1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
/*
* ConeStruct.h
*
* Created on: May 11, 2017
* Author: Raman Sehgal
*/
#ifndef VECGEOM_POLYCONESTRUCT_H_
#define VECGEOM_POLYCONESTRUCT_H_
#include "VecGeom/base/Global.h"
#include "VecGeom/volumes/Wedge_Evolution.h"
#include "VecGeom/volumes/ConeStruct.h"
#include "VecGeom/base/Vector.h"
#include "VecGeom/volumes/PolyconeHistorical.h"
#include "VecGeom/volumes/PolyconeSection.h"
#include "VecGeom/base/Array.h"
namespace vecgeom {
inline namespace VECGEOM_IMPL_NAMESPACE {
// a plain and lightweight struct to encapsulate data members of a Polycone
template <typename T = double>
struct PolyconeStruct {
bool fEqualRmax;
bool fContinuityOverAll;
bool fConvexityPossible;
evolution::Wedge fPhiWedge;
Precision fStartPhi;
Precision fDeltaPhi;
unsigned int fNz;
Vector<PolyconeSection> fSections;
Vector<Precision> fZs;
PolyconeHistorical *fOriginal_parameters;
VECCORE_ATT_HOST_DEVICE
bool CheckContinuity(const Precision rOuter[], const Precision rInner[], const Precision zPlane[],
Vector<Precision> &newROuter, Vector<Precision> &newRInner, Vector<Precision> &newZPlane)
{
Vector<Precision> rOut, rIn;
Vector<Precision> zPl;
rOut.push_back(rOuter[0]);
rIn.push_back(rInner[0]);
zPl.push_back(zPlane[0]);
for (unsigned int j = 1; j < fNz; j++) {
if (j == fNz - 1) {
rOut.push_back(rOuter[j]);
rIn.push_back(rInner[j]);
zPl.push_back(zPlane[j]);
} else {
if ((zPlane[j] != zPlane[j + 1]) || (rOuter[j] != rOuter[j + 1])) {
rOut.push_back(rOuter[j]);
rOut.push_back(rOuter[j]);
zPl.push_back(zPlane[j]);
zPl.push_back(zPlane[j]);
rIn.push_back(rInner[j]);
rIn.push_back(rInner[j]);
} else {
rOut.push_back(rOuter[j]);
zPl.push_back(zPlane[j]);
rIn.push_back(rInner[j]);
}
}
}
if (rOut.size() % 2 != 0) {
// fNz is odd, the adding of the last item did not happen in the loop.
rOut.push_back(rOut[rOut.size() - 1]);
rIn.push_back(rIn[rIn.size() - 1]);
zPl.push_back(zPl[zPl.size() - 1]);
}
/* Creating a new temporary Reduced polycone with desired data elements,
* which makes sure that denominator will never be zero (hence avoiding FPE(division by zero)),
* while calculating slope.
*
* This will be the minimum polycone,i.e. no extra section which
* affect its shape
*/
for (size_t j = 0; j < rOut.size();) {
if (zPl[j] != zPl[j + 1]) {
newZPlane.push_back(zPl[j]);
newZPlane.push_back(zPl[j + 1]);
newROuter.push_back(rOut[j]);
newROuter.push_back(rOut[j + 1]);
newRInner.push_back(rIn[j]);
newRInner.push_back(rIn[j + 1]);
}
j = j + 2;
}
// Minimum polycone construction over
// Checking Slope continuity and Rmax Continuity
bool contRmax = CheckContinuityInRmax(newROuter);
bool contSlope = CheckContinuityInSlope(newROuter, newZPlane);
// If both are true then the polycone can be convex
// but still final convexity depends on Inner Radius also.
return (contRmax && contSlope);
}
VECCORE_ATT_HOST_DEVICE
bool CheckContinuityInRmax(const Vector<Precision> &rOuter)
{
bool continuous = true;
unsigned int len = rOuter.size();
if (len > 2) {
for (unsigned int j = 1; j < len;) {
if (j != (len - 1)) continuous &= (rOuter[j] == rOuter[j + 1]);
j = j + 2;
}
}
return continuous;
}
VECCORE_ATT_HOST_DEVICE
bool CheckContinuityInSlope(const Vector<Precision> &rOuter, const Vector<Precision> &zPlane)
{
bool continuous = true;
Precision startSlope = kInfLength;
// Doing the actual slope calculation here, and checking continuity,
for (size_t j = 0; j < rOuter.size(); j = j + 2) {
Precision currentSlope = (rOuter[j + 1] - rOuter[j]) / (zPlane[j + 1] - zPlane[j]);
continuous &= (currentSlope <= startSlope);
startSlope = currentSlope;
}
return continuous;
}
VECCORE_ATT_HOST_DEVICE
void Init(Precision phiStart, // initial phi starting angle
Precision phiTotal, // total phi angle
unsigned int numZPlanes, // number of z planes
const Precision zPlane[], // position of z planes
const Precision rInner[], // tangent distance to inner surface
const Precision rOuter[])
{
SetAndCheckDPhiAngle(phiTotal);
SetAndCheckSPhiAngle(phiStart);
fNz = numZPlanes;
Precision *zPlaneR = new Precision[numZPlanes];
Precision *rInnerR = new Precision[numZPlanes];
Precision *rOuterR = new Precision[numZPlanes];
for (unsigned int i = 0; i < numZPlanes; i++) {
zPlaneR[i] = zPlane[i];
rInnerR[i] = rInner[i];
rOuterR[i] = rOuter[i];
}
if (zPlane[0] > zPlane[numZPlanes - 1]) {
// Reverse the arrays
for (unsigned int i = 0; i < numZPlanes; i++) {
zPlaneR[i] = zPlane[numZPlanes - 1 - i];
rInnerR[i] = rInner[numZPlanes - 1 - i];
rOuterR[i] = rOuter[numZPlanes - 1 - i];
}
}
// Conversion for angles
if (phiTotal <= 0. || phiTotal > kTwoPi - kTolerance) {
// phiIsOpen=false;
fStartPhi = 0;
fDeltaPhi = kTwoPi;
} else {
//
// Convert phi into our convention
//
fStartPhi = phiStart;
while (fStartPhi < 0)
fStartPhi += kTwoPi;
}
// Calculate RMax of Polycone in order to determine convexity of sections
//
Precision RMaxextent = rOuterR[0];
Vector<Precision> newROuter, newZPlane, newRInner;
fContinuityOverAll &= CheckContinuity(rOuterR, rInnerR, zPlaneR, newROuter, newRInner, newZPlane);
fConvexityPossible &= (newRInner[0] == 0.);
Precision startRmax = newROuter[0];
for (unsigned int j = 1; j < newROuter.size(); j++) {
fEqualRmax &= (startRmax == newROuter[j]);
startRmax = newROuter[j];
fConvexityPossible &= (newRInner[j] == 0.);
}
for (unsigned int j = 1; j < numZPlanes; j++) {
if (rOuterR[j] > RMaxextent) RMaxextent = rOuterR[j];
if (rInnerR[j] > rOuterR[j]) {
#ifndef VECCORE_CUDA
std::cerr << "Cannot create Polycone with rInner > rOuter for the same Z"
<< "\n"
<< " rInner > rOuter for the same Z !\n"
<< " rMin[" << j << "] = " << rInner[j] << " -- rMax[" << j << "] = " << rOuter[j];
#endif
}
}
Precision prevZ = zPlaneR[0], prevRmax = 0, prevRmin = 0;
int dirZ = 1;
if (zPlaneR[1] < zPlaneR[0]) dirZ = -1;
for (unsigned int i = 0; i < numZPlanes; ++i) {
if ((i < numZPlanes - 1) && (zPlaneR[i] == zPlaneR[i + 1])) {
if ((rInnerR[i] > rOuterR[i + 1]) || (rInnerR[i + 1] > rOuterR[i])) {
#ifndef VECCORE_CUDA
std::cerr << "Cannot create a Polycone with no contiguous segments." << std::endl
<< " Segments are not contiguous !" << std::endl
<< " rMin[" << i << "] = " << rInnerR[i] << " -- rMax[" << i + 1
<< "] = " << rOuterR[i + 1] << std::endl
<< " rMin[" << i + 1 << "] = " << rInnerR[i + 1] << " -- rMax[" << i
<< "] = " << rOuterR[i];
#endif
}
}
Precision rMin = rInnerR[i];
Precision rMax = rOuterR[i];
Precision z = zPlaneR[i];
// i has to be at least one to complete a section
if (i > 0) {
// GL: I had to add kTolerance here, otherwise this polycone would get an
// extra 0-length ZSection on the GPU -- see VECGEOM-578
if (((z > prevZ + kTolerance) && (dirZ > 0)) || ((z < prevZ - kTolerance) && (dirZ < 0))) {
if (dirZ * (z - prevZ) < 0) {
#ifndef VECCORE_CUDA
std::cerr << "Cannot create a Polycone with different Z directions.Use GenericPolycone." << std::endl
<< " ZPlane is changing direction !" << std::endl
<< " zPlane[0] = " << zPlaneR[0] << " -- zPlane[1] = " << zPlaneR[1] << std::endl
<< " zPlane[" << i - 1 << "] = " << zPlaneR[i - 1] << " -- rPlane[" << i << "] = " << zPlaneR[i];
#endif
}
ConeStruct<Precision> *solid;
Precision dz = (z - prevZ) / 2;
solid = new ConeStruct<Precision>(prevRmin, prevRmax, rMin, rMax, dz, phiStart, phiTotal);
fZs.push_back(z);
int zi = fZs.size() - 1;
Precision shift = fZs[zi - 1] + 0.5 * (fZs[zi] - fZs[zi - 1]);
PolyconeSection section;
section.fShift = shift;
section.fSolid = solid;
section.fConvex = !((rMax < prevRmax) || (rMax < RMaxextent) || (prevRmax < RMaxextent));
fSections.push_back(section);
}
} else { // for i == 0 just push back first z plane
fZs.push_back(z);
}
prevZ = z;
prevRmin = rMin;
prevRmax = rMax;
}
fOriginal_parameters = new PolyconeHistorical(numZPlanes);
fOriginal_parameters->fHStart_angle = phiStart;
fOriginal_parameters->fHOpening_angle = phiTotal;
for (unsigned int i = 0; i < numZPlanes; i++) {
fOriginal_parameters->fHZ_values[i] = zPlaneR[i];
fOriginal_parameters->fHRmin[i] = rInnerR[i];
fOriginal_parameters->fHRmax[i] = rOuterR[i];
}
delete[] zPlaneR;
delete[] rInnerR;
delete[] rOuterR;
}
VECCORE_ATT_HOST_DEVICE
PolyconeHistorical *GetOriginalParameters() const { return fOriginal_parameters; }
VECCORE_ATT_HOST_DEVICE unsigned int GetNz() const { return fNz; }
VECCORE_ATT_HOST_DEVICE
int GetNSections() const { return fSections.size(); }
VECCORE_ATT_HOST_DEVICE
int GetSectionIndex(Precision zposition) const
{
// TODO: consider binary search
// TODO: consider making these comparisons tolerant in case we need it
if (zposition < fZs[0]) return -1;
for (unsigned int i = 0; i < fSections.size(); ++i) {
if (zposition >= fZs[i] && zposition <= fZs[i + 1]) return i;
}
return -2;
}
VECCORE_ATT_HOST_DEVICE
PolyconeSection const &GetSection(Precision zposition) const
{
// TODO: consider binary search
int i = GetSectionIndex(zposition);
return fSections[i];
}
VECCORE_ATT_HOST_DEVICE
// GetSection if index is known
PolyconeSection const &GetSection(int index) const { return fSections[index]; }
VECCORE_ATT_HOST_DEVICE
Precision GetRminAtPlane(int index) const
{
int nsect = fSections.size();
assert(index >= 0 && index <= nsect);
if (index == nsect)
return fSections[index - 1].fSolid->fRmin2; // GetRmin2();
else
return fSections[index].fSolid->fRmin1; // GetRmin1();
}
VECCORE_ATT_HOST_DEVICE
Precision GetRmaxAtPlane(int index) const
{
int nsect = fSections.size();
assert(index >= 0 || index <= nsect);
if (index == nsect)
return fSections[index - 1].fSolid->fRmax2; // GetRmax2();
else
return fSections[index].fSolid->fRmax1; // GetRmax1();
}
VECCORE_ATT_HOST_DEVICE
Precision GetZAtPlane(unsigned int index) const
{
assert(index <= fSections.size());
return fZs[index];
}
VECCORE_ATT_HOST_DEVICE
void SetAndCheckSPhiAngle(Precision sPhi)
{
// Ensure fSphi in 0-2PI or -2PI-0 range if shape crosses 0
if (sPhi < 0) {
fStartPhi = kTwoPi - std::fmod(std::fabs(sPhi), kTwoPi);
} else {
fStartPhi = std::fmod(sPhi, kTwoPi);
}
if (fStartPhi + fDeltaPhi > kTwoPi) {
fStartPhi -= kTwoPi;
}
// Update Wedge
fPhiWedge.SetStartPhi(fStartPhi);
}
VECCORE_ATT_HOST_DEVICE
void SetAndCheckDPhiAngle(Precision dPhi)
{
if (dPhi >= kTwoPi - 0.5 * kAngTolerance) {
fDeltaPhi = kTwoPi;
fStartPhi = 0;
} else {
if (dPhi > 0) {
fDeltaPhi = dPhi;
} else {
// std::ostringstream message;
// message << "Invalid dphi.\n"
// << "Negative or zero delta-Phi (" << dPhi << ")\n";
// std::cout<<"UnplacedTube::CheckDPhiAngle(): Fatal error: "<< message.str().c_str() <<"\n";
}
}
// Update Wedge
fPhiWedge.SetDeltaPhi(fDeltaPhi);
}
VECCORE_ATT_HOST_DEVICE
PolyconeStruct() {}
};
} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom
#endif
|