1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
|
#ifndef VECGEOM_PLANAR_POLYGON_H
#define VECGEOM_PLANAR_POLYGON_H
#include "VecGeom/base/Global.h"
#include "VecGeom/base/SOA3D.h"
#include "VecGeom/base/Vector3D.h"
#include "VecGeom/base/Vector.h"
#include <VecCore/VecCore>
#include <iostream>
#include <limits>
namespace vecgeom {
VECGEOM_DEVICE_FORWARD_DECLARE(class PlanarPolygon;);
VECGEOM_DEVICE_DECLARE_CONV(class, PlanarPolygon);
inline namespace VECGEOM_IMPL_NAMESPACE {
// a class representing a 2D convex or concav polygon
class PlanarPolygon {
friend struct SExtruImplementation;
protected:
// we have to work on the "ideal" memory layout/placement for this
// this is WIP
SOA3D<Precision> fVertices; // a vector of vertices with links between
// note that the z component will hold the slopes between 2 links
// We assume a clockwise order of points
Vector<Precision> fShiftedXJ;
Vector<Precision> fShiftedYJ;
Vector<Precision> fLengthSqr; // the lenghts of each segment
Vector<Precision> fInvLengthSqr; // the inverse square lengths of each segment
Vector<Precision> fA; // the "a"=x coefficient in the plane equation
Vector<Precision> fB; // the "b"=y coefficient in the plane equation
Vector<Precision> fD; // the "d" coefficient in the plane equation
bool fIsConvex; // convexity property to be calculated a construction time
Precision fMinX; // the extent of the polygon
Precision fMinY;
Precision fMaxX;
Precision fMaxY;
size_t fNVertices; // the actual number of vertices
friend class PolygonalShell;
public:
VECCORE_ATT_HOST_DEVICE
PlanarPolygon()
: fVertices(), fShiftedXJ({}), fShiftedYJ({}), fLengthSqr({}), fInvLengthSqr({}), fA({}), fB({}), fD({}),
fIsConvex(false), fMinX(kInfLength), fMinY(kInfLength), fMaxX(-kInfLength), fMaxY(-kInfLength), fNVertices(0)
{
}
// constructor (not taking ownership of the pointers)
VECCORE_ATT_HOST_DEVICE
PlanarPolygon(int nvertices, Precision *x, Precision *y)
: fVertices(), fShiftedXJ({}), fShiftedYJ({}), fLengthSqr({}), fInvLengthSqr({}), fA({}), fB({}), fD({}),
fIsConvex(false), fMinX(kInfLength), fMinY(kInfLength), fMaxX(-kInfLength), fMaxY(-kInfLength),
fNVertices(nvertices)
{
Init(nvertices, x, y);
}
VECCORE_ATT_HOST_DEVICE
void Init(int nvertices, Precision *x, Precision *y)
{
// allocating more space than nvertices, in order
// to accomodate an internally vectorized treatment without tails
// --> the size comes from this formula:
const size_t kVS = vecCore::VectorSize<vecgeom::VectorBackend::Real_v>();
const auto numberOfVectorChunks = (nvertices / kVS + nvertices % kVS);
// actual buffersize
const auto bs = numberOfVectorChunks * kVS;
assert(bs > 0);
fNVertices = nvertices;
fVertices.reserve(bs);
fVertices.resize(nvertices);
fShiftedXJ.resize(bs, 0);
fShiftedYJ.resize(bs, 0);
fLengthSqr.resize(bs, 0);
fInvLengthSqr.resize(bs, 0);
fA.resize(bs, 0);
fB.resize(bs, 0);
fD.resize(bs, 0);
int inc = (GetOrientation(x, y, nvertices) > 0) ? -1 : 1;
size_t i, j;
// init the vertices (wrapping around periodically)
for (i = 0; i < (size_t)fNVertices; ++i) {
const size_t k = (i * inc + fNVertices) % fNVertices;
fVertices.set(i, x[k], y[k], 0);
fMinX = vecCore::math::Min(x[k], fMinX);
fMinY = vecCore::math::Min(y[k], fMinY);
fMaxX = vecCore::math::Max(x[k], fMaxX);
fMaxY = vecCore::math::Max(y[k], fMaxY);
}
// initialize and cache the slopes as a "hidden" component
auto slopes = fVertices.z();
const auto S = fNVertices;
const auto vertx = fVertices.x();
const auto verty = fVertices.y();
for (i = 0, j = S - 1; i < S; j = i++) {
const auto vertxI = vertx[i];
const auto vertxJ = vertx[j];
const auto vertyI = verty[i];
const auto vertyJ = verty[j];
slopes[i] = (vertxJ - vertxI) / NonZero(vertyJ - vertyI);
fShiftedYJ[i] = vertyJ;
fShiftedXJ[i] = vertxJ;
}
for (i = 0; i < (size_t)S; ++i) {
fLengthSqr[i] = (vertx[i] - fShiftedXJ[i]) * (vertx[i] - fShiftedXJ[i]) +
(verty[i] - fShiftedYJ[i]) * (verty[i] - fShiftedYJ[i]);
fInvLengthSqr[i] = 1. / fLengthSqr[i];
}
// init normals
// this is taken from UnplacedTrapezoid
// we should make this a standalone function outside any volume class
for (i = 0; i < (size_t)S; ++i) {
const auto xi = fVertices.x();
const auto yi = fVertices.y();
// arbitary choice of normal for the moment
auto a = -(fShiftedYJ[i] - yi[i]);
auto b = +(fShiftedXJ[i] - xi[i]);
auto norm = 1.0 / std::sqrt(a * a + b * b); // normalization factor, always positive
a *= norm;
b *= norm;
auto d = -(a * xi[i] + b * yi[i]);
// fix (sign of zero (avoid -0 ))
if (std::abs(a) < kTolerance) a = 0.;
if (std::abs(b) < kTolerance) b = 0.;
if (std::abs(d) < kTolerance) d = 0.;
// std::cerr << a << "," << b << "," << d << "\n";
fA[i] = a;
fB[i] = b;
fD[i] = d;
}
// fill rest of data buffers periodically (for safe internal vectorized treatment)
for (i = S; i < bs; ++i) {
const size_t k = i % fNVertices;
fVertices.set(i, fVertices.x()[k], fVertices.y()[k], fVertices.z()[k]);
fShiftedXJ[i] = fShiftedXJ[k];
fShiftedYJ[i] = fShiftedYJ[k];
fLengthSqr[i] = fLengthSqr[k];
fInvLengthSqr[i] = fInvLengthSqr[k];
fA[i] = fA[k];
fB[i] = fB[k];
fD[i] = fD[k];
}
// set convexity
CalcConvexity();
// check orientation
#ifndef VECCORE_CUDA
if (Area() < 0.) {
throw std::runtime_error("Polygon not given in clockwise order");
}
#endif
}
VECCORE_ATT_HOST_DEVICE
Precision GetMinX() const { return fMinX; }
VECCORE_ATT_HOST_DEVICE
Precision GetMinY() const { return fMinY; }
VECCORE_ATT_HOST_DEVICE
Precision GetMaxX() const { return fMaxX; }
VECCORE_ATT_HOST_DEVICE
Precision GetMaxY() const { return fMaxY; }
VECCORE_ATT_HOST_DEVICE
SOA3D<Precision> const &GetVertices() const { return fVertices; }
VECCORE_ATT_HOST_DEVICE
size_t GetNVertices() const { return fNVertices; }
// checks if 2D coordinates (x,y) are on the line segment given by index i
template <typename Real_v, typename InternalReal_v, typename Bool_v>
VECCORE_ATT_HOST_DEVICE
Bool_v OnSegment(size_t i, Real_v const &px, Real_v const &py) const
{
using vecCore::FromPtr;
// static assert ( cannot have Real_v == InternalReal_v )
Bool_v result(false);
//
const auto vertx = fVertices.x();
const auto verty = fVertices.y();
// const auto slopes = fVertices.z();
// check if cross close to zero
const Real_v bx(FromPtr<InternalReal_v>(&vertx[i]));
const Real_v by(FromPtr<InternalReal_v>(&verty[i]));
const Real_v ax(FromPtr<InternalReal_v>(&fShiftedXJ[i]));
const Real_v ay(FromPtr<InternalReal_v>(&fShiftedYJ[i]));
// const Real_v slope(FromPtr<InternalReal_v>(&slopes[i]));
const Real_v pymay(py - ay);
const Real_v pxmax(px - ax);
const Real_v epsilon(1E-9);
// optimized crossproduct
const Real_v cross = (pymay * (bx - ax) - pxmax * (by - ay));
const Bool_v collinear = Abs(cross) < epsilon;
// TODO: can we use the slope?
// const Bool_v collinear = Abs(pymay - slope * pxmax) < epsilon;
if (vecCore::MaskFull(!collinear)) {
return result;
}
result |= collinear;
// can we do this with the slope??
const auto dotproduct = pxmax * (bx - ax) + pymay * (by - ay);
// check if length correct (use MakeTolerant templates)
const Real_v tol(kTolerance);
result &= (dotproduct >= -tol);
result &= (dotproduct <= tol + Real_v(FromPtr<InternalReal_v>(&fLengthSqr[i])));
return result;
}
template <typename Real_v, typename Bool_v = vecCore::Mask_v<Real_v>>
VECCORE_ATT_HOST_DEVICE
inline Bool_v ContainsConvex(Vector3D<Real_v> const &point) const
{
const size_t S = fVertices.size();
Bool_v result(false);
Real_v distance = -InfinityLength<Real_v>();
for (size_t i = 0; i < S; ++i) {
Real_v dseg = -(fA[i] * point.x() + fB[i] * point.y() + fD[i]);
vecCore__MaskedAssignFunc(distance, dseg > distance, dseg);
}
result = distance < Real_v(0.);
return result;
}
template <typename Real_v, typename Bool_v = vecCore::Mask_v<Real_v>>
VECCORE_ATT_HOST_DEVICE
inline Bool_v Contains(Vector3D<Real_v> const &point) const
{
const size_t S = fVertices.size();
Bool_v result(false);
// implementation based on the point-polygon test after Jordan
const auto vertx = fVertices.x();
const auto verty = fVertices.y();
const auto slopes = fVertices.z();
const auto py = point.y();
const auto px = point.x();
for (size_t i = 0; i < S; ++i) {
const auto vertyI = verty[i];
const auto vertyJ = fShiftedYJ[i];
const Bool_v condition1 = (vertyI > py) ^ (vertyJ > py);
// early return leads to performance slowdown
// if (vecCore::MaskEmpty(condition1))
// continue;
const auto vertxI = vertx[i];
const auto condition2 = px < (slopes[i] * (py - vertyI) + vertxI);
result = (condition1 & condition2) ^ result;
}
return result;
}
template <typename Real_v, typename Inside_v = int /*vecCore::Index_v<Real_v>*/>
VECCORE_ATT_HOST_DEVICE
inline Inside_v InsideConvex(Vector3D<Real_v> const &point) const
{
assert(fIsConvex);
const size_t S = fVertices.size();
Inside_v result = Inside_v(vecgeom::kOutside);
Real_v distance = -InfinityLength<Real_v>();
for (size_t i = 0; i < S; ++i) {
Real_v dseg = -(fA[i] * point.x() + fB[i] * point.y() + fD[i]);
vecCore__MaskedAssignFunc(distance, dseg > distance, dseg);
}
vecCore__MaskedAssignFunc(result, distance < Real_v(-kTolerance), Real_v(vecgeom::kInside));
vecCore__MaskedAssignFunc(result, distance < Real_v(kTolerance), Real_v(vecgeom::kSurface));
return result;
}
// calculate an underestimate of safety for the convex case
template <typename Real_v>
VECCORE_ATT_HOST_DEVICE
Real_v SafetyConvex(Vector3D<Real_v> const &point, bool inside) const
{
assert(fIsConvex);
const size_t S = fVertices.size();
Real_v distance = -InfinityLength<Real_v>();
for (size_t i = 0; i < S; ++i) {
Real_v dseg = -(fA[i] * point.x() + fB[i] * point.y() + fD[i]);
vecCore__MaskedAssignFunc(distance, dseg > distance, dseg);
if (inside) distance *= Real_v(-1.);
}
return distance;
}
// calculate precise safety sqr to the polygon; return the closest "line" id
template <typename Real_v>
VECCORE_ATT_HOST_DEVICE
Real_v SafetySqr(Vector3D<Real_v> const &point, int &closestid) const
{
// implementation based on TGeoPolygone@ROOT
Real_v safe(1E30);
int isegmin = -1;
const auto vertx = fVertices.x();
const auto verty = fVertices.y();
const auto S = fVertices.size();
for (size_t i = 0; i < S; ++i) {
// could use the slope information to calc
const Real_v p1[2] = {vertx[i], verty[i]};
const Real_v p2[2] = {fShiftedXJ[i], fShiftedYJ[i]};
const auto dx = p2[0] - p1[0];
const auto dy = p2[1] - p1[1];
auto dpx = point.x() - p1[0];
auto dpy = point.y() - p1[1];
// degenerate edge?
// const auto lsq = dx * dx + dy * dy;
// I don't think this is useful -- its a pure static property
// if ( ClostToZero(lsq,0)) {
// ssq = dpx*dpx + dpy*dpy;
// if (ssq < safe) {
// safe = ssq;
// isegmin = i;
// }
// continue;
// }
const auto u = (dpx * dx + dpy * dy) * fInvLengthSqr[i];
if (u > 1) {
dpx = point.x() - p2[0];
dpy = point.y() - p2[1];
} else {
if (u >= 0) {
// need to divide by lsq now
// since this is a static property of the polygon
// we could actually cache it;
dpx -= u * dx;
dpy -= u * dy;
}
}
const auto ssq = dpx * dpx + dpy * dpy;
if (ssq < safe) {
safe = ssq;
isegmin = i;
}
// check if we are done early ( on surface )
if (Abs(safe) < kTolerance * kTolerance) {
closestid = isegmin;
return Real_v(0.);
}
}
closestid = isegmin;
return safe;
}
VECCORE_ATT_HOST_DEVICE
bool IsConvex() const { return fIsConvex; }
// check clockwise/counterclockwise condition (returns positive for anti-clockwise)
// useful function to check orientation of points x,y
// before calling the PlanarPolygon constructor
VECCORE_ATT_HOST_DEVICE
static Precision GetOrientation(Precision *x, Precision *y, size_t N)
{
Precision area(0.);
for (size_t i = 0; i < N; ++i) {
const Precision p1[2] = {x[i], y[i]};
const size_t j = (i + 1) % N;
const Precision p2[2] = {x[j], y[j]};
area += (p1[0] * p2[1] - p1[1] * p2[0]);
}
return area;
}
/* returns area of polygon */
VECCORE_ATT_HOST_DEVICE
Precision Area() const
{
const auto vertx = fVertices.x();
const auto verty = fVertices.y();
const auto kS = fVertices.size();
Precision area(0.);
for (size_t i = 0; i < kS; ++i) {
const Precision p1[2] = {vertx[i], verty[i]};
const Precision p2[2] = {fShiftedXJ[i], fShiftedYJ[i]};
area += (p1[0] * p2[1] - p1[1] * p2[0]);
}
return 0.5 * area;
}
private:
VECCORE_ATT_HOST_DEVICE
void CalcConvexity()
{
// check if we are always turning into the same sense
// --> check if the sign of the cross product is always the same
const auto vertx = fVertices.x();
const auto verty = fVertices.y();
const auto kS = fNVertices;
int counter(0);
for (size_t i = 0; i < kS; ++i) {
size_t j = (i + 1) % kS;
size_t k = (i + 2) % kS;
const Precision p1[2] = {vertx[j] - vertx[i], verty[j] - verty[i]};
const Precision p2[2] = {vertx[k] - vertx[j], verty[k] - verty[j]};
counter += (p1[0] * p2[1] - p1[1] * p2[0]) < 0 ? -1 : 1;
}
fIsConvex = (size_t)std::abs(counter) == kS;
}
};
// template specialization for scalar case (do internal vectorization)
#define SPECIALIZE
#ifdef SPECIALIZE
template <>
VECCORE_ATT_HOST_DEVICE
inline bool PlanarPolygon::ContainsConvex(Vector3D<Precision> const &point) const
{
const size_t S = fVertices.size();
Precision distance = -InfinityLength<Precision>();
for (size_t i = 0; i < S; ++i) {
Precision dseg = -(fA[i] * point.x() + fB[i] * point.y() + fD[i]);
distance = vecCore::math::Max(dseg, distance);
}
return (distance < 0.);
}
template <>
VECCORE_ATT_HOST_DEVICE
inline bool PlanarPolygon::Contains(Vector3D<Precision> const &point) const
{
using Real_v = vecgeom::VectorBackend::Real_v;
using Bool_v = vecCore::Mask_v<Real_v>;
using vecCore::FromPtr;
const auto kVectorS = vecCore::VectorSize<Real_v>();
Bool_v result(false);
const Real_v px(point.x());
const Real_v py(point.y());
const size_t S = fVertices.size();
const size_t SVector = S - S % kVectorS;
size_t i(0);
const auto vertx = fVertices.x();
const auto verty = fVertices.y();
const auto slopes = fVertices.z();
// treat vectorizable part of loop
for (; i < SVector; i += kVectorS) {
const Real_v vertyI(FromPtr<Real_v>(&verty[i])); // init vectors
const Real_v vertyJ(FromPtr<Real_v>(&fShiftedYJ[i])); // init vectors
const auto condition1 = (vertyI > py) ^ (vertyJ > py); // xor
const Real_v vertxI(FromPtr<Real_v>(&vertx[i]));
const Real_v slope(FromPtr<Real_v>(&slopes[i]));
const auto condition2 = px < (slope * (py - vertyI) + vertxI);
result = result ^ (condition1 & condition2);
}
// reduction over vector lanes
bool reduction(false);
for (size_t j = 0; j < kVectorS; ++j) {
if (vecCore::MaskLaneAt(result, j)) reduction = !reduction;
}
// treat tail
using Real_s = vecCore::Scalar<Real_v>;
for (; i < S; ++i) {
const Real_s vertyI(FromPtr<Real_s>(&verty[i])); // init vectors
const Real_s vertyJ(FromPtr<Real_s>(&fShiftedYJ[i])); // init vectors
const bool condition1 = (vertyI > point.y()) ^ (vertyJ > point.y()); // xor
const Real_s vertxI(FromPtr<Real_s>(&vertx[i]));
const Real_s slope(FromPtr<Real_s>(&slopes[i]));
const bool condition2 = point.x() < (slope * (point.y() - vertyI) + vertxI);
reduction = reduction ^ (condition1 & condition2);
}
return reduction;
}
template <>
VECCORE_ATT_HOST_DEVICE
inline Inside_t PlanarPolygon::InsideConvex(Vector3D<Precision> const &point) const
{
const size_t S = fVertices.size();
assert(fIsConvex);
Precision distance = -InfinityLength<Precision>();
for (size_t i = 0; i < S; ++i) {
Precision dseg = -(fA[i] * point.x() + fB[i] * point.y() + fD[i]);
distance = vecCore::math::Max(dseg, distance);
}
if (distance > kTolerance) return vecgeom::kOutside;
if (distance < -kTolerance) return vecgeom::kInside;
return vecgeom::kSurface;
}
// template specialization for convex safety
template <>
VECCORE_ATT_HOST_DEVICE
inline Precision PlanarPolygon::SafetyConvex(Vector3D<Precision> const &point, bool inside) const
{
const size_t S = fVertices.size();
assert(fIsConvex);
Precision distance = -InfinityLength<Precision>();
for (size_t i = 0; i < S; ++i) {
Precision dseg = -(fA[i] * point.x() + fB[i] * point.y() + fD[i]);
distance = vecCore::math::Max(dseg, distance);
}
if (inside) distance *= -1.;
return distance;
}
// template specialization for scalar safety
template <>
VECCORE_ATT_HOST_DEVICE
inline Precision PlanarPolygon::SafetySqr(Vector3D<Precision> const &point, int &closestid) const
{
using Real_v = vecgeom::VectorBackend::Real_v;
using vecCore::FromPtr;
const auto kVectorS = vecCore::VectorSize<Real_v>();
Precision safe(1E30);
int isegmin(-1);
const auto vertx = fVertices.x();
const auto verty = fVertices.y();
const auto S = fVertices.size();
const Real_v px(point.x());
const Real_v py(point.y());
for (size_t i = 0; i < S; i += kVectorS) {
const Real_v p1[2] = {FromPtr<Real_v>(&vertx[i]), FromPtr<Real_v>(&verty[i])};
const Real_v p2[2] = {FromPtr<Real_v>(&fShiftedXJ[i]), FromPtr<Real_v>(&fShiftedYJ[i])};
const auto dx = p2[0] - p1[0];
const auto dy = p2[1] - p1[1];
auto dpx = px - p1[0];
auto dpy = py - p1[1];
// degenerate edge?
const auto lsq = dx * dx + dy * dy;
// I don't think this is useful -- its a pure static property
// if ( ClostToZero(lsq,0)) {
// ssq = dpx*dpx + dpy*dpy;
// if (ssq < safe) {
// safe = ssq;
// isegmin = i;
// }
// continue;
// }
const auto u = (dpx * dx + dpy * dy);
const auto cond1 = (u > lsq);
const auto cond2 = (!cond1 && (u >= Real_v(0.)));
if (!vecCore::MaskEmpty(cond1)) {
vecCore__MaskedAssignFunc(dpx, cond1, px - p2[0]);
vecCore__MaskedAssignFunc(dpy, cond1, py - p2[1]);
}
if (!vecCore::MaskEmpty(cond2)) {
const auto invlsq = Real_v(1.) / lsq;
vecCore__MaskedAssignFunc(dpx, cond2, dpx - u * dx * invlsq);
vecCore__MaskedAssignFunc(dpy, cond2, dpy - u * dy * invlsq);
}
const auto ssq = dpx * dpx + dpy * dpy;
// combined reduction is a bit tricky to translate:
// if (ssq < safe) {
// safe = ssq;
// isegmin = i;
// }
// a first try is serialized:
#ifndef VECCORE_CUDA
using std::min;
#endif
for (size_t j = 0; j < kVectorS; ++j) {
Precision saftmp = vecCore::LaneAt(ssq, j);
if (saftmp < safe) {
safe = saftmp;
isegmin = i + j;
}
}
if (Abs(safe) < kTolerance * kTolerance) {
closestid = isegmin;
return 0.;
}
}
closestid = isegmin;
return safe;
}
#endif
} // namespace VECGEOM_IMPL_NAMESPACE
} // end namespace vecgeom
#endif
|