1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
|
/// \file Quadrilaterals.h
/// \author Johannes de Fine Licht (johannes.definelicht@cern.ch)
#ifndef VECGEOM_VOLUMES_QUADRILATERALS_H_
#define VECGEOM_VOLUMES_QUADRILATERALS_H_
#include "VecGeom/base/Global.h"
#include "VecGeom/base/Array.h"
#include "VecGeom/base/AOS3D.h"
#include "VecGeom/base/SOA3D.h"
#include "VecGeom/base/Vector3D.h"
#include "VecGeom/base/RNG.h"
#include "VecGeom/volumes/kernel/GenericKernels.h"
#include "VecGeom/volumes/Planes.h"
// Switches on/off explicit vectorization of algorithms using Vc
//#define VECGEOM_QUADRILATERALS_VC --> now done in CMakeFile
namespace vecgeom {
VECGEOM_DEVICE_FORWARD_DECLARE(class Quadrilaterals;);
VECGEOM_DEVICE_DECLARE_CONV(class, Quadrilaterals);
inline namespace VECGEOM_IMPL_NAMESPACE {
class Quadrilaterals {
private:
Planes fPlanes; ///< The planes in which the quadrilaterals lie.
Planes fSideVectors[4]; ///< Vectors pointing from a side constructed from two
/// corners to the origin, equivalent to
/// normal x (c1 - c0)
/// Used to check if an intersection is in bounds.
AOS3D<Precision> fCorners[4]; ///< Four corners of the quadrilaterals. Used
/// for bounds checking.
public:
typedef Planes Sides_t[4];
typedef AOS3D<Precision> Corners_t[4];
VECCORE_ATT_HOST_DEVICE
Quadrilaterals(int size);
VECCORE_ATT_HOST_DEVICE
~Quadrilaterals();
VECCORE_ATT_HOST_DEVICE
Quadrilaterals(Quadrilaterals const &other);
VECCORE_ATT_HOST_DEVICE
Quadrilaterals &operator=(Quadrilaterals const &other);
// returns the number of quadrilaterals ( planes ) stored in this container
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
int size() const;
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
Planes const &GetPlanes() const;
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
SOA3D<Precision> const &GetNormals() const;
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
Vector3D<Precision> GetNormal(int i) const;
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
Array<Precision> const &GetDistances() const;
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
Precision GetDistance(int i) const;
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
Sides_t const &GetSideVectors() const;
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
Corners_t const &GetCorners() const;
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
Precision GetTriangleArea(int index, int iCorner1, int iCorner2) const;
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
Precision GetQuadrilateralArea(int index) const;
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
Vector3D<Precision> GetPointOnTriangle(int index, int iCorner0, int iCorner1, int iCorner2) const;
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
Vector3D<Precision> GetPointOnFace(int index) const;
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
bool RayHitsQuadrilateral(int index, Vector3D<Precision> const &intersection) const
{
bool valid = true;
for (int j = 0; j < 4; ++j) {
valid &=
intersection.Dot(fSideVectors[j].GetNormal(index)) + fSideVectors[j].GetDistances()[index] >= -kTolerance;
if (vecCore::MaskEmpty(valid)) break;
}
return valid;
}
/// Sets the corners of a pre-existing quadrilateral.
/// \param corner0 First corner in counterclockwise order.
/// \param corner1 Second corner in counterclockwise order.
/// \param corner2 Third corner in counterclockwise order.
/// \param corner3 Fourth corner in counterclockwise order.
VECCORE_ATT_HOST_DEVICE
void Set(int index, Vector3D<Precision> const &corner0, Vector3D<Precision> const &corner1,
Vector3D<Precision> const &corner2, Vector3D<Precision> const &corner3);
/// Flips the sign of the normal and distance of the specified quadrilateral.
VECCORE_ATT_HOST_DEVICE
void FlipSign(int index);
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
vecCore::Mask_v<Real_v> Contains(Vector3D<Real_v> const &point) const;
template <typename Real_v, typename Inside_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
Inside_v Inside(Vector3D<Real_v> const &point) const;
template <typename Real_v, typename Inside_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
Inside_v Inside(Vector3D<Real_v> const &point, int i) const;
template <typename Real_v, bool behindPlanesT>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
Real_v DistanceToIn(Vector3D<Real_v> const &point, Vector3D<Real_v> const &direction) const;
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
Real_v DistanceToOut(Vector3D<Real_v> const &point, Vector3D<Real_v> const &direction, Precision zMin,
Precision zMax) const;
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
Real_v DistanceToOut(Vector3D<Real_v> const &point, Vector3D<Real_v> const &direction) const;
/// \param index Quadrilateral to compute distance to.
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
Precision ScalarDistanceSquared(int index, Vector3D<Precision> const &point) const;
VECCORE_ATT_HOST_DEVICE
void Print() const;
}; // end of class declaration
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
int Quadrilaterals::size() const
{
return fPlanes.size();
}
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
Planes const &Quadrilaterals::GetPlanes() const
{
return fPlanes;
}
VECCORE_ATT_HOST_DEVICE
SOA3D<Precision> const &Quadrilaterals::GetNormals() const
{
return fPlanes.GetNormals();
}
VECCORE_ATT_HOST_DEVICE
Vector3D<Precision> Quadrilaterals::GetNormal(int i) const
{
return fPlanes.GetNormal(i);
}
VECCORE_ATT_HOST_DEVICE
Array<Precision> const &Quadrilaterals::GetDistances() const
{
return fPlanes.GetDistances();
}
VECCORE_ATT_HOST_DEVICE
Precision Quadrilaterals::GetDistance(int i) const
{
return fPlanes.GetDistance(i);
}
VECCORE_ATT_HOST_DEVICE
Quadrilaterals::Sides_t const &Quadrilaterals::GetSideVectors() const
{
return fSideVectors;
}
VECCORE_ATT_HOST_DEVICE
Quadrilaterals::Corners_t const &Quadrilaterals::GetCorners() const
{
return fCorners;
}
VECCORE_ATT_HOST_DEVICE
Precision Quadrilaterals::GetTriangleArea(int index, int iCorner1, int iCorner2) const
{
Precision fArea = 0.;
Vector3D<Precision> vec1 = fCorners[iCorner1][index] - fCorners[0][index];
Vector3D<Precision> vec2 = fCorners[iCorner2][index] - fCorners[0][index];
fArea = 0.5 * (vec1.Cross(vec2)).Mag();
return fArea;
}
VECCORE_ATT_HOST_DEVICE
Precision Quadrilaterals::GetQuadrilateralArea(int index) const
{
Precision fArea = 0.;
fArea = GetTriangleArea(index, 1, 2) + GetTriangleArea(index, 2, 3);
return fArea;
}
VECCORE_ATT_HOST_DEVICE
Vector3D<Precision> Quadrilaterals::GetPointOnTriangle(int index, int iCorner0, int iCorner1, int iCorner2) const
{
Precision r1 = RNG::Instance().uniform(0.0, 1.0);
Precision r2 = RNG::Instance().uniform(0.0, 1.0);
if (r1 + r2 > 1.) {
r1 = 1. - r1;
r2 = 1. - r2;
}
Vector3D<Precision> vec1 = fCorners[iCorner1][index] - fCorners[iCorner0][index];
Vector3D<Precision> vec2 = fCorners[iCorner2][index] - fCorners[iCorner0][index];
return fCorners[iCorner0][index] + r1 * vec1 + r2 * vec2;
}
VECCORE_ATT_HOST_DEVICE
Vector3D<Precision> Quadrilaterals::GetPointOnFace(int index) const
{
// Avoid degenerated surfaces
int nvert = 0;
int iCorners[4];
for (int i = 0; i < 4; ++i) {
if ((fCorners[(i + 1) % 4][index] - fCorners[i % 4][index]).Mag2() > kTolerance) {
iCorners[nvert++] = i;
}
}
if (nvert == 1) return fCorners[0][index];
if (nvert == 2) return GetPointOnTriangle(index, iCorners[0], iCorners[0], iCorners[1]);
if (nvert == 3) return GetPointOnTriangle(index, iCorners[0], iCorners[1], iCorners[2]);
Precision choice = RNG::Instance().uniform(0, 1.0);
if (choice < 0.5) {
return GetPointOnTriangle(index, 0, 1, 2);
} else {
return GetPointOnTriangle(index, 0, 2, 3);
}
}
template <typename Real_v>
VECCORE_ATT_HOST_DEVICE
vecCore::Mask_v<Real_v> Quadrilaterals::Contains(Vector3D<Real_v> const &point) const
{
return fPlanes.Contains<Real_v>(point);
}
template <typename Real_v, typename Inside_v>
VECCORE_ATT_HOST_DEVICE
Inside_v Quadrilaterals::Inside(Vector3D<Real_v> const &point) const
{
return fPlanes.Inside<Real_v, Inside_v>(point);
}
template <typename Real_v, typename Inside_v>
VECCORE_ATT_HOST_DEVICE
Inside_v Quadrilaterals::Inside(Vector3D<Real_v> const &point, int i) const
{
return fPlanes.Inside<Real_v, Inside_v>(point, i);
}
namespace {
template <class Real_v>
struct AcceleratedDistanceToIn {
template <bool behindPlanesT>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void VectorLoop(int & /*i*/, const int /*n*/, Planes const & /*planes*/, Planes const (&/*sideVectors*/)[4],
Vector3D<Real_v> const & /*point*/, Vector3D<Real_v> const & /*direction*/,
Real_v & /*distance*/)
{
// Do nothing if not scalar backend
return;
}
};
#if defined(VECGEOM_VC) && defined(VECGEOM_QUADRILATERALS_VC)
template <>
struct AcceleratedDistanceToIn<Precision> {
template <bool behindPlanesT>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void VectorLoop(int &i, const int n, Planes const &planes, Planes const (&sideVectors)[4],
Vector3D<Precision> const &point, Vector3D<Precision> const &direction, Precision &distance)
{
// Explicitly vectorize over quadrilaterals using Vc
for (; i <= n - kVectorSize; i += kVectorSize) {
Vector3D<VcPrecision> plane(VcPrecision(planes.GetNormals().x() + i), VcPrecision(planes.GetNormals().y() + i),
VcPrecision(planes.GetNormals().z() + i));
VcPrecision dPlane(&planes.GetDistances()[0] + i);
VcPrecision distanceTest = plane.Dot(point) + dPlane;
// Check if the point is in front of/behind the plane according to the template parameter
VcBool valid = Flip<behindPlanesT>::FlipSign(distanceTest) > -kTolerance;
if (vecCore::MaskEmpty(valid)) continue;
VcPrecision directionProjection = plane.Dot(direction);
valid &= Flip<!behindPlanesT>::FlipSign(directionProjection) > 0;
if (vecCore::MaskEmpty(valid)) continue;
VcPrecision tiny = Vc::copysign(VcPrecision(1E-20), directionProjection);
distanceTest /= -(directionProjection + tiny);
Vector3D<VcPrecision> intersection = Vector3D<VcPrecision>(direction) * distanceTest + point;
for (int j = 0; j < 4; ++j) {
Vector3D<VcPrecision> sideVector(VcPrecision(sideVectors[j].GetNormals().x() + i),
VcPrecision(sideVectors[j].GetNormals().y() + i),
VcPrecision(sideVectors[j].GetNormals().z() + i));
VcPrecision dSide(&sideVectors[j].GetDistances()[i]);
valid &= sideVector.Dot(intersection) + dSide >= -kTolerance;
// Where is your god now
if (vecCore::MaskEmpty(valid)) goto distanceToInVcContinueOuter;
}
// If a hit is found, the algorithm can return, since only one side can
// be hit for a convex set of quadrilaterals
distanceTest(!valid) = InfinityLength<Precision>();
distance = Max(distanceTest.min(), Precision(0.));
i = n;
return;
// Continue label of outer loop
distanceToInVcContinueOuter:;
}
return;
}
};
#endif
} // End anonymous namespace
template <typename Real_v, bool behindPlanesT>
VECCORE_ATT_HOST_DEVICE
Real_v Quadrilaterals::DistanceToIn(Vector3D<Real_v> const &point, Vector3D<Real_v> const &direction) const
{
// Looks for the shortest distance to one of the quadrilaterals.
// The algorithm projects the position and direction onto the plane of the
// quadrilateral, determines the intersection point, then checks if this point
// is within the bounds of the quadrilateral. There are many opportunities to
// perform early returns along the way, and the speed of this algorithm relies
// heavily on this property.
//
// The code below is optimized for the Polyhedron, and will return as soon as
// a valid intersection is found, since only one intersection will ever occur
// per Z-segment in Polyhedron case. If used in other contexts, a template
// parameter would have to be added to make a distinction.
using Bool_v = vecCore::Mask_v<Real_v>;
Real_v bestDistance = InfinityLength<Real_v>();
int i = 0;
const int n = size();
AcceleratedDistanceToIn<Real_v>::template VectorLoop<behindPlanesT>(i, n, fPlanes, fSideVectors, point, direction,
bestDistance);
// TODO: IN CASE QUADRILATERALS ARE PERPENDICULAR TO Z WE COULD SAVE MANY DIVISIONS
for (; i < n; ++i) {
Vector3D<Precision> normal = fPlanes.GetNormal(i);
Real_v distance = point.Dot(normal) + fPlanes.GetDistance(i);
// Check if the point is in front of/behind the plane according to the
// template parameter
Bool_v valid = Flip<behindPlanesT>::FlipSign(distance) > -kTolerance;
if (vecCore::MaskEmpty(valid)) continue;
Real_v directionProjection = direction.Dot(normal);
valid &= Flip<!behindPlanesT>::FlipSign(directionProjection) > 0;
if (vecCore::MaskEmpty(valid)) continue;
distance /= -(directionProjection + CopySign(Real_v(1E-20), directionProjection));
Vector3D<Real_v> intersection = point + direction * distance;
for (int j = 0; j < 4; ++j) {
valid &= intersection.Dot(fSideVectors[j].GetNormal(i)) + fSideVectors[j].GetDistances()[i] >= -kTolerance;
if (vecCore::MaskEmpty(valid)) break;
}
vecCore::MaskedAssign(bestDistance, valid, distance);
// If all hits are found, the algorithm can return, since only one side can
// be hit for a convex set of quadrilaterals
if (vecCore::MaskFull(bestDistance < InfinityLength<Real_v>())) break;
}
return Max(Real_v(0.), bestDistance);
}
namespace {
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
void AcceleratedDistanceToOut(int & /*i*/, const int /*n*/, Planes const & /*planes*/,
Planes const (&/*sideVectors*/)[4], const Precision /*zMin*/, const Precision /*zMax*/,
Vector3D<Real_v> const & /*point*/, Vector3D<Real_v> const & /*direction*/,
Real_v & /*distance*/)
{
// Do nothing if the backend is not scalar
return;
}
#if defined(VECGEOM_VC) && defined(VECGEOM_QUADRILATERALS_VC)
template <>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
void AcceleratedDistanceToOut<Precision>(int &i, const int n, Planes const &planes, Planes const (&sideVectors)[4],
const Precision zMin, const Precision zMax, Vector3D<Precision> const &point,
Vector3D<Precision> const &direction, Precision &distance)
{
// Explicitly vectorize over quadrilaterals using Vc
for (; i <= n - kVectorSize; i += kVectorSize) {
Vector3D<VcPrecision> plane(VcPrecision(planes.GetNormals().x() + i), VcPrecision(planes.GetNormals().y() + i),
VcPrecision(planes.GetNormals().z() + i));
VcPrecision dPlane(&planes.GetDistances()[0] + i);
VcPrecision distanceTest = plane.Dot(point) + dPlane;
// Check if the point is behind the plane
VcBool valid = distanceTest < kTolerance;
if (vecCore::MaskEmpty(valid)) continue;
VcPrecision directionProjection = plane.Dot(direction);
// Because the point is behind the plane, the direction must be along the
// normal
valid &= directionProjection > 0;
if (vecCore::MaskEmpty(valid)) continue;
distanceTest /= -NonZero(directionProjection);
valid &= distanceTest < distance;
if (vecCore::MaskEmpty(valid)) continue;
if (zMin == zMax) { // need a careful treatment in case of degenerate Z planes
// in this case need proper hit detection
Vector3D<VcPrecision> intersection = Vector3D<VcPrecision>(direction) * distanceTest + point;
for (int j = 0; j < 4; ++j) {
Vector3D<VcPrecision> sideVector(VcPrecision(sideVectors[j].GetNormals().x() + i),
VcPrecision(sideVectors[j].GetNormals().y() + i),
VcPrecision(sideVectors[j].GetNormals().z() + i));
VcPrecision dSide(&sideVectors[j].GetDistances()[i]);
valid &= sideVector.Dot(intersection) + dSide >= -kTolerance;
// Where is your god now
if (vecCore::MaskEmpty(valid)) goto distanceToOutVcContinueOuter;
}
} else {
VcPrecision zProjection = distanceTest * direction[2] + point[2];
valid &= zProjection >= zMin && zProjection < zMax;
}
distanceToOutVcContinueOuter:
if (vecCore::MaskEmpty(valid)) continue;
distanceTest(!valid) = InfinityLength<Precision>();
distance = distanceTest.min();
}
distance = Max(Precision(0.), distance);
return;
}
#endif
} // End anonymous namespace
template <typename Real_v>
VECCORE_ATT_HOST_DEVICE
Real_v Quadrilaterals::DistanceToOut(Vector3D<Real_v> const &point, Vector3D<Real_v> const &direction, Precision zMin,
Precision zMax) const
{
// The below computes the distance to the quadrilaterals similar to
// DistanceToIn, but is optimized for Polyhedron, and as such can assume that
// the quadrilaterals form a convex shell, and that the shortest distance to
// one of the quadrilaterals will indeed be an intersection. The exception to
// this is if the point leaves the Z-bounds specified in the input parameters.
// If used for another purpose than Polyhedron, DistanceToIn should be used if
// the set of quadrilaterals is not convex.
using Bool_v = vecCore::Mask_v<Real_v>;
Real_v bestDistance = InfinityLength<Real_v>();
int i = 0;
const int n = size();
AcceleratedDistanceToOut<Real_v>(i, n, fPlanes, fSideVectors, zMin, zMax, point, direction, bestDistance);
for (; i < n; ++i) {
Vector3D<Precision> normal = fPlanes.GetNormal(i);
Real_v distanceTest = point.Dot(normal) + fPlanes.GetDistance(i);
// Check if the point is behind the plane
Bool_v valid = distanceTest < kTolerance;
if (vecCore::MaskEmpty(valid)) continue;
Real_v directionProjection = direction.Dot(normal);
// Because the point is behind the plane, the direction must be along the
// normal
valid &= directionProjection > 0;
if (vecCore::MaskEmpty(valid)) continue;
distanceTest /= -directionProjection;
valid &= distanceTest < bestDistance;
if (vecCore::MaskEmpty(valid)) continue;
// this is a tricky test when zMin == zMax ( degenerate planes )
if (zMin == zMax) {
// in this case need proper hit detection
// valid &= zProjection >= zMin-1E-10 && zProjection <= zMax+1E-10;
Vector3D<Real_v> intersection = point + distanceTest * direction;
valid = RayHitsQuadrilateral(i, intersection);
} else {
Real_v zProjection = point[2] + distanceTest * direction[2];
valid &= (zProjection >= zMin - kTolerance) && (zProjection < zMax + kTolerance);
}
if (vecCore::MaskEmpty(valid)) continue;
vecCore::MaskedAssign(bestDistance, valid, distanceTest);
}
if (bestDistance > -kTolerance) bestDistance = Max(bestDistance, Precision(0.));
return bestDistance;
}
template <typename Real_v>
VECCORE_ATT_HOST_DEVICE
Real_v Quadrilaterals::DistanceToOut(Vector3D<Real_v> const &point, Vector3D<Real_v> const &direction) const
{
return DistanceToOut<Real_v>(point, direction, -InfinityLength<Real_v>(), InfinityLength<Real_v>());
}
VECCORE_ATT_HOST_DEVICE
Precision Quadrilaterals::ScalarDistanceSquared(int i, Vector3D<Precision> const &point) const
{
// This function is used by the safety algorithms to return the exact distance
// to the quadrilateral specified.
// The algorithm has three stages, trying first to return the shortest
// distance to the plane, then to the closest line segment, then to the
// closest corner.
assert(i < size());
Vector3D<Precision> planeNormal = fPlanes.GetNormal(i);
Precision distance = point.Dot(planeNormal) + fPlanes.GetDistance(i);
// Find the projection of the point on the quadrilateral "i". There was
// a bug below by adding a distance along the plane normal, while the
// correct version should subtract.
Vector3D<Precision> intersection = point - distance * planeNormal;
bool withinBound[4];
for (int j = 0; j < 4; ++j) {
// TODO: check if this autovectorizes. Otherwise it should be explicitly
// vectorized.
withinBound[j] = intersection[0] * fSideVectors[j].GetNormals().x(i) +
intersection[1] * fSideVectors[j].GetNormals().y(i) +
intersection[2] * fSideVectors[j].GetNormals().z(i) + fSideVectors[j].GetDistances()[i] >=
0;
}
if (withinBound[0] && withinBound[1] && withinBound[2] && withinBound[3]) {
return distance * distance;
}
// If the closest point is not on the plane itself, it must either be the
// distance to the closest line segment or to the closest corner.
// Since it is already known whether the point is to the left or right of
// each line, only one side and its corners have to be checked.
//
// above
// corner3_______corner0
// | |
// left | | right
// |_______|
// corner2 corner1
// below
//
// The assumption above that only one side has to be checked is not always
// true. If withinBound is false for 2 connected segments making an angle > 90
// and if the point projection on each of these segments is outside bounds,
// it can happen that the closest point is not the same depending on the
// checked segment. Something like below:
//
// Point x
//
// corner3 ___corner0
// | -
// | -
// |_______- corner1
//
// If the "above" segment is checked, corner3 will be selected closest, which
// is correct, but if the "right" segment gets checked, corner0 will be
// wrongly selected.
Precision distancesq = InfinityLength<Precision>();
for (int j = 0; j < 4; ++j) {
if (!withinBound[j]) {
distance = DistanceToLineSegmentSquared1<Precision>(fCorners[j][i], fCorners[(j + 1) % 4][i], point);
if (distance < distancesq) distancesq = distance;
}
}
return distancesq;
}
std::ostream &operator<<(std::ostream &os, Quadrilaterals const &quads);
} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom
#endif // VECGEOM_VOLUMES_QUADRILATERALS_H_
|