1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
|
/*
* PolyhedronStruct.h
*
* Created on: 09.12.2016
* Author: mgheata
*/
#ifndef VECGEOM_POLYHEDRONSTRUCT_H_
#define VECGEOM_POLYHEDRONSTRUCT_H_
#include <ostream>
#include <VecCore/VecCore>
#include "VecGeom/base/Vector3D.h"
#include "VecGeom/volumes/Quadrilaterals.h"
#include "VecGeom/volumes/Wedge_Evolution.h"
#include "VecGeom/base/Array.h"
#include "VecGeom/base/SOA3D.h"
#include "VecGeom/volumes/TubeStruct.h"
// These enums should be in the scope vecgeom::Polyhedron, but when used in the
// shape implementation helper instantiations, nvcc gets confused:
enum struct EInnerRadii { kFalse = -1, kGeneric = 0, kTrue = 1 };
enum struct EPhiCutout { kFalse = -1, kGeneric = 0, kTrue = 1, kLarge = 2 };
namespace vecgeom {
VECGEOM_DEVICE_FORWARD_DECLARE(struct ZSegment;);
VECGEOM_DEVICE_DECLARE_CONV(struct, ZSegment);
// Declare types shared by cxx and cuda.
namespace Polyhedron {
using ::EInnerRadii;
using ::EPhiCutout;
} // namespace Polyhedron
inline namespace VECGEOM_IMPL_NAMESPACE {
/// Represents one segment along the Z-axis, containing one or more sets of
/// quadrilaterals that represent the outer, inner and phi shells.
struct ZSegment {
Quadrilaterals outer; ///< Should always be non-empty.
Quadrilaterals phi; ///< Is empty if fHasPhiCutout is false.
Quadrilaterals inner; ///< Is empty hasInnerRadius is false.
VECCORE_ATT_HOST_DEVICE
bool hasInnerRadius() const { return inner.size() > 0; }
};
// a plain and lightweight struct to encapsulate data members of a polyhedron
template <typename T = double>
struct PolyhedronStruct {
int fSideCount; ///< Number of segments along phi.
bool fHasInnerRadii; ///< Has any Z-segments with an inner radius != 0.
bool fHasPhiCutout; ///< Has a cutout angle along phi.
bool fHasLargePhiCutout; ///< Phi cutout is larger than pi.
T fPhiStart; ///< Phi start in radians (input to constructor)
T fPhiDelta; ///< Phi delta in radians (input to constructor)
evolution::Wedge fPhiWedge; ///< Phi wedge
Array<ZSegment> fZSegments; ///< AOS'esque collections of quadrilaterals
Array<T> fZPlanes; ///< Z-coordinate of each plane separating segments
Array<T> fRMin; ///< Inner radii as specified in constructor.
Array<T> fRMax; ///< Outer radii as specified in constructor.
Array<bool> fSameZ; ///< Array of flags marking that the following plane is at same Z
SOA3D<T> fPhiSections; ///< Unit vectors marking the bounds between
/// phi segments, represented by planes
/// through the origin with the normal
/// point along the positive phi direction.
TubeStruct<T> fBoundingTube; ///< Tube enclosing the outer bounds of the
/// polyhedron. Used in Contains, Inside and
/// DistanceToIn.
T fBoundingTubeOffset; ///< Offset in Z of the center of the bounding
/// tube. Used as a quick substitution for
/// running a full transformation.
/// Internal structure to cache component surface areas per Z segment
struct AreaStruct {
Precision area = 0.; ///< Cached total surface area
Precision top_area = 0.; ///< Area of top surface
Precision bottom_area = 0.; ///< Area of top surface
Precision *outer = nullptr; ///< Array of surface areas for the auter part
Precision *inner = nullptr; ///< Array of surface areas for the inner part
Precision *phi = nullptr; ///< Array of surface areas for the phi part
AreaStruct(int nseg)
{
inner = new Precision[nseg];
outer = new Precision[nseg];
phi = new Precision[nseg];
}
VECCORE_ATT_HOST_DEVICE
~AreaStruct()
{
delete[] inner;
delete[] outer;
delete[] phi;
}
};
mutable AreaStruct *fAreaStruct = nullptr; ///< Cached surface area values
mutable Precision fCapacity = 0.; ///< Stored Capacity
// These data member and member functions are added for convexity detection
bool fContinuousInSlope;
bool fConvexityPossible;
bool fEqualRmax;
VECCORE_ATT_HOST_DEVICE
PolyhedronStruct()
: fSideCount(0), fHasInnerRadii(false), fHasPhiCutout(false), fHasLargePhiCutout(false), fPhiStart(0),
fPhiDelta(0), fPhiWedge(0., 0.), fBoundingTube(0, 0, 0, 0, 0), fBoundingTubeOffset(0)
{
}
VECCORE_ATT_HOST_DEVICE
PolyhedronStruct(Precision phiStart, Precision phiDelta, const int sideCount, const int zPlaneCount,
Precision const zPlanes[], Precision const rMin[], Precision const rMax[])
: fSideCount(sideCount), fHasInnerRadii(false), fHasPhiCutout(phiDelta < kTwoPi),
fHasLargePhiCutout(phiDelta < kPi), fPhiStart(NormalizeAngle<kScalar>(phiStart)),
fPhiDelta((phiDelta > kTwoPi) ? kTwoPi : phiDelta), fPhiWedge(fPhiDelta, fPhiStart),
fZSegments(zPlaneCount - 1), fZPlanes(zPlaneCount), fRMin(zPlaneCount), fRMax(zPlaneCount),
fPhiSections(sideCount + 1), fBoundingTube(0, 1, 1, fPhiStart, fPhiDelta), fContinuousInSlope(true),
fConvexityPossible(true), fEqualRmax(true)
{
// initialize polyhedron internals
Initialize(phiStart, phiDelta, sideCount, zPlaneCount, zPlanes, rMin, rMax);
}
PolyhedronStruct(Precision phiStart, Precision phiDelta, const int sideCount, const int verticesCount,
Precision const r[], Precision const z[])
: fSideCount(sideCount), fHasInnerRadii(false), fHasPhiCutout(phiDelta < kTwoPi),
fHasLargePhiCutout(phiDelta < kPi), fPhiStart(NormalizeAngle<kScalar>(phiStart)),
fPhiDelta((phiDelta > kTwoPi) ? kTwoPi : phiDelta), fPhiWedge(fPhiDelta, fPhiStart), fZSegments(), fZPlanes(),
fRMin(), fRMax(), fPhiSections(sideCount + 1), fBoundingTube(0, 1, 1, fPhiStart, fPhiDelta),
fContinuousInSlope(true), fConvexityPossible(true), fEqualRmax(true)
{
if (verticesCount < 3) throw std::runtime_error("A Polyhedron needs at least 3 (rz) vertices");
// Geant4-like construction (n = verticesCount). The rz section is described
// as a sequence of connected vertices (r[i], z[i]). We have to associate
// the vertices with (rmin, rmax, z) plane representation.
// detect if vertices are defined clockwise
Precision area = 0;
for (int i = 0; i < verticesCount; ++i) {
int j = (i + 1) % verticesCount;
area += r[i] * z[j] - r[j] * z[i];
}
bool cw = (area < 0);
int inc = cw ? -1 : 1;
Precision zt = z[0];
Precision zb = z[0];
// Find min/max on Z
for (int i = 0; i < verticesCount; ++i) {
if (z[i] > zt) zt = z[i];
if (z[i] < zb) zb = z[i];
}
// Add implicit vertices
Precision *rnew = new Precision[2 * verticesCount];
Precision *znew = new Precision[2 * verticesCount];
int verticesCount1 = 0;
for (int i0 = 0; i0 < verticesCount; ++i0) {
rnew[verticesCount1] = r[i0];
znew[verticesCount1++] = z[i0];
// Check if top/bottom vertex is singular
if (vecCore::math::Abs(z[i0] - zt) < kTolerance || vecCore::math::Abs(z[i0] - zb) < kTolerance) {
if (vecCore::math::Abs(z[i0] - z[(i0 + verticesCount - 1) % verticesCount]) > kTolerance &&
vecCore::math::Abs(z[i0] - z[(i0 + 1) % verticesCount]) > kTolerance) {
rnew[verticesCount1] = r[i0];
znew[verticesCount1++] = z[i0];
}
}
int i1 = (i0 + 1) % verticesCount;
Precision dz = z[i1] - z[i0];
if (vecCore::math::Abs(dz) < kTolerance) continue;
Precision zmin = vecCore::math::Min(z[i0], z[i1]);
Precision zmax = vecCore::math::Max(z[i0], z[i1]);
for (int j = 0; j < verticesCount - 2; ++j) {
// go backward
int k = (i0 - 1 - j + verticesCount) % verticesCount;
if (z[k] > zmin + kTolerance && z[k] < zmax - kTolerance) {
// Project the vertex on current segment to get a new vertex
Precision rp = r[i0] + (r[i1] - r[i0]) * (z[k] - z[i0]) / dz;
assert(rp >= 0);
// We need to insert point (rp, z[k]) after i1
rnew[verticesCount1] = rp;
znew[verticesCount1++] = z[k];
}
}
}
// detect index of outer vertex with minimum Z
int i0 = -1;
for (int i = 0; i < verticesCount1; ++i) {
if (znew[i] == zb) {
i0 = i;
break;
}
}
if (vecCore::math::Abs(zb - znew[(i0 + inc) % verticesCount1]) < kTolerance) i0 = (i0 + inc) % verticesCount1;
if (phiDelta > kTwoPi) phiDelta = kTwoPi;
Precision sidePhi = phiDelta / sideCount;
Precision cosHalfDeltaPhi = cos(0.5 * sidePhi);
// We count vertices starting from imin, making sure we move counter-clockwise
int Nz = verticesCount1 / 2;
Precision *rMin = new Precision[Nz];
Precision *rMax = new Precision[Nz];
Precision *zArg = new Precision[Nz];
for (int i = 0; i < Nz; ++i) {
// Current vertex index going always ccw from (rmin,zmin)
int j = (i0 + verticesCount1 + inc * i) % verticesCount1;
int jsim = (i0 + verticesCount1 + inc * (verticesCount1 - 1 - i)) % verticesCount1;
assert(znew[j] == znew[jsim]);
zArg[i] = znew[j];
rMax[i] = rnew[j] * cosHalfDeltaPhi;
rMin[i] = rnew[jsim] * cosHalfDeltaPhi;
assert(rMax[i] >= rMin[i] &&
"UnplPolycone ERROR: r[] provided has problems of the Rmax < Rmin type, please check!\n");
}
// Allocate arrays
fZSegments.Allocate(Nz - 1);
fZPlanes.Allocate(Nz);
fRMin.Allocate(Nz);
fRMax.Allocate(Nz);
// Delegate to full constructor
Initialize(phiStart, phiDelta, sideCount, Nz, zArg, rMin, rMax);
delete[] rnew;
delete[] znew;
delete[] rMin;
delete[] rMax;
delete[] zArg;
}
VECCORE_ATT_HOST_DEVICE
~PolyhedronStruct() { delete fAreaStruct; }
VECCORE_ATT_HOST_DEVICE
bool CheckContinuityInSlope(const Precision rOuter[], const Precision zPlane[], const unsigned int nz)
{
Precision prevSlope = kInfLength;
for (unsigned int j = 0; j < nz - 1; ++j) {
if (zPlane[j + 1] == zPlane[j]) {
if (rOuter[j + 1] != rOuter[j]) return false;
} else {
Precision currentSlope = (rOuter[j + 1] - rOuter[j]) / (zPlane[j + 1] - zPlane[j]);
if (currentSlope > prevSlope) return false;
prevSlope = currentSlope;
}
}
return true;
}
// This method does the proper construction of planes and segments.
// Used by multiple constructors.
VECCORE_ATT_HOST_DEVICE
void Initialize(Precision phiStart, Precision phiDelta, const int sideCount, const int zPlaneCount,
Precision const zPlanes[], Precision const rMin[], Precision const rMax[])
{
typedef Vector3D<Precision> Vec_t;
// Sanity check of input parameters
assert(zPlaneCount > 1);
assert(fSideCount > 0);
copy(zPlanes, zPlanes + zPlaneCount, &fZPlanes[0]);
copy(rMin, rMin + zPlaneCount, &fRMin[0]);
copy(rMax, rMax + zPlaneCount, &fRMax[0]);
fSameZ.Allocate(zPlaneCount);
Precision startRmax = rMax[0];
for (int i = 0; i < zPlaneCount; i++) {
fConvexityPossible &= (rMin[i] == 0.);
fEqualRmax &= (startRmax == rMax[i]);
fSameZ[i] = false;
if (i > 0 && i < zPlaneCount - 1 && fZPlanes[i] == fZPlanes[i + 1]) fSameZ[i] = true;
}
fContinuousInSlope = CheckContinuityInSlope(rMax, zPlanes, zPlaneCount);
// Initialize segments
// sometimes there will be no quadrilaterals: for instance when
// rmin jumps at some z and rmax remains continouus
for (int i = 0; i < zPlaneCount - 1; ++i) {
// Z-planes must be monotonically increasing
assert(zPlanes[i] <= zPlanes[i + 1]);
bool hasInnerRadius = rMin[i] > 0 || rMin[i + 1] > 0;
int multiplier = (zPlanes[i] == zPlanes[i + 1] && rMax[i] == rMax[i + 1]) ? 0 : 1;
// create quadrilaterals in a predefined place with placement new
new (&fZSegments[i].outer) Quadrilaterals(sideCount * multiplier);
// no phi segment here if degenerate z;
if (fHasPhiCutout) {
multiplier = (zPlanes[i] == zPlanes[i + 1]) ? 0 : 1;
new (&fZSegments[i].phi) Quadrilaterals(2 * multiplier);
}
multiplier = (zPlanes[i] == zPlanes[i + 1] && rMin[i] == rMin[i + 1]) ? 0 : 1;
if (hasInnerRadius && multiplier > 0) {
new (&fZSegments[i].inner) Quadrilaterals(sideCount * multiplier);
fHasInnerRadii = true;
} else {
new (&fZSegments[i].inner) Quadrilaterals(0);
}
}
// Compute the cylindrical coordinate phi along which the corners are placed
assert(phiDelta > 0);
phiStart = NormalizeAngle<kScalar>(phiStart);
if (phiDelta > kTwoPi) phiDelta = kTwoPi;
Precision sidePhi = phiDelta / sideCount;
auto getPhi = [&](int side) {
if (!fHasPhiCutout && side == sideCount) {
side = 0;
}
return NormalizeAngle<kScalar>(phiStart + side * sidePhi);
};
for (int i = 0, iMax = sideCount + 1; i < iMax; ++i) {
Vector3D<Precision> cornerVector = Vec_t::FromCylindrical(1., getPhi(i), 0).Normalized().FixZeroes();
fPhiSections.set(i, cornerVector.Normalized().Cross(Vector3D<Precision>(0, 0, -1)));
}
// Specified radii are to the sides, not to the corners. Change these values,
// as corners and not sides are used to build the structure
Precision cosHalfDeltaPhi = cos(0.5 * sidePhi);
Precision innerRadius = kInfLength, outerRadius = -kInfLength;
for (int i = 0; i < zPlaneCount; ++i) {
// Use distance to side for minimizing inner radius of bounding tube
if (rMin[i] < innerRadius) innerRadius = rMin[i];
// rMin[i] /= cosHalfDeltaPhi;
// rMax[i] /= cosHalfDeltaPhi;
assert(rMin[i] >= 0 && rMax[i] >= 0);
// Use distance to corner for minimizing outer radius of bounding tube
if (rMax[i] > outerRadius) outerRadius = rMax[i];
}
// need to convert from distance to planes to real radius in case of outerradius
// the inner radius of the bounding tube is given by min(rMin[])
outerRadius /= cosHalfDeltaPhi;
// Create bounding tube with biggest outer radius and smallest inner radius
Precision boundingTubeZ = 0.5 * (zPlanes[zPlaneCount - 1] - zPlanes[0]) + kTolerance;
// Make bounding tube phi range a bit larger to contain all points on phi boundaries
const Precision kPhiTolerance = 100 * kTolerance;
// The increase in the angle has to be large enough to contain most of
// kSurface points. There will be some points close to the Z axis which will
// not be contained. The value is empirical to satisfy ShapeTester
Precision boundsPhiStart = !fHasPhiCutout ? 0 : phiStart - kPhiTolerance;
Precision boundsPhiDelta = !fHasPhiCutout ? kTwoPi : phiDelta + 2 * kPhiTolerance;
// correct inner and outer Radius with conversion factor
// innerRadius /= cosHalfDeltaPhi;
// outerRadius /= cosHalfDeltaPhi;
fBoundingTube = TubeStruct<Precision>(innerRadius - kHalfTolerance, outerRadius + kHalfTolerance, boundingTubeZ,
boundsPhiStart, boundsPhiDelta);
// The offset has to match the middle of the polyhedron
fBoundingTubeOffset = 0.5 * (zPlanes[0] + zPlanes[zPlaneCount - 1]);
auto getVertexImpl = [&](Precision const r[], int i, int j) {
if (!fHasPhiCutout && j == sideCount) {
j = 0;
}
return Vec_t::FromCylindrical(r[i] / cosHalfDeltaPhi, getPhi(j), zPlanes[i]).FixZeroes();
};
auto getInnerVertex = [&](int i, int j) { return getVertexImpl(rMin, i, j); };
auto getOuterVertex = [&](int i, int j) { return getVertexImpl(rMax, i, j); };
// Build segments by drawing quadrilaterals between vertices
for (int iPlane = 0; iPlane < zPlaneCount - 1; ++iPlane) {
auto WrongNormal = [](Vector3D<Precision> const &normal, Vector3D<Precision> const &corner) {
return normal[0] * corner[0] + normal[1] * corner[1] < 0;
};
// Draw the regular quadrilaterals along phi
for (int iSide = 0; iSide < fZSegments[iPlane].outer.size(); ++iSide) {
fZSegments[iPlane].outer.Set(
iSide, getOuterVertex(iPlane, iSide), getOuterVertex(iPlane, iSide + 1),
getOuterVertex(iPlane + 1, iSide + 1), getOuterVertex(iPlane + 1, iSide));
// Normal has to point away from Z-axis
if (WrongNormal(fZSegments[iPlane].outer.GetNormal(iSide), getOuterVertex(iPlane, iSide))) {
fZSegments[iPlane].outer.FlipSign(iSide);
}
}
for (int iSide = 0; iSide < fZSegments[iPlane].inner.size(); ++iSide) {
fZSegments[iPlane].inner.Set(
iSide, getInnerVertex(iPlane, iSide), getInnerVertex(iPlane, iSide + 1),
getInnerVertex(iPlane + 1, iSide + 1), getInnerVertex(iPlane + 1, iSide));
// Normal has to point away from Z-axis
if (WrongNormal(fZSegments[iPlane].inner.GetNormal(iSide), getInnerVertex(iPlane, iSide))) {
fZSegments[iPlane].inner.FlipSign(iSide);
}
}
if (fHasPhiCutout && fZSegments[iPlane].phi.size() == 2) {
// If there's a phi cutout, draw two quadrilaterals connecting the four
// corners (two inner, two outer) of the first and last phi coordinate,
// respectively
fZSegments[iPlane].phi.Set(0, getInnerVertex(iPlane, 0), getInnerVertex(iPlane + 1, 0),
getOuterVertex(iPlane + 1, 0), getOuterVertex(iPlane, 0));
// Make sure normal points backwards along phi
if (fZSegments[iPlane].phi.GetNormal(0).Dot(fPhiSections[0]) > 0) {
fZSegments[iPlane].phi.FlipSign(0);
}
fZSegments[iPlane].phi.Set(
1, getOuterVertex(iPlane, sideCount), getOuterVertex(iPlane + 1, sideCount),
getInnerVertex(iPlane + 1, sideCount), getInnerVertex(iPlane, sideCount));
// Make sure normal points forwards along phi
if (fZSegments[iPlane].phi.GetNormal(1).Dot(fPhiSections[fSideCount]) < 0) {
fZSegments[iPlane].phi.FlipSign(1);
}
}
} // End loop over segments
}
};
} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom
#endif
|