1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
|
// This file is part of VecGeom and is distributed under the
// conditions in the file LICENSE.txt in the top directory.
// For the full list of authors see CONTRIBUTORS.txt and `git log`.
/// \file volumes/TessellatedStruct.h
/// \author Mihaela Gheata
#ifndef VECGEOM_VOLUMES_TESSELLATEDCLUSTER_H_
#define VECGEOM_VOLUMES_TESSELLATEDCLUSTER_H_
#include <VecCore/VecCore>
#include "VecGeom/base/AlignedBase.h"
#include "VecGeom/base/Global.h"
#include "VecGeom/base/Vector3D.h"
#include "VecGeom/base/Vector.h"
#include "VecGeom/volumes/kernel/GenericKernels.h"
#include "Tile.h"
namespace vecgeom {
VECGEOM_DEVICE_DECLARE_CONV_TEMPLATE_1v_1t(class, TessellatedCluster, size_t, typename);
inline namespace VECGEOM_IMPL_NAMESPACE {
constexpr size_t kVecSize = vecCore::VectorSize<vecgeom::VectorBackend::Real_v>();
/** Structure used for vectorizing queries on groups of triangles.
The class represents a cluster of as many facets as the SIMD vector length for double
precision operations.
*/
template <size_t NVERT, typename Real_v>
class TessellatedCluster : public AlignedBase {
public:
/// Scalar double precision type
using T = typename vecCore::ScalarType<Real_v>::Type;
/// A facet of the cluster
using Facet_t = Tile<NVERT, T>;
Vector3D<Real_v> fNormals; ///< Normals to facet components
Real_v fDistances; ///< Distances from origin to facets
Vector3D<Real_v> fSideVectors[NVERT]; ///< Side vectors of the triangular facets
Vector3D<Real_v> fVertices[NVERT]; ///< Vertices stored in SIMD format
size_t fIfacets[kVecSize] = {}; ///< Real indices of facets
Facet_t *fFacets[kVecSize] = {}; ///< Array of scalar facets matching the ones in the cluster
Vector3D<T> fMinExtent; ///< Minimum extent
Vector3D<T> fMaxExtent; ///< Maximum extent
bool fConvex = false; ///< Convexity of the cluster with respect to the solid it belongs to
/// Deafult constructor.
VECCORE_ATT_HOST_DEVICE
TessellatedCluster()
{
fMinExtent.Set(InfinityLength<T>());
fMaxExtent.Set(-InfinityLength<T>());
}
/// Convexity getter
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
bool IsConvex() const { return fConvex; }
/// Method to calculate convexity
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
bool CalculateConvexity()
{
bool convex = true;
for (size_t i = 0; i < kVecSize; ++i)
convex &= fFacets[i]->fConvex;
return convex;
}
/// Getter for a vertex position.
/// @param [in] ifacet Facet index
/// @param[ in] ivert Vertex number
/// @param [out] vertex Vertex position
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
void GetVertex(size_t ifacet, size_t ivert, Vector3D<T> &vertex) const
{
vertex[0] = vecCore::Get(fVertices[ivert].x(), ifacet);
vertex[1] = vecCore::Get(fVertices[ivert].y(), ifacet);
vertex[2] = vecCore::Get(fVertices[ivert].z(), ifacet);
}
/// Getter for a facet of the cluster.
/// @param ifacet Facet index
/// @return Facet at given index
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
Facet_t *GetFacet(size_t ifacet) const { return fFacets[ifacet]; }
/// Calculate cluster sparsity
/// @param [out] nblobs Number of separate blobs
/// @param [out] nfacets Number of non-replicated facets
/// @return Dispersion as ratio between maximum facet size and maximum distance from a
/// facet to the cluster centroid
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
T ComputeSparsity(int &nblobs, int &nfacets)
{
// Find cluster center
Vector3D<T> clcenter;
for (unsigned ifacet = 0; ifacet < kVecSize; ++ifacet) {
clcenter += fFacets[ifacet]->fCenter;
}
clcenter /= kVecSize;
// Compute dispersion
T maxsize = 0, lensq = 0, dmax = 0;
for (unsigned ifacet = 0; ifacet < kVecSize; ++ifacet) {
T facetsizesq = 0;
for (int i = 0; i < 3; ++i) {
lensq = (fFacets[ifacet]->fVertices[i] - fFacets[ifacet]->fVertices[(i + 1) % 3]).Mag2();
if (lensq > facetsizesq) facetsizesq = lensq;
}
if (facetsizesq > maxsize) maxsize = facetsizesq;
lensq = (fFacets[ifacet]->fCenter - clcenter).Mag2();
if (lensq > dmax) dmax = lensq;
}
T dispersion = vecCore::math::Sqrt(dmax / maxsize);
// Compute number of distinct facets
nfacets = 0;
for (unsigned ifacet = 0; ifacet < kVecSize; ++ifacet) {
bool duplicate = false;
for (unsigned jfacet = ifacet + 1; jfacet < kVecSize; ++jfacet) {
if (fFacets[jfacet] == fFacets[ifacet]) {
duplicate = true;
break;
}
}
if (!duplicate) nfacets++;
}
// Compute number of blobs
nblobs = 0;
int cluster[kVecSize];
int ncl = 0;
bool used[kVecSize] = {false};
for (unsigned ifacet = 0; ifacet < kVecSize; ++ifacet) {
ncl = 0;
if (used[ifacet]) break;
cluster[ncl++] = ifacet;
used[ifacet] = true;
nblobs++;
// loop remaining facets
for (unsigned jfacet = ifacet + 1; jfacet < kVecSize; ++jfacet) {
if (used[jfacet]) break;
// loop facets already in sub-cluster
int nneighbors = 0;
for (int incl = 0; incl < ncl; ++incl) {
nneighbors += fFacets[jfacet]->IsNeighbor(*fFacets[cluster[incl]]);
}
if (nneighbors > ncl) {
cluster[ncl++] = jfacet;
used[jfacet] = true;
}
}
}
return dispersion;
}
/// Fill the components of the cluster with facet data
/// @param index Triangle index, equivalent to SIMD lane index
/// @param facet Triangle facet data
/// @param ifacet Facet index
VECCORE_ATT_HOST_DEVICE
void AddFacet(size_t index, Facet_t *facet, size_t ifacet)
{
// Fill the facet normal by accessing individual SIMD lanes
assert(index < kVecSize);
vecCore::Set(fNormals.x(), index, facet->fNormal.x());
vecCore::Set(fNormals.y(), index, facet->fNormal.y());
vecCore::Set(fNormals.z(), index, facet->fNormal.z());
// Fill the distance to the plane
vecCore::Set(fDistances, index, facet->fDistance);
// Compute side vectors and fill them using the store operation per SIMD lane
for (size_t ivert = 0; ivert < NVERT; ++ivert) {
Vector3D<T> c0 = facet->fVertices[ivert];
if (c0.x() < fMinExtent[0]) fMinExtent[0] = c0.x();
if (c0.y() < fMinExtent[1]) fMinExtent[1] = c0.y();
if (c0.z() < fMinExtent[2]) fMinExtent[2] = c0.z();
if (c0.x() > fMaxExtent[0]) fMaxExtent[0] = c0.x();
if (c0.y() > fMaxExtent[1]) fMaxExtent[1] = c0.y();
if (c0.z() > fMaxExtent[2]) fMaxExtent[2] = c0.z();
Vector3D<T> c1 = facet->fVertices[(ivert + 1) % NVERT];
Vector3D<T> sideVector = facet->fNormal.Cross(c1 - c0).Normalized();
vecCore::Set(fSideVectors[ivert].x(), index, sideVector.x());
vecCore::Set(fSideVectors[ivert].y(), index, sideVector.y());
vecCore::Set(fSideVectors[ivert].z(), index, sideVector.z());
vecCore::Set(fVertices[ivert].x(), index, c0.x());
vecCore::Set(fVertices[ivert].y(), index, c0.y());
vecCore::Set(fVertices[ivert].z(), index, c0.z());
}
fFacets[index] = facet;
fIfacets[index] = ifacet;
if (index == kVecSize - 1) CalculateConvexity();
}
// === Navigation functionality === //
/// Check if a scalar point is inside any of the cluster tiles
/// @param point Point position
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
bool Contains(Vector3D<T> point)
{
using Bool_v = vecCore::Mask<Real_v>;
Bool_v inside;
// Implicit conversion of point to Real_v
InsideCluster(point, inside);
return (!vecCore::MaskEmpty(inside));
}
/// Check if the points are inside some of the triangles. The points are assumed
/// to be already propagated on the triangle planes.
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
void InsideCluster(Vector3D<Real_v> const &point, typename vecCore::Mask<Real_v> &inside) const
{
using Bool_v = vecCore::Mask<Real_v>;
inside = Bool_v(true);
for (size_t i = 0; i < NVERT; ++i) {
Real_v saf = (point - fVertices[i]).Dot(fSideVectors[i]);
inside &= saf > Real_v(-kTolerance);
}
}
/// Compute distance from point to all facet planes. This is positive if the point is on
/// the outside halfspace, negative otherwise.
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
Real_v DistPlanes(Vector3D<Real_v> const &point) const { return (point.Dot(fNormals) + fDistances); }
/// Computes both distance to in and distance to out for the cluster
/// @param[in] point Point position
/// @param [in] direction Input direction
/// @param [out] distanceToIn Distance in case the point is outside
/// @param [out] distanceToOut Distance in case the point is inside
/// @param [out] isurfToIn Index of hit surface if point is outside
/// @param [out] isurfToOut Index of hit surface if point is inside
VECCORE_ATT_HOST_DEVICE
void DistanceToCluster(Vector3D<Real_v> const &point, Vector3D<Real_v> const &direction, T &distanceToIn,
T &distanceToOut, int &isurfToIn, int &isurfToOut) const
{
using Bool_v = vecCore::Mask<Real_v>;
distanceToIn = InfinityLength<T>();
distanceToOut = InfinityLength<T>();
// Real_v distToIn = InfinityLength<Real_v>();
// Real_v distToOut = InfinityLength<Real_v>();
isurfToIn = -1;
isurfToOut = -1;
// Vector3D<Real_v> pointv(point);
// Vector3D<Real_v> dirv(direction);
Real_v ndd = NonZero(direction.Dot(fNormals));
Real_v saf = DistPlanes(point);
Bool_v validToIn = ndd < Real_v(0.) && saf > Real_v(-kTolerance);
Bool_v validToOut = ndd > Real_v(0.) && saf < Real_v(kTolerance);
Real_v dist = -saf / ndd;
Vector3D<Real_v> pointv = point + dist * direction;
// Check if propagated points hit the triangles
Bool_v hit;
InsideCluster(pointv, hit);
validToIn &= hit;
validToOut &= hit;
// Now we need to return the minimum distance for the hit facets
if (vecCore::EarlyReturnAllowed() && vecCore::MaskEmpty(validToIn || validToOut)) return;
// Since we can make no assumptions on convexity, we need to actually check
// which surface is actually crossed. First propagate the point with the
// distance to each plane.
for (size_t i = 0; i < kVecSize; ++i) {
if (vecCore::Get(validToIn, i)) {
T dlane = vecCore::Get(dist, i);
if (dlane < distanceToIn) {
distanceToIn = dlane;
isurfToIn = fIfacets[i];
}
} else {
if (vecCore::Get(validToOut, i)) {
T dlane = vecCore::Get(dist, i);
if (dlane < distanceToOut) {
distanceToOut = dlane;
isurfToOut = fIfacets[i];
}
}
}
}
}
/// Computes distance from point outside for the cluster
/// @param [in] point Point position
/// @param [in] direction Direction for the distance computation
/// @param [out] distance Distance to the cluster
/// @param [out] isurf Surface crossed
VECCORE_ATT_HOST_DEVICE
void DistanceToIn(Vector3D<Real_v> const &point, Vector3D<Real_v> const &direction, T const & /*stepMax*/,
T &distance, int &isurf) const
{
using Bool_v = vecCore::Mask<Real_v>;
distance = InfinityLength<T>();
Real_v dist = InfinityLength<Real_v>();
isurf = -1;
// Vector3D<Real_v> pointv(point);
// Vector3D<Real_v> dirv(direction);
Real_v ndd = NonZero(direction.Dot(fNormals));
Real_v saf = DistPlanes(point);
Bool_v valid = ndd < Real_v(0.) && saf > Real_v(-kTolerance);
// if (vecCore::EarlyReturnAllowed() && vecCore::MaskEmpty(valid)) return;
vecCore__MaskedAssignFunc(dist, valid, -saf / ndd);
// Since we can make no assumptions on convexity, we need to actually check
// which surface is actually crossed. First propagate the point with the
// distance to each plane.
Vector3D<Real_v> pointv = point + dist * direction;
// Check if propagated points hit the triangles
Bool_v hit;
InsideCluster(pointv, hit);
valid &= hit;
// Now we need to return the minimum distance for the hit facets
if (vecCore::EarlyReturnAllowed() && vecCore::MaskEmpty(valid)) return;
for (size_t i = 0; i < kVecSize; ++i) {
if (vecCore::Get(valid, i) && (vecCore::Get(dist, i) < distance)) {
distance = vecCore::Get(dist, i);
isurf = fIfacets[i];
}
}
}
/// Compute distance from point outside for the convex case.
/// @param [in] point Point position
/// @param [in] direction Direction for the distance computation
/// @param [out] distance Distance to the cluster
/// @param [out] limit Search limit
/// @return validity of the computed distance.
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
bool DistanceToInConvex(Vector3D<Real_v> const &point, Vector3D<Real_v> const &direction, T &distance, T &limit) const
{
using Bool_v = vecCore::Mask<Real_v>;
// Check if track is moving away from facets
const Real_v proj = NonZero(direction.Dot(fNormals));
const Bool_v moving_away = proj > Real_v(-kTolerance);
// Check if track is on the correct side of of the planes
const Real_v pdist = DistPlanes(point);
const Bool_v side_correct = pdist > Real_v(-kTolerance);
if (!vecCore::MaskEmpty(side_correct && moving_away)) return false;
// These facets can be hit from outside
const Bool_v from_outside = side_correct && !moving_away;
// These facets can be hit from inside
const Bool_v from_inside = !side_correct && moving_away;
Real_v dmin = -InfinityLength<Real_v>();
Real_v dmax = InfinityLength<Real_v>();
// Distances to facets
const Real_v dist = -pdist / NonZero(proj);
vecCore__MaskedAssignFunc(dmin, from_outside, dist);
vecCore__MaskedAssignFunc(dmax, from_inside, dist);
distance = vecCore::math::Max(distance, vecCore::ReduceMax(dmin));
limit = vecCore::math::Min(limit, vecCore::ReduceMin(dmax));
// if (distance < limit - kTolerance) return true;
// distance = InfinityLength<T>();
return true;
}
/// Computes distance to out for the cluster
/// @param [in] point Point position
/// @param [in] direction Direction for the distance computation
/// @param [out] distance Distance to the cluster
/// @param [out] isurf Surface crossed
VECCORE_ATT_HOST_DEVICE
void DistanceToOut(Vector3D<Real_v> const &point, Vector3D<Real_v> const &direction, T const & /*stepMax*/,
T &distance, int &isurf) const
{
using Bool_v = vecCore::Mask<Real_v>;
distance = 0.;
Real_v dist = InfinityLength<Real_v>();
isurf = -1;
// Transform scalar point and direction into Real_v types
// Vector3D<Real_v> pointv(point);
// Vector3D<Real_v> dirv(direction);
// Dot product between direction and facet normals should be positive
// for valid crossings
Real_v ndd = NonZero(direction.Dot(fNormals));
// Distances to facet planes should be negative for valid crossing ("behind" normals)
Real_v saf = DistPlanes(point);
Bool_v valid = ndd > Real_v(0.) && saf < Real_v(kTolerance);
// In case no crossing is valid, the point is outside and returns 0 distance
if (vecCore::EarlyReturnAllowed() && vecCore::MaskEmpty(valid)) return;
vecCore__MaskedAssignFunc(dist, valid, -saf / ndd);
// Since we can make no assumptions on convexity, we need to actually check
// which surface is actually crossed. First propagate the point with the
// distance to each plane.
Vector3D<Real_v> pointv = point + dist * direction;
// Check if propagated points hit the triangles
Bool_v hit;
InsideCluster(pointv, hit);
valid &= hit;
if (vecCore::MaskEmpty(valid)) return;
// Now we need to return the minimum distance for the hit facets
distance = InfinityLength<T>();
for (size_t i = 0; i < kVecSize; ++i) {
if (vecCore::Get(valid, i) && vecCore::Get(dist, i) < distance) {
distance = vecCore::Get(dist, i);
isurf = fIfacets[i];
}
}
}
/// Compute distance from point inside for the convex case.
/// @param [in] point Point position
/// @param [in] direction Direction for the distance computation
/// @param [out] distance Distance to the cluster
/// @return validity of the computed distance.
VECCORE_ATT_HOST_DEVICE
bool DistanceToOutConvex(Vector3D<Real_v> const &point, Vector3D<Real_v> const &direction, T &distance) const
{
using Bool_v = vecCore::Mask<Real_v>;
distance = -kTolerance;
Real_v dist = InfinityLength<Real_v>();
// Distances to facet planes should be negative for valid crossing ("behind" normals)
Real_v saf = DistPlanes(point);
Bool_v valid = saf < Real_v(kTolerance);
if (vecCore::EarlyReturnAllowed() && !vecCore::MaskFull(valid)) return false;
// Dot product between direction and facet normals should be positive
// for valid crossings
Real_v ndd = NonZero(direction.Dot(fNormals));
valid = ndd > Real_v(0.);
vecCore__MaskedAssignFunc(dist, valid, -saf / ndd);
distance = vecCore::ReduceMin(dist);
return true;
}
/// Compute distance to in/out for the convex case.
/// @param [in] point Point position
/// @param [in] direction Direction for the distance computation
/// @param [out] dtoin Distance in case the point is outside
/// @param [out] dtoout Distance in case the point is inside
VECCORE_ATT_HOST_DEVICE
bool DistanceToInOut(Vector3D<Real_v> const &point, Vector3D<Real_v> const &direction, T &dtoin, T &dtoout) const
{
using Bool_v = vecCore::Mask<Real_v>;
using vecCore::ReduceMax;
using vecCore::ReduceMin;
using vecCore::math::Max;
using vecCore::math::Min;
// Direction projected to all facets
Real_v projdir_v = NonZero(direction.Dot(fNormals));
Bool_v moving_away = projdir_v > Real_v(0.);
// Signed projected distances to facets
Real_v projdist_v = DistPlanes(point);
Bool_v outside = projdist_v > Real_v(kTolerance);
// If outside and mowing away any facet, no hit possible (convexity)
if (!vecCore::MaskEmpty(outside && moving_away)) return false;
// Facets that can be hit from inside
Bool_v from_inside = !outside && moving_away;
// Facets that can be hit from outside
Bool_v from_outside = outside && !moving_away;
// Distances to all facets
const Real_v dist_v = -projdist_v / NonZero(projdir_v);
Real_v dtoin_v = -InfinityLength<Real_v>();
Real_v dtoout_v = InfinityLength<Real_v>();
vecCore__MaskedAssignFunc(dtoin_v, from_outside, dist_v);
dtoin = Max(dtoin, ReduceMax(dtoin_v));
vecCore__MaskedAssignFunc(dtoout_v, from_inside, dist_v);
dtoout = Min(dtoout, ReduceMin(dtoout_v));
return true;
}
/// Compute safety squared from point to closest facet.
/// @param [in] point Point position
/// @param [out] isurf Closest facet index
template <bool ToIn>
VECCORE_ATT_HOST_DEVICE
T SafetySq(Vector3D<Real_v> const &point, int &isurf) const
{
using Bool_v = vecCore::Mask<Real_v>;
// Vector3D<Real_v> pointv(point);
Real_v safetyv = DistPlanes(point);
T distancesq = InfinityLength<T>();
// Find the projection of the point on each plane
Vector3D<Real_v> intersectionv = point - safetyv * fNormals;
Bool_v withinBound;
InsideCluster(intersectionv, withinBound);
if (ToIn)
withinBound &= safetyv > Real_v(-kTolerance);
else
withinBound &= safetyv < Real_v(kTolerance);
safetyv *= safetyv;
isurf = -1;
if (vecCore::MaskFull(withinBound)) {
// loop over lanes to get minimum positive value.
for (size_t i = 0; i < kVecSize; ++i) {
auto saflane = vecCore::Get(safetyv, i);
if (saflane < distancesq) {
distancesq = saflane;
isurf = fIfacets[i];
}
}
return distancesq;
}
Vector3D<Real_v> safetyv_outbound = InfinityLength<Real_v>();
for (size_t ivert = 0; ivert < NVERT; ++ivert) {
safetyv_outbound[ivert] =
DistanceToLineSegmentSquared2(fVertices[ivert], fVertices[(ivert + 1) % NVERT], point, !withinBound);
}
Real_v safety_outv = safetyv_outbound.Min();
vecCore::MaskedAssign(safetyv, !withinBound, safety_outv);
// loop over lanes to get minimum positive value.
for (size_t i = 0; i < kVecSize; ++i) {
auto saflane = vecCore::Get(safetyv, i);
if (saflane < distancesq) {
distancesq = saflane;
isurf = fIfacets[i];
}
}
return distancesq;
}
/*
VECCORE_ATT_HOST_DEVICE
void DistanceToInScalar(Vector3D<T> const &point, Vector3D<T> const &direction, T const &stepMax, T &distance,
int &isurf)
{
distance = InfinityLength<T>();
isurf = -1;
T distfacet;
for (size_t i = 0; i < kVecSize; ++i) {
distfacet = fFacets[i]->DistanceToIn(point, direction, stepMax);
if (distfacet < distance) {
distance = distfacet;
isurf = fIfacets[i];
}
}
}
VECCORE_ATT_HOST_DEVICE
void DistanceToOutScalar(Vector3D<T> const &point, Vector3D<T> const &direction, T const &stepMax, T &distance,
int &isurf)
{
distance = InfinityLength<T>();
isurf = -1;
T distfacet;
for (size_t i = 0; i < kVecSize; ++i) {
distfacet = fFacets[i]->DistanceToOut(point, direction, stepMax);
if (distfacet < distance) {
distance = distfacet;
isurf = fIfacets[i];
}
}
}
template <bool ToIn>
VECCORE_ATT_HOST_DEVICE
T SafetySqScalar(Vector3D<T> const &point, int &isurf)
{
T distance = InfinityLength<T>();
T distfacet;
for (size_t i = 0; i < kVecSize; ++i) {
distfacet = fFacets[i]->template SafetySq<ToIn>(point, isurf);
if (distfacet < distance) {
distance = distfacet;
isurf = fIfacets[i];
}
}
return distance;
}
*/
};
std::ostream &operator<<(std::ostream &os, TessellatedCluster<3, typename vecgeom::VectorBackend::Real_v> const &tcl);
std::ostream &operator<<(std::ostream &os, TessellatedCluster<4, typename vecgeom::VectorBackend::Real_v> const &tcl);
} // namespace VECGEOM_IMPL_NAMESPACE
} // end namespace vecgeom
#endif
|