1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
#ifndef VECGEOM_POLYGONAL_SHELL_H
#define VECGEOM_POLYGONAL_SHELL_H
#include "VecGeom/base/Global.h"
#include "VecGeom/volumes/PlanarPolygon.h"
namespace vecgeom {
VECGEOM_DEVICE_FORWARD_DECLARE(class PolygonalShell;);
VECGEOM_DEVICE_DECLARE_CONV(class, PolygonalShell);
inline namespace VECGEOM_IMPL_NAMESPACE {
// a set of z-axis aligned rectangles
// looking from the z - direction the rectangles form a convex or concave polygon
class PolygonalShell : AlignedBase {
private:
// the polygon (with friend access)
PlanarPolygon fPolygon;
Precision fLowerZ; // lower z plane
Precision fUpperZ; // upper z plane
friend class SimpleExtruPolygon;
friend struct SExtruImplementation;
friend class UnplacedSExtruVolume;
public:
VECCORE_ATT_HOST_DEVICE
PolygonalShell() : fPolygon() {}
VECCORE_ATT_HOST_DEVICE
PolygonalShell(int nvertices, Precision *x, Precision *y, Precision lowerz, Precision upperz)
: fPolygon(nvertices, x, y), fLowerZ(lowerz), fUpperZ(upperz)
{
}
VECCORE_ATT_HOST_DEVICE
void Init(int nvertices, Precision *x, Precision *y, Precision lowerz, Precision upperz)
{
fPolygon.Init(nvertices, x, y);
fLowerZ = lowerz;
fUpperZ = upperz;
}
// the area of the shell ( does not include the area of the planar polygon )
VECCORE_ATT_HOST_DEVICE
Precision SurfaceArea() const
{
const auto kS = fPolygon.fVertices.size();
Precision area(0.);
for (size_t i = 0; i < kS; ++i) {
// vertex lengh x (fUpperZ - fLowerZ)
area += fPolygon.fLengthSqr[i];
}
return std::sqrt(area) * (fUpperZ - fLowerZ);
}
VECCORE_ATT_HOST_DEVICE
PlanarPolygon const &GetPolygon() const { return fPolygon; }
VECCORE_ATT_HOST_DEVICE
Precision GetLowerZ() const { return fLowerZ; }
VECCORE_ATT_HOST_DEVICE
Precision GetUpperZ() const { return fUpperZ; }
template <typename Real_v>
VECCORE_ATT_HOST_DEVICE
void Extent(Vector3D<Real_v> &aMin, Vector3D<Real_v> &aMax) const
{
aMin[0] = Real_v(fPolygon.GetMinX());
aMin[1] = Real_v(fPolygon.GetMinY());
aMin[2] = Real_v(fLowerZ);
aMax[0] = Real_v(fPolygon.GetMaxX());
aMax[1] = Real_v(fPolygon.GetMaxY());
aMax[2] = Real_v(fUpperZ);
}
template <typename Real_v>
VECCORE_ATT_HOST_DEVICE
Real_v DistanceToIn(Vector3D<Real_v> const &point, Vector3D<Real_v> const &dir) const
{
return fPolygon.IsConvex() ? DistanceToInConvex(point, dir) : DistanceToInConcave(point, dir);
}
template <typename Real_v>
VECCORE_ATT_HOST_DEVICE
Real_v DistanceToInConvex(Vector3D<Real_v> const &point, Vector3D<Real_v> const &dir) const
{
using Bool_v = vecCore::Mask_v<Real_v>;
Bool_v done(false);
Real_v result(kInfLength);
const auto S = fPolygon.fVertices.size();
for (size_t i = 0; i < S; ++i) { // side/rectangle index
// approaching from right side?
// under the assumption that surface normals points "inwards"
const Real_v proj = fPolygon.fA[i] * dir.x() + fPolygon.fB[i] * dir.y();
const Bool_v sidecorrect = proj >= -kTolerance;
if (vecCore::MaskEmpty(sidecorrect)) {
continue;
}
// the distance to the plane (specialized for fNormalsZ == 0)
const Real_v pdist = fPolygon.fA[i] * point.x() + fPolygon.fB[i] * point.y() + fPolygon.fD[i];
const Bool_v moving_away = pdist > kTolerance;
if (vecCore::MaskFull(moving_away)) {
continue;
}
const Real_v dist = -pdist / NonZero(proj);
// propagate to plane (first just z)
const Real_v zInters(point.z() + dist * dir.z());
const Bool_v zRangeOk = (zInters <= fUpperZ) && (zInters >= fLowerZ);
if (!vecCore::MaskEmpty(zRangeOk)) {
// check intersection with rest of rectangle
const Real_v xInters(point.x() + dist * dir.x());
const Real_v yInters(point.y() + dist * dir.y());
// we could already check if intersection within the known extent
const Bool_v intersects = fPolygon.OnSegment<Real_v, Precision, Bool_v>(i, xInters, yInters);
vecCore::MaskedAssign(result, !done && intersects, dist);
done |= intersects;
}
if (vecCore::MaskFull(done)) {
return result;
}
}
return result;
}
template <typename Real_v>
VECCORE_ATT_HOST_DEVICE
Real_v DistanceToInConcave(Vector3D<Real_v> const &point, Vector3D<Real_v> const &dir) const
{
using Bool_v = vecCore::Mask_v<Real_v>;
Real_v result(kInfLength);
const auto S = fPolygon.fVertices.size();
for (size_t i = 0; i < S; ++i) { // side/rectangle index
// approaching from right side?
// under the assumption that surface normals points "inwards"
const Real_v proj = fPolygon.fA[i] * dir.x() + fPolygon.fB[i] * dir.y();
const Bool_v sidecorrect = proj >= -kTolerance;
if (vecCore::MaskEmpty(sidecorrect)) {
continue;
}
// the distance to the plane (specialized for fNormalsZ == 0)
const Real_v pdist = fPolygon.fA[i] * point.x() + fPolygon.fB[i] * point.y() + fPolygon.fD[i];
const Bool_v moving_away = pdist > kTolerance;
if (vecCore::MaskFull(moving_away)) {
continue;
}
const Real_v dist = -pdist / NonZero(proj);
// propagate to plane (first just z)
const Real_v zInters(point.z() + dist * dir.z());
const Bool_v zRangeOk = (zInters <= fUpperZ) && (zInters >= fLowerZ);
if (!vecCore::MaskEmpty(zRangeOk)) {
// check intersection with rest of rectangle
const Real_v xInters(point.x() + dist * dir.x());
const Real_v yInters(point.y() + dist * dir.y());
// we could already check if intersection within the known extent
const Bool_v intersects = fPolygon.OnSegment<Real_v, Precision, Bool_v>(i, xInters, yInters);
vecCore__MaskedAssignFunc(result, intersects, Min(dist, result));
}
// if (vecCore::MaskFull(done)) {
// return result;
// }
}
return result;
}
// -- DistanceToOut --
template <typename Real_v>
VECCORE_ATT_HOST_DEVICE
Real_v DistanceToOut(Vector3D<Real_v> const &point, Vector3D<Real_v> const &dir) const
{
return fPolygon.IsConvex() ? DistanceToOutConvex(point, dir) : DistanceToOutConcave(point, dir);
}
// convex distance to out; checks for hits and aborts loop if hit found
// NOTE: this kernel is the same as DistanceToIn apart from the comparisons for early return
// these could become a template parameter
template <typename Real_v>
VECCORE_ATT_HOST_DEVICE
Real_v DistanceToOutConvex(Vector3D<Real_v> const &point, Vector3D<Real_v> const &dir) const
{
using Bool_v = vecCore::Mask_v<Real_v>;
Bool_v done(false);
Real_v result(kInfLength);
const auto S = fPolygon.fVertices.size();
for (size_t i = 0; i < S; ++i) { // side/rectangle index
// approaching from right side?
// under the assumption that surface normals points "inwards"
const Real_v proj = fPolygon.fA[i] * dir.x() + fPolygon.fB[i] * dir.y();
const Bool_v sidecorrect = proj <= kTolerance;
if (vecCore::MaskEmpty(sidecorrect)) {
continue;
}
// the distance to the plane (specialized for fNormalsZ == 0)
const Real_v pdist = fPolygon.fA[i] * point.x() + fPolygon.fB[i] * point.y() + fPolygon.fD[i];
const Bool_v moving_away = pdist < -kTolerance;
if (vecCore::MaskFull(moving_away)) {
continue;
}
const Real_v dist = -pdist / NonZero(proj);
// propagate to plane (first just z)
const Real_v zInters(point.z() + dist * dir.z());
const Bool_v zRangeOk = (zInters <= fUpperZ) && (zInters >= fLowerZ) && sidecorrect && !moving_away;
if (!vecCore::MaskEmpty(zRangeOk)) {
// check intersection with rest of rectangle
const Real_v xInters(point.x() + dist * dir.x());
const Real_v yInters(point.y() + dist * dir.y());
// we could already check if intersection within the known extent
const Bool_v intersects = fPolygon.OnSegment<Real_v, Precision, Bool_v>(i, xInters, yInters) && zRangeOk &&
(dist >= -Real_v(kTolerance));
vecCore::MaskedAssign(result, !done && intersects, dist);
done |= intersects;
}
if (vecCore::MaskFull(done)) {
return result;
}
}
return result;
}
// DistanceToOut for the concave case
// we should ideally combine this with the other kernel
template <typename Real_v>
VECCORE_ATT_HOST_DEVICE
Real_v DistanceToOutConcave(Vector3D<Real_v> const &point, Vector3D<Real_v> const &dir) const
{
using Bool_v = vecCore::Mask_v<Real_v>;
Real_v result(kInfLength);
const auto S = fPolygon.fVertices.size();
for (size_t i = 0; i < S; ++i) { // side/rectangle index
// approaching from right side?
// under the assumption that surface normals points "inwards"
const Real_v proj = fPolygon.fA[i] * dir.x() + fPolygon.fB[i] * dir.y();
const Bool_v sidecorrect = proj <= kTolerance;
if (vecCore::MaskEmpty(sidecorrect)) {
continue;
}
// the distance to the plane (specialized for fNormalsZ == 0)
const Real_v pdist = fPolygon.fA[i] * point.x() + fPolygon.fB[i] * point.y() + fPolygon.fD[i];
const Bool_v moving_away = pdist < -kTolerance;
if (vecCore::MaskFull(moving_away)) {
continue;
}
const Real_v dist = -pdist / NonZero(proj);
// propagate to plane (first just z)
const Real_v zInters(point.z() + dist * dir.z());
const Bool_v zRangeOk = (zInters <= fUpperZ) && (zInters >= fLowerZ) && sidecorrect && !moving_away;
if (!vecCore::MaskEmpty(zRangeOk)) {
// check intersection with rest of rectangle
const Real_v xInters(point.x() + dist * dir.x());
const Real_v yInters(point.y() + dist * dir.y());
// we could already check if intersection within the known extent
const Bool_v intersects = fPolygon.OnSegment<Real_v, Precision, Bool_v>(i, xInters, yInters) && zRangeOk &&
(dist >= -Real_v(kTolerance));
vecCore__MaskedAssignFunc(result, intersects, Min(dist, result));
// done |= intersects;
}
// if (vecCore::MaskFull(done)) {
// return result;
//}
}
return result;
}
}; // end class
#define SPECIALIZATION
#ifdef SPECIALIZATION
// template specialization for Distance functions
template <>
VECCORE_ATT_HOST_DEVICE
inline Precision PolygonalShell::DistanceToOutConvex(Vector3D<Precision> const &point,
Vector3D<Precision> const &dir) const
{
Precision dz = 0.5 * (fUpperZ - fLowerZ);
Precision pz = point.z() - 0.5 * (fLowerZ + fUpperZ);
const Precision safz = vecCore::math::Abs(pz) - dz;
if (safz > kTolerance) return -kTolerance;
Precision vz = dir.z();
Precision tmax = (vecCore::math::CopySign(dz, vz) - point.z()) / NonZero(vz);
const auto S = fPolygon.fVertices.size();
for (size_t i = 0; i < S; ++i) { // side/rectangle index
const Precision proj = -(fPolygon.fA[i] * dir.x() + fPolygon.fB[i] * dir.y());
// normals pointing inwards
const Precision pdist = -(fPolygon.fA[i] * point.x() + fPolygon.fB[i] * point.y() + fPolygon.fD[i]);
if (pdist > kTolerance) return -kTolerance;
if (proj > 0) {
const Precision dist = -pdist / NonZero(proj);
if (tmax > dist) tmax = dist;
}
}
return tmax;
}
// template specialization for Distance functions
template <>
VECCORE_ATT_HOST_DEVICE
inline Precision PolygonalShell::DistanceToInConvex(Vector3D<Precision> const &point,
Vector3D<Precision> const &dir) const
{
Precision dz = 0.5 * (fUpperZ - fLowerZ);
Precision pz = point.z() - 0.5 * (fLowerZ + fUpperZ);
if ((vecCore::math::Abs(pz) - dz) > -kTolerance && pz * dir.z() >= 0) return kInfLength;
const Precision invz = -1. / NonZero(dir.z());
const Precision ddz = (invz < 0) ? dz : -dz;
Precision tmin = (pz + ddz) * invz;
Precision tmax = (pz - ddz) * invz;
const auto S = fPolygon.fVertices.size();
for (size_t i = 0; i < S; ++i) { // side/rectangle index
const Precision proj = -(fPolygon.fA[i] * dir.x() + fPolygon.fB[i] * dir.y());
// normals pointing inwards
const bool moving_away = proj > -kTolerance;
// the distance to the plane (specialized for fNormalsZ == 0)
const Precision pdist = -(fPolygon.fA[i] * point.x() + fPolygon.fB[i] * point.y() + fPolygon.fD[i]);
const bool side_correct = pdist > -kTolerance;
if (side_correct) {
if (moving_away) return kInfLength;
const Precision dist = -pdist / NonZero(proj);
if (dist > tmin) tmin = dist;
} else if (moving_away) {
const Precision dist = -pdist / NonZero(proj);
if (dist < tmax) tmax = dist;
}
}
if (tmax < tmin + kTolerance) return kInfLength;
return tmin;
}
#endif
} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom
#endif
|