cone.fInnerOffset;
}
} else {
if (cone.fOriginalRmax1 == cone.fOriginalRmax2) {
return cone.fOriginalRmax1;
} else {
return cone.fOuterSlope * pointZ + cone.fOuterOffset;
}
}
}
#endif
/*
* Check intersection of the trajectory with a phi-plane
* All points of the along-vector of a phi plane lie on
* s * (alongX, alongY)
* All points of the trajectory of the particle lie on
* (x, y) + t * (vx, vy)
* Thefore, it must hold that s * (alongX, alongY) == (x, y) + t * (vx, vy)
* Solving by t we get t = (alongY*x - alongX*y) / (vy*alongX - vx*alongY)
* s = (x + t*vx) / alongX = (newx) / alongX
*
* If we have two non colinear phi-planes, need to make sure
* point falls on its positive direction <=> dot product between
* along vector and hit-point is positive <=> hitx*alongX + hity*alongY > 0
*/
template <typename Real_v, typename ConeType, bool PositiveDirectionOfPhiVector, bool insectorCheck>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void PhiPlaneTrajectoryIntersection(Precision alongX, Precision alongY, Precision normalX, Precision normalY,
UnplacedStruct_t const &cone, Vector3D<Real_v> const &pos,
Vector3D<Real_v> const &dir, Real_v &dist,
typename vecCore::Mask_v<Real_v> &ok)
{
const Real_v zero(0.0);
dist = kInfLength;
// approaching phi plane from the right side?
// this depends whether we use it for DistanceToIn or DistanceToOut
// Note: wedge normals poing towards the wedge inside, by convention!
if (insectorCheck)
ok = ((dir.x() * normalX) + (dir.y() * normalY) > zero); // DistToIn -- require tracks entering volume
else
ok = ((dir.x() * normalX) + (dir.y() * normalY) < zero); // DistToOut -- require tracks leaving volume
// if( /*Backend::early_returns &&*/ vecCore::MaskEmpty(ok) ) return;
Real_v dirDotXY = (dir.y() * alongX) - (dir.x() * alongY);
vecCore__MaskedAssignFunc(dist, dirDotXY != 0, ((alongY * pos.x()) - (alongX * pos.y())) / NonZero(dirDotXY));
ok &= dist > -kConeTolerance;
// if( /*Backend::early_returns &&*/ vecCore::MaskEmpty(ok) ) return;
if (insectorCheck) {
Real_v hitx = pos.x() + dist * dir.x();
Real_v hity = pos.y() + dist * dir.y();
Real_v hitz = pos.z() + dist * dir.z();
Real_v r2 = (hitx * hitx) + (hity * hity);
Real_v innerRadIrTol = GetRadiusOfConeAtPoint<Real_v, true>(cone, hitz) + kTolerance;
Real_v outerRadIrTol = GetRadiusOfConeAtPoint<Real_v, false>(cone, hitz) - kTolerance;
ok &= Abs(hitz) <= cone.fTolIz && (r2 >= innerRadIrTol * innerRadIrTol) && (r2 <= outerRadIrTol * outerRadIrTol);
// GL: tested with this if(PosDirPhiVec) around if(insector), so
// if(insector){} requires PosDirPhiVec==true to run
// --> shapeTester still finishes OK (no mismatches) (some cycles saved...)
if (PositiveDirectionOfPhiVector) {
ok = ok && ((hitx * alongX) + (hity * alongY)) > zero;
}
} else {
if (PositiveDirectionOfPhiVector) {
Real_v hitx = pos.x() + dist * dir.x();
Real_v hity = pos.y() + dist * dir.y();
ok = ok && ((hitx * alongX) + (hity * alongY)) >= zero;
}
}
}
template <typename Real_v, bool ForInnerSurface>
VECCORE_ATT_HOST_DEVICE
static Vector3D<Real_v> GetNormal(UnplacedStruct_t const &cone, Vector3D<Real_v> const &point)
{
// typedef Real_v Real_v;
Real_v rho = point.Perp();
Vector3D<Real_v> norm(0., 0., 0.);
if (ForInnerSurface) {
// Handling inner conical surface
Precision rmin1 = cone.fRmin1;
Precision rmin2 = cone.fRmin2;
if ((rmin1 == rmin2) && (rmin1 != 0.)) {
// cone act like tube
norm.Set(-point.x(), -point.y(), 0.);
} else {
Precision secRMin = cone.fSecRMin;
norm.Set(-point.x(), -point.y(), cone.fZNormInner * (rho * secRMin));
}
} else {
Precision rmax1 = cone.fRmax1;
Precision rmax2 = cone.fRmax2;
if ((rmax1 == rmax2) && (rmax1 != 0.)) {
// cone act like tube
norm.Set(point.x(), point.y(), 0.);
} else {
Precision secRMax = cone.fSecRMax;
norm.Set(point.x(), point.y(), cone.fZNormOuter * (rho * secRMax));
}
}
return norm;
}
template <typename Real_v, bool ForInnerSurface>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static typename vecCore::Mask_v<Real_v> IsOnConicalSurface(UnplacedStruct_t const &cone, Vector3D<Real_v> const &point)
{
using namespace ConeUtilities;
using namespace ConeTypes;
const Real_v rho = point.Perp2();
const Real_v coneRad = GetRadiusOfConeAtPoint<Real_v, ForInnerSurface>(cone, point.z());
const Real_v coneRad2 = coneRad * coneRad;
const Real_v tolerance = (ForInnerSurface) ? cone.fInnerTolerance : cone.fOuterTolerance;
return (rho >= (coneRad2 - tolerance * coneRad)) && (rho <= (coneRad2 + tolerance * coneRad)) &&
(Abs(point.z()) < (cone.fDz + kConeTolerance));
}
// precondition: point is on cone surface - as returned from IsOnConicalSurface()
template <typename Real_v, bool ForInnerSurface>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static typename vecCore::Mask_v<Real_v> IsMovingOutsideConicalSurface(UnplacedStruct_t const &cone,
Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction)
{
return direction.Dot(GetNormal<Real_v, ForInnerSurface>(cone, point)) >= Real_v(0.);
}
// precondition: point is on cone surface - as returned from IsOnConicalSurface()
template <typename Real_v, bool ForInnerSurface>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static typename vecCore::Mask_v<Real_v> IsMovingInsideConicalSurface(UnplacedStruct_t const &cone,
Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction)
{
return direction.Dot(GetNormal<Real_v, ForInnerSurface>(cone, point)) <= Real_v(0.);
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static typename vecCore::Mask_v<Real_v> IsOnStartPhi(UnplacedStruct_t const &cone, Vector3D<Real_v> const &point)
{
// class evolution::Wedge;
return cone.fPhiWedge.IsOnSurfaceGeneric(cone.fPhiWedge.GetAlong1(), cone.fPhiWedge.GetNormal1(), point);
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static typename vecCore::Mask_v<Real_v> IsOnEndPhi(UnplacedStruct_t const &cone, Vector3D<Real_v> const &point)
{
return cone.fPhiWedge.IsOnSurfaceGeneric(cone.fPhiWedge.GetAlong2(), cone.fPhiWedge.GetNormal2(), point);
}
template <typename Real_v, bool ForTopPlane>
VECCORE_ATT_HOST_DEVICE
static typename vecCore::Mask_v<Real_v> IsOnZPlaneAndMovingInside(UnplacedStruct_t const &cone,
Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction)
{
Real_v rho = point.Perp2();
Precision fDz = cone.fDz;
if (ForTopPlane) {
return (rho > (cone.fSqRmin2 - kConeTolerance)) && (rho < (cone.fSqRmax2 + kConeTolerance)) &&
(point.z() < (fDz + kConeTolerance)) && (point.z() > (fDz - kConeTolerance)) &&
(direction.z() < Real_v(0.));
} else {
return (rho > (cone.fSqRmin1 - kConeTolerance)) && (rho < (cone.fSqRmax1 + kConeTolerance)) &&
(point.z() < (-fDz + kConeTolerance)) && (point.z() > (-fDz - kConeTolerance)) &&
(direction.z() > Real_v(0.));
}
}
template <typename Real_v, bool ForTopPlane>
VECCORE_ATT_HOST_DEVICE
static typename vecCore::Mask_v<Real_v> IsOnZPlaneAndMovingOutside(UnplacedStruct_t const &cone,
Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction)
{
Real_v rho = point.Perp2();
Precision fDz = cone.fDz;
if (ForTopPlane) {
return (rho > (cone.fSqRmin2 - kConeTolerance)) && (rho < (cone.fSqRmax2 + kConeTolerance)) &&
(point.z() < (fDz + kConeTolerance)) && (point.z() > (fDz - kConeTolerance)) &&
(direction.z() > Real_v(0.));
} else {
return (rho > (cone.fSqRmin1 - kConeTolerance)) && (rho < (cone.fSqRmax1 + kConeTolerance)) &&
(point.z() < (-fDz + kConeTolerance)) && (point.z() > (-fDz - kConeTolerance)) &&
(direction.z() < Real_v(0.));
}
}
} // namespace ConeUtilities
/* This class is introduced to allow Partial Specialization of selected functions,
** and will be very much useful when running Cone and Polycone in Scalar mode
*/
template <class Real_v, class coneTypeT>
class ConeHelpers {
public:
ConeHelpers() {}
~ConeHelpers() {}
template <bool ForDistToIn, bool ForInnerSurface>
VECCORE_ATT_HOST_DEVICE
static typename vecCore::Mask_v<Real_v> DetectIntersectionAndCalculateDistanceToConicalSurface(
UnplacedStruct_t const &cone, Vector3D<Real_v> const &point, Vector3D<Real_v> const &direction, Real_v &distance)
{
using namespace ConeUtilities;
using namespace ConeTypes;
typedef typename vecCore::Mask_v<Real_v> Bool_t;
const Real_v zero(0.0);
distance = kInfLength;
Bool_t onConicalSurface = IsOnConicalSurface<Real_v, ForInnerSurface>(cone, point);
Vector3D<Real_v> normal = ConeUtilities::GetNormal<Real_v, ForInnerSurface>(cone, point);
Bool_t tangentToSurface = vecCore::math::Abs(direction.Dot(normal)) == zero;
Bool_t done = onConicalSurface && tangentToSurface;
if (vecCore::MaskFull(done)) return Bool_t(false);
// if precond is all false, save some CPU
const Bool_t precond = !done && onConicalSurface;
if (!vecCore::MaskEmpty(precond)) {
if (ForDistToIn) {
Bool_t isOnSurfaceAndMovingInside = precond
& ConeUtilities::IsMovingInsideConicalSurface<Real_v, ForInnerSurface>(cone, point, direction);
if (!checkPhiTreatment<coneTypeT>(cone)) {
vecCore__MaskedAssignFunc(distance, isOnSurfaceAndMovingInside, zero);
done |= isOnSurfaceAndMovingInside;
if (vecCore::MaskFull(done)) return done;
} else {
Bool_t insector(false);
ConeUtilities::PointInCyclicalSector<Real_v, coneTypeT, false, true>(cone, point.x(), point.y(), insector);
vecCore__MaskedAssignFunc(distance, insector && isOnSurfaceAndMovingInside, zero);
done |= (insector && isOnSurfaceAndMovingInside);
if (vecCore::MaskFull(done)) return done;
}
} else {
Bool_t isOnSurfaceAndMovingOutside = precond
& ConeUtilities::IsMovingOutsideConicalSurface<Real_v, ForInnerSurface>(cone, point, direction);
if (!checkPhiTreatment<coneTypeT>(cone)) {
vecCore__MaskedAssignFunc(distance, isOnSurfaceAndMovingOutside, zero);
done |= isOnSurfaceAndMovingOutside;
if (vecCore::MaskFull(done)) return done;
} else {
Bool_t insector(false);
ConeUtilities::PointInCyclicalSector<Real_v, coneTypeT, false, true>(cone, point.x(), point.y(), insector);
vecCore__MaskedAssignFunc(distance, insector && isOnSurfaceAndMovingOutside, zero);
done |= (insector && isOnSurfaceAndMovingOutside);
if (vecCore::MaskFull(done)) return done;
}
}
}
Real_v pDotV2D = point.x() * direction.x() + point.y() * direction.y();
Real_v a(0.), b(0.), c(0.);
Bool_t ok(false);
Precision fDz = cone.fDz;
if (ForInnerSurface) {
Precision rmin1 = cone.fRmin1;
Precision rmin2 = cone.fRmin2;
if (rmin1 == rmin2) {
b = pDotV2D;
a = direction.Perp2();
c = point.Perp2() - rmin2 * rmin2;
} else {
Precision t = cone.fTanInnerApexAngle;
Real_v newPz(0.);
if (cone.fRmin2 > cone.fRmin1)
newPz = (point.z() + fDz + cone.fInnerConeApex) * t;
else
newPz = (point.z() - fDz - cone.fInnerConeApex) * t;
Real_v dirT = direction.z() * t;
a = (direction.x() * direction.x()) + (direction.y() * direction.y()) - dirT * dirT;
b = pDotV2D - (newPz * dirT);
c = point.Perp2() - (newPz * newPz);
}
Real_v b2 = b * b;
Real_v ac = a * c;
if (vecCore::MaskFull(b2 < ac)) return Bool_t(false);
Real_v d2 = b2 - ac;
Real_v delta = Sqrt(vecCore::math::Abs(d2));
if (ForDistToIn) {
vecCore__MaskedAssignFunc(distance, !done && d2 >= zero && (b >= zero), (c / NonZero(-b - delta)));
vecCore__MaskedAssignFunc(distance, !done && d2 >= zero && (b < zero), (-b + delta) / NonZero(a));
} else {
vecCore__MaskedAssignFunc(distance, !done && d2 >= zero && (b >= zero), (-b - delta) / NonZero(a));
vecCore__MaskedAssignFunc(distance, !done && d2 >= zero && (b < zero), (c / NonZero(-b + delta)));
}
if (vecCore::MaskFull(distance < zero)) return Bool_t(false);
Real_v newZ = point.z() + (direction.z() * distance);
ok = (Abs(newZ) < fDz);
} else {
// if (rmax1 == rmax2) {
if (cone.fOriginalRmax1 == cone.fOriginalRmax2) {
b = pDotV2D;
a = direction.Perp2();
c = point.Perp2() - cone.fOriginalRmax2 * cone.fOriginalRmax2;
} else {
Precision t = cone.fTanOuterApexAngle;
Real_v newPz(0.);
// if (cone.fRmax2 > cone.fRmax1)
if (cone.fOriginalRmax2 > cone.fOriginalRmax1)
newPz = (point.z() + fDz + cone.fOuterConeApex) * t;
else
newPz = (point.z() - fDz - cone.fOuterConeApex) * t;
Real_v dirT = direction.z() * t;
a = direction.x() * direction.x() + direction.y() * direction.y() - dirT * dirT;
b = pDotV2D - (newPz * dirT);
c = point.Perp2() - (newPz * newPz);
}
Real_v b2 = b * b;
Real_v ac = a * c;
if (vecCore::MaskFull(b2 < ac)) return Bool_t(false);
Real_v d2 = b2 - ac;
Real_v delta = Sqrt(vecCore::math::Abs(d2));
if (ForDistToIn) {
vecCore__MaskedAssignFunc(distance, !done && d2 >= zero && (b > zero), (-b - delta) / NonZero(a));
vecCore__MaskedAssignFunc(distance, !done && d2 >= zero && (b < zero), (c / NonZero(-b + delta)));
} else {
vecCore__MaskedAssignFunc(distance, !done && d2 >= zero && (b < zero), (-b + delta) / NonZero(a));
vecCore__MaskedAssignFunc(distance, !done && d2 >= zero && (b >= zero), (c / NonZero(-b - delta)));
ok = distance > zero;
}
if (vecCore::MaskFull(distance < zero)) return Bool_t(false);
if (ForDistToIn) {
Real_v newZ = point.z() + (direction.z() * distance);
ok = (Abs(newZ) < cone.fDz + kHalfTolerance);
}
}
vecCore__MaskedAssignFunc(distance, distance < zero, Real_v(kInfLength));
if (checkPhiTreatment<coneTypeT>(cone)) {
Real_v hitx(0), hity(0), hitz(0);
Bool_t insector(false); // = Backend::kFalse;
vecCore__MaskedAssignFunc(hitx, distance < kInfLength, point.x() + distance * direction.x());
vecCore__MaskedAssignFunc(hity, distance < kInfLength, point.y() + distance * direction.y());
vecCore__MaskedAssignFunc(hitz, distance < kInfLength, point.z() + distance * direction.z());
ConeUtilities::PointInCyclicalSector<Real_v, coneTypeT, false, true>(cone, hitx, hity, insector);
ok &= ((insector) && (distance < kInfLength));
}
return ok;
}
template <bool ForInside>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void GenericKernelForContainsAndInside(UnplacedStruct_t const &cone, Vector3D<Real_v> const &point,
typename vecCore::Mask_v<Real_v> &completelyinside,
typename vecCore::Mask_v<Real_v> &completelyoutside)
{
typedef typename vecCore::Mask_v<Real_v> Bool_t;
// very fast check on z-height
Real_v absz = Abs(point[2]);
completelyoutside = absz > MakePlusTolerant<ForInside>(cone.fDz, kConeTolerance);
if (ForInside) {
completelyinside = absz < MakeMinusTolerant<ForInside>(cone.fDz, kConeTolerance);
}
if (vecCore::MaskFull(completelyoutside)) {
return;
}
// check on RMAX
Real_v rmax(0.);
Real_v r2 = point.x() * point.x() + point.y() * point.y();
// calculate cone radius at the z-height of position
if (cone.fOriginalRmax1 == cone.fOriginalRmax2)
rmax = Real_v(cone.fOriginalRmax1);
else
rmax = cone.fOuterSlope * point.z() + cone.fOuterOffset;
completelyoutside |= r2 > MakePlusTolerantSquare<ForInside>(rmax, cone.fOuterTolerance);
if (ForInside) {
completelyinside &= r2 < MakeMinusTolerantSquare<ForInside>(rmax, cone.fOuterTolerance);
}
if (vecCore::MaskFull(completelyoutside)) {
return;
}
// check on RMIN
if (ConeTypes::checkRminTreatment<coneTypeT>(cone)) {
Real_v rmin = cone.fInnerSlope * point.z() + cone.fInnerOffset;
completelyoutside |= r2 <= MakeMinusTolerantSquare<ForInside>(rmin, cone.fInnerTolerance);
if (ForInside) {
completelyinside &= r2 > MakePlusTolerantSquare<ForInside>(rmin, cone.fInnerTolerance);
}
if (vecCore::MaskFull(completelyoutside)) {
return;
}
}
if (ConeTypes::checkPhiTreatment<coneTypeT>(cone)) {
Bool_t completelyoutsidephi;
Bool_t completelyinsidephi;
cone.fPhiWedge.GenericKernelForContainsAndInside<Real_v, ForInside>(point, completelyinsidephi,
completelyoutsidephi);
completelyoutside |= completelyoutsidephi;
if (ForInside) completelyinside &= completelyinsidephi;
}
}
template <typename Inside_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void Inside(UnplacedStruct_t const &cone, Vector3D<Real_v> const &point, Inside_v &inside)
{
using Bool_v = vecCore::Mask_v<Real_v>;
using InsideBool_v = vecCore::Mask_v<Inside_v>;
Bool_v completelyinside(false), completelyoutside(false);
GenericKernelForContainsAndInside<true>(cone, point, completelyinside, completelyoutside);
inside = EInside::kSurface;
vecCore::MaskedAssign(inside, (InsideBool_v)completelyoutside, Inside_v(EInside::kOutside));
vecCore::MaskedAssign(inside, (InsideBool_v)completelyinside, Inside_v(EInside::kInside));
}
};
template <class coneTypeT>
class ConeHelpers<Precision, coneTypeT> {
public:
ConeHelpers() {}
~ConeHelpers() {}
template <bool ForDistToIn, bool ForInnerSurface>
VECCORE_ATT_HOST_DEVICE
static bool DetectIntersectionAndCalculateDistanceToConicalSurface(UnplacedStruct_t const &cone,
Vector3D<Precision> const &point,
Vector3D<Precision> const &direction,
Precision &distance)
{
using namespace ConeUtilities;
using namespace ConeTypes;
distance = kInfLength;
bool onConicalSurface = IsOnConicalSurface<Precision, ForInnerSurface>(cone, point);
Vector3D<Precision> normal = ConeUtilities::GetNormal<Precision, ForInnerSurface>(cone, point);
bool tangentToSurface = vecCore::math::Abs(direction.Dot(normal)) == 0.;
if (onConicalSurface && tangentToSurface) {
return false;
}
if (onConicalSurface) {
if (ForDistToIn) {
bool isMovingInside = IsMovingInsideConicalSurface<Precision, ForInnerSurface>(cone, point, direction);
if (!checkPhiTreatment<coneTypeT>(cone)) {
if (isMovingInside) { // && onConicalSurface
distance = 0.;
return true;
}
} else {
bool insector(false);
ConeUtilities::PointInCyclicalSector<Precision, coneTypeT, false, true>(cone, point.x(), point.y(), insector);
if (insector && isMovingInside) { // && onConicalSurface
distance = 0.;
return true;
}
}
}
else { // !ForDistToIn
bool isMovingOutside = IsMovingOutsideConicalSurface<Precision, ForInnerSurface>(cone, point, direction);
if (!checkPhiTreatment<coneTypeT>(cone)) {
if (isMovingOutside) { // && onConicalSurface
distance = 0.;
return true;
}
} else {
bool insector(false);
ConeUtilities::PointInCyclicalSector<Precision, coneTypeT, false, true>(cone, point.x(), point.y(), insector);
if (insector && isMovingOutside) { // && onConicalSurface
distance = 0.;
return true;
}
}
}
}
bool ok(false);
Precision pDotV2D = point.x() * direction.x() + point.y() * direction.y();
Precision a(kInfLength), b(kInfLength), c(kInfLength);
if (ForInnerSurface) {
if (cone.fRmin1 == cone.fRmin2) {
b = pDotV2D;
a = direction.Perp2();
c = point.Perp2() - cone.fRmin2 * cone.fRmin2;
} else {
Precision newPz(0.);
if (cone.fRmin2 > cone.fRmin1)
newPz = (point.z() + cone.fDz + cone.fInnerConeApex) * cone.fTanInnerApexAngle;
else
newPz = (point.z() - cone.fDz - cone.fInnerConeApex) * cone.fTanInnerApexAngle;
Precision dirT = direction.z() * cone.fTanInnerApexAngle;
a = (direction.x() * direction.x()) + (direction.y() * direction.y()) - dirT * dirT;
b = pDotV2D - (newPz * dirT);
c = point.Perp2() - (newPz * newPz);
}
Precision b2 = b * b;
Precision ac = a * c;
if (b2 < ac) return false;
Precision d2 = b2 - ac;
Precision delta = Sqrt(d2);
if (ForDistToIn) {
if (b >= 0.) {
distance = (c / NonZero(-b - delta));
} else {
distance = (-b + delta) / NonZero(a);
}
} else {
if (b == 0. && delta == 0.) return false;
if (b >= 0.) {
distance = (-b - delta) / NonZero(a);
} else {
distance = (c / NonZero(-b + delta));
}
}
if (distance < 0.) return false;
Precision newZ = point.z() + (direction.z() * distance);
ok = (Abs(newZ) < cone.fDz);
} else {
/*if (cone.fRmax1 == cone.fRmax2) {*/
if (cone.fOriginalRmax1 == cone.fOriginalRmax2) {
a = direction.Perp2();
b = pDotV2D;
c = (point.Perp2() - cone.fOriginalRmax2 * cone.fOriginalRmax2);
} else {
Precision newPz(0.);
// if (cone.fRmax2 > cone.fRmax1)
if (cone.fOriginalRmax2 > cone.fOriginalRmax1)
newPz = (point.z() + cone.fDz + cone.fOuterConeApex) * cone.fTanOuterApexAngle;
else
newPz = (point.z() - cone.fDz - cone.fOuterConeApex) * cone.fTanOuterApexAngle;
Precision dirT = direction.z() * cone.fTanOuterApexAngle;
a = direction.x() * direction.x() + direction.y() * direction.y() - dirT * dirT;
b = (pDotV2D - (newPz * dirT));
c = (point.Perp2() - (newPz * newPz));
}
Precision b2 = b * b;
Precision ac = a * c;
Precision d2 = b2 - ac;
if (d2 < 0) return false;
Precision delta = Sqrt(d2);
if (ForDistToIn) {
if (b == 0. && delta == 0.) return false;
if (b > 0.) {
distance = (-b - delta) / NonZero(a); // BE ATTENTIVE, not covers the condition for b==0.
} else {
distance = (c / NonZero(-b + delta));
}
Precision newZ = point.z() + (direction.z() * distance);
ok = (Abs(newZ) < cone.fDz + kHalfTolerance);
} else {
if (b < 0.) {
distance = (-b + delta) / NonZero(a);
} else {
distance = (c / NonZero(-b - delta));
}
ok = distance > 0.;
}
if (distance < 0.) return false;
}
/* if (distance < 0.) {
distance = kInfLength;
}
*/
if (checkPhiTreatment<coneTypeT>(cone)) {
Precision hitx(0), hity(0);
bool insector(false);
if (distance < kInfLength) {
hitx = point.x() + distance * direction.x();
hity = point.y() + distance * direction.y();
}
ConeUtilities::PointInCyclicalSector<Precision, coneTypeT, false, true>(cone, hitx, hity, insector);
ok &= ((insector) && (distance < kInfLength));
}
return ok;
}
template <bool ForInside>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void GenericKernelForContainsAndInside(UnplacedStruct_t const &cone, Vector3D<Precision> const &point,
bool &completelyinside, bool &completelyoutside)
{
// very fast check on z-height
Precision absz = Abs(point[2]);
completelyoutside = absz > MakePlusTolerant<ForInside>(cone.fDz, kConeTolerance);
if (ForInside) {
completelyinside = absz < MakeMinusTolerant<ForInside>(cone.fDz, kConeTolerance);
}
if (completelyoutside) return;
// check on RMAX
Precision r2 = point.x() * point.x() + point.y() * point.y();
// calculate cone radius at the z-height of position
Precision rmax = 0.;
if (cone.fOriginalRmax1 == cone.fOriginalRmax2)
rmax = cone.fOriginalRmax1;
else
rmax = cone.fOuterSlope * point.z() + cone.fOuterOffset;
completelyoutside |= r2 > MakePlusTolerantSquare<ForInside>(rmax, cone.fOuterTolerance);
if (ForInside) {
completelyinside &= r2 < MakeMinusTolerantSquare<ForInside>(rmax, cone.fOuterTolerance);
}
if (completelyoutside) return;
// check on RMIN
if (ConeTypes::checkRminTreatment<coneTypeT>(cone)) {
Precision rmin = cone.fInnerSlope * point.z() + cone.fInnerOffset;
completelyoutside |= r2 <= MakeMinusTolerantSquare<ForInside>(rmin, cone.fInnerTolerance);
if (ForInside) {
completelyinside &= r2 > MakePlusTolerantSquare<ForInside>(rmin, cone.fInnerTolerance);
}
if (completelyoutside) return;
}
if (ConeTypes::checkPhiTreatment<coneTypeT>(cone)) {
bool completelyoutsidephi(false);
bool completelyinsidephi(false);
cone.fPhiWedge.GenericKernelForContainsAndInside<Precision, ForInside>(point, completelyinsidephi,
completelyoutsidephi);
completelyoutside |= completelyoutsidephi;
if (ForInside) completelyinside &= completelyinsidephi;
}
}
template <typename Inside_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void Inside(UnplacedStruct_t const &cone, Vector3D<Precision> const &point, Inside_v &inside)
{
bool completelyinside(false), completelyoutside(false);
GenericKernelForContainsAndInside<true>(cone, point, completelyinside, completelyoutside);
inside = EInside::kSurface;
if (completelyoutside) inside = EInside::kOutside;
if (completelyinside) inside = EInside::kInside;
}
};
} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom
#endif
|