1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
|
// This file is part of VecGeom and is distributed under the
// conditions in the file LICENSE.txt in the top directory.
// For the full list of authors see CONTRIBUTORS.txt and `git log`.
/// \brief Declaration of the data structure for the tessellated shape.
/// \file volumes/TessellatedStruct.h
/// \author First version created by Mihaela Gheata (CERN/ISS)
#ifndef VECGEOM_VOLUMES_TESSELLATEDSTRUCT_H_
#define VECGEOM_VOLUMES_TESSELLATEDSTRUCT_H_
#include "TessellatedCluster.h"
#include "VecGeom/base/BitSet.h"
#include "VecGeom/base/RNG.h"
#include "VecGeom/base/Config.h"
#include <vector>
#include "VecGeom/base/Stopwatch.h"
#include "VecGeom/management/HybridManager2.h"
#include "VecGeom/navigation/HybridNavigator2.h"
#ifdef VECGEOM_EMBREE
#include "VecGeom/management/EmbreeManager.h"
#include "VecGeom/navigation/EmbreeNavigator.h"
#endif
#include "VecGeom/management/ABBoxManager.h"
namespace vecgeom {
// VECGEOM_DEVICE_DECLARE_CONV_TEMPLATE(class, TessellatedStruct, typename);
inline namespace VECGEOM_IMPL_NAMESPACE {
// Structure used for vectorizing queries on groups of triangles
#ifdef VECGEOM_EMBREE
#define USEEMBREE 1
#endif
/** Templated class holding the data structures for the tessellated solid.
The class is templated on the number of edges for the composing facets and on the floating precision type
used to represent the data and perform all calculations. It provides API for:
- Adding triangular or quadrilateral facets
- Initializing internally all data structures after adding all the facets that compose a closed tessellated
surface. This creates a temporary helper data structure of the type GridHelper, used to clusterize facets in
groups having as many elements as the vector size. The clusters are then used to construct a special navigation
acceleration structure.
- retrieving the hit clusters and the hit facets selected during navigation
*/
template <size_t NVERT, typename T = double>
class TessellatedStruct {
#ifndef VECGEOM_ENABLE_CUDA
using Real_v = vecgeom::VectorBackend::Real_v;
#else
using Real_v = vecgeom::ScalarBackend::Real_v;
#endif
using Facet_t = Tile<NVERT, T>;
// Here we should be able to use vecgeom::Vector
template <typename U>
using vector_t = vecgeom::Vector<U>;
using BVHStructure = HybridManager2::HybridBoxAccelerationStructure;
#ifdef USEEMBREE
using BVHStructure2 = EmbreeManager::EmbreeAccelerationStructure;
#else
using BVHStructure2 = HybridManager2::HybridBoxAccelerationStructure; // EmbreeManager::EmbreeAccelerationStructure;
#endif
/** Structure representing a cell of a uniform grid embedding the tessellated solid bounding volume.
The cell just stores an array of indices for the facets intersecting it. The cell coordinates are known by the
GridHelper data structure owning it.
*/
struct GridCell {
vector_t<int> fArray; ///< Array of facet indices
bool fUsed = false; ///< Flag for cell usage
/// Default constructor for a grid cell.
VECCORE_ATT_HOST_DEVICE
GridCell()
{ /* fArray.reserve(4); */
}
};
/** Helper structure representing a grid of equal cells dividing the bounding box of a tessellated solid.
The grid helper is defined by the number of cells in X/Y/Z. It provides methods to retrieve the cell
containing a space point, or associated to a triplet of indices on (x, y, z). The helper is used by the
TessellatedStruct for the facet clusterization.
*/
//__________________________________________________________________________
struct GridHelper {
int fNgrid = 0; ///< Grid size
int fNcells = 0; ///< Number of cells in the grid
int fNcached = 0; ///< number of cached cells
GridCell **fGrid = nullptr; ///< Grid for clustering facets
Vector3D<T> fMinExtent; ///< Minimum extent
Vector3D<T> fMaxExtent; ///< Maximum extent
Vector3D<T> fInvExtSize; ///< Inverse extent size
vector_t<Vector3D<T>> fAllVert; ///< Full list of vertices
/// Default constructor for the grid helper structure.
GridHelper() {}
/// Destructor of the grid helper, deleting the cells and their content.
~GridHelper()
{
if (fGrid) {
for (int i = 0; i < fNcells; ++i)
delete fGrid[i];
delete[] fGrid;
}
}
/// Create all the cells corresponding to a given grid division number.
/** @param ngrid Number of cells on each axis.*/
void CreateCells(int ngrid)
{
if (fNgrid) return;
fNgrid = ngrid;
fNcells = ngrid * ngrid * ngrid;
fGrid = new GridCell *[fNcells];
for (int i = 0; i < fNcells; ++i)
fGrid[i] = new GridCell();
}
/// Clears the content of all cells.
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
void ClearCells()
{
for (int icell = 0; icell < fNcells; ++icell)
fGrid[icell]->fArray.clear();
}
/// Retrive a cell by its index triplet on (x,y,z).
/** @param ind array of cell indices on (x,y,z)
@return GridCell corresponding to the given indices
*/
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
GridCell *GetCell(int ind[3]) { return fGrid[fNgrid * fNgrid * ind[0] + fNgrid * ind[1] + ind[2]]; }
/// Retreive a cell containing a space point and fill its indices triplet.
/** @param[in] point Space point
@param[out] ind Triplet of indices of the cell containing the point
@return Grid cell containing the space point
*/
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
GridCell *GetCell(Vector3D<T> const &point, int ind[3])
{
Vector3D<T> ratios = (point - fMinExtent) * fInvExtSize;
for (int i = 0; i < 3; ++i) {
ind[i] = ratios[i] * fNgrid;
ind[i] = vecCore::math::Max(ind[i], 0);
ind[i] = vecCore::math::Min(ind[i], fNgrid - 1);
}
return (GetCell(ind));
}
};
public:
bool fSolidClosed = false; ///< Closure of the solid
T fCubicVolume = 0; ///< Cubic volume
T fSurfaceArea = 0; ///< Surface area
GridHelper *fHelper = nullptr; ///< Grid helper
Vector3D<T> fMinExtent; ///< Minimum extent
Vector3D<T> fMaxExtent; ///< Maximum extent
Vector3D<T> fInvExtSize; ///< Inverse extent size
Vector3D<T> fTestDir; ///< Test direction for Inside function
BVHStructure *fNavHelper = nullptr; ///< Navigation helper using bounding boxes
BVHStructure2 *fNavHelper2 = nullptr; ///< Navigation helper using bounding boxes
// Here we have a pointer to the aligned bbox structure
// ABBoxanager *fABBoxManager;
vector_t<int> fCluster; ///< Cluster of facets storing just the indices
vector_t<int> fCandidates; ///< Candidates for the current cluster
vector_t<Vector3D<T>> fVertices; ///< Vector of unique vertices
vector_t<Facet_t *> fFacets; ///< Vector of triangular facets
vector_t<TessellatedCluster<NVERT, Real_v> *> fClusters; ///< Vector of facet clusters
BitSet *fSelected = nullptr; ///< Facets already in clusters
int fNcldist[kVecSize + 1] = {0}; ///< Distribution of number of cluster size
private:
/// Creates the navigation acceleration structure based ob the pre-computed clusters of facets.
void CreateABBoxes()
{
using Boxes_t = ABBoxManager::ABBoxContainer_t;
using BoxCorner_t = ABBoxManager::ABBox_s;
int nclusters = fClusters.size();
BoxCorner_t *boxcorners = new BoxCorner_t[2 * nclusters];
for (int i = 0; i < nclusters; ++i) {
boxcorners[2 * i] = fClusters[i]->fMinExtent;
boxcorners[2 * i + 1] = fClusters[i]->fMaxExtent;
}
Boxes_t boxes = &boxcorners[0];
fNavHelper = HybridManager2::Instance().BuildStructure(boxes, nclusters);
#ifdef USEEMBREE
fNavHelper2 = EmbreeManager::Instance().BuildStructureFromBoundingBoxes(boxes, nclusters);
#else
fNavHelper2 = fNavHelper;
#endif
}
public:
/// Default constructor.
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
TessellatedStruct()
{
fMinExtent = InfinityLength<T>();
fMaxExtent = -InfinityLength<T>();
fHelper = new GridHelper();
}
/// Destructor.
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
~TessellatedStruct()
{
delete fHelper;
if (fSelected) BitSet::ReleaseInstance(fSelected);
}
/// Adds a pre-defined facet and re-computes the extent.
/** The vertices are added to the list of all vertices (including duplications) and the extent
is re-adjusted.
@param facet Pre-computed facet to be added
*/
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
void AddFacet(Facet_t *facet)
{
using vecCore::math::Max;
using vecCore::math::Min;
fFacets.push_back(facet);
int ind = fHelper->fAllVert.size();
// Add the vertices
for (size_t i = 0; i < NVERT; ++i) {
fHelper->fAllVert.push_back(facet->fVertices[i]);
facet->fIndices[i] = ind + i;
fMinExtent[0] = Min(fMinExtent[0], facet->fVertices[i].x());
fMinExtent[1] = Min(fMinExtent[1], facet->fVertices[i].y());
fMinExtent[2] = Min(fMinExtent[2], facet->fVertices[i].z());
fMaxExtent[0] = Max(fMaxExtent[0], facet->fVertices[i].x());
fMaxExtent[1] = Max(fMaxExtent[1], facet->fVertices[i].y());
fMaxExtent[2] = Max(fMaxExtent[2], facet->fVertices[i].z());
}
}
/// Add a non-duplicated vertex to the solid.
/** Duplications are only checked in the grid cell containing the vertex. An index to the unique vertex is
added to the cell, while the vertex position is added to the list fVertices.
@param vertex Space point to be added as vertex.
@return Unique vertex id after removing duplicates.
*/
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
int AddVertex(Vector3D<T> const &vertex)
{
// Get the cell in which to add the vertex
int ind[3];
GridCell *cell = fHelper->GetCell(vertex, ind);
// Loop existing vertices in the cell and check for a duplicate
constexpr Precision tolerancesq = kTolerance * kTolerance;
for (int ivert : cell->fArray) {
// existing vertex?
if ((fVertices[ivert] - vertex).Mag2() < tolerancesq) return ivert;
}
// Push new vertex into the tessellated structure
int ivertnew = fVertices.size();
fVertices.push_back(vertex);
// Update the cell with the new vertex index
cell->fArray.push_back(ivertnew);
return ivertnew;
}
/// Retrieval of the extent of the tessellated structure.
/** @param[out] amin Box corner having minimum coordinates
@param[out] amax Box corner having maximum coordinates
*/
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
void Extent(Vector3D<T> &amin, Vector3D<T> &amax) const
{
amin = fMinExtent;
amax = fMaxExtent;
}
/// Method performing all tasks for initializing and closing the data structures.
/** The following sequence of operations is executed:
- Creation of the grid of cells
- Removal of duplicate facet indices and update of facets with the unique vertex indices
- Filling the cells with facet indices crossing them and creation of clusters
- Creation of the navigation acceleration structures
*/
void Close()
{
int ind[3];
fInvExtSize = fMaxExtent - fMinExtent;
if (fInvExtSize[0] * fInvExtSize[1] * fInvExtSize[2] < kTolerance) {
std::cout << "Tessellated structure is flat - not allowed\n";
return;
}
fInvExtSize = 1. / fInvExtSize;
fHelper->fMinExtent = fMinExtent;
fHelper->fMaxExtent = fMaxExtent;
fHelper->fInvExtSize = fInvExtSize;
// Make a grid with ~kVecSize facets per cell
int ngrid = 1 + size_t(vecCore::math::Pow<T>(T(fFacets.size()), 1. / 3.));
// Stopwatch timer;
// timer.Start();
fHelper->CreateCells(ngrid);
// auto time = timer.Stop();
// std::cout << "CreateCells: " << time << " sec\n";
// Loop over facets and their vertices, fill list of vertices free of
// duplications.
// timer.Start();
for (auto facet : fFacets) {
for (int ivert = 0; ivert < 3; ++ivert) {
facet->fIndices[ivert] = AddVertex(facet->fVertices[ivert]);
}
}
// time = timer.Stop();
// std::cout << "Remove duplicates: " << time << " sec\n";
// Clear vertices and store facet indices in the grid helper
// timer.Start();
fHelper->ClearCells();
unsigned ifacet = 0;
for (auto facet : fFacets) {
fHelper->GetCell(facet->fCenter, ind)->fArray.push_back(ifacet);
// for (int ivert = 0; ivert < 3; ++ivert) {
// fHelper->GetCell(facet->fVertices[ivert], ind)->fArray.push_back(ifacet);
// }
ifacet++;
}
// time = timer.Stop();
// std::cout << "Store facets into grid: " << time << " sec\n";
// Make clusters
// timer.Start();
// std::cout << "=== Using dummy clusters\n";
// CreateDummyClusters();
const int nfacets = fFacets.size();
fSelected = BitSet::MakeInstance(nfacets);
fSelected->ResetAllBits();
fCandidates.clear();
ifacet = 0;
fCandidates.push_back(ifacet);
fSelected->SetBitNumber(ifacet);
TessellatedCluster<NVERT, Real_v> *cluster;
while (fCandidates.size()) {
// Use existing candidates in fCandidates to create the cluster
cluster = CreateCluster();
if (!cluster) cluster = MakePartialCluster();
fClusters.push_back(cluster);
// Fill cluster from the same cell or from a neighbor cell
if (!fCandidates.size()) {
ifacet = fSelected->FirstNullBit();
if (ifacet == fFacets.size()) break;
fCandidates.push_back(ifacet);
fSelected->SetBitNumber(ifacet);
}
}
// time = timer.Stop();
// std::cout << "Clusterizer: " << time << " sec\n";
// Create navigation helper to be used in TessellatedImplementation
// timer.Start();
CreateABBoxes(); // to navigate, see: TestHybridBVH.cpp/HybridNavigator2.h/HybridSafetyEstimator.h
// time = timer.Stop();
// std::cout << "Create AABoxes: " << time << " sec\n";
// Generate random direction non-parallel to any of the surfaces
constexpr T tolerance(1.e-8);
while (1) {
RandomDirection(fTestDir);
// Loop over triangles and check that dot product is not close to 0
for (auto facet : fFacets) {
if (vecCore::math::Abs(facet->fNormal.Dot(fTestDir)) < tolerance) break;
}
break;
}
fSolidClosed = true;
}
/// Generate and store a random direction used for Contains and Inside navigation queries.
/** @param[out] direction Random direction generated */
void RandomDirection(Vector3D<Precision> &direction)
{
Precision phi = RNG::Instance().uniform(0., 2. * kPi);
Precision theta = std::acos(1. - 2. * RNG::Instance().uniform(0, 1));
direction.x() = std::sin(theta) * std::cos(phi);
direction.y() = std::sin(theta) * std::sin(phi);
direction.z() = std::cos(theta);
}
/// Loop over facets and group them in clusters in the order of definition.
void CreateDummyClusters()
{
TessellatedCluster<NVERT, Real_v> *tcl = nullptr;
int i = 0;
int j = 0;
for (auto facet : fFacets) {
i = i % kVecSize;
if (i == 0) {
if (tcl) fClusters.push_back(tcl);
tcl = new TessellatedCluster<NVERT, Real_v>();
}
tcl->AddFacet(i++, facet, j++);
}
// The last cluster may not be yet full
for (; i < kVecSize; ++i)
tcl->AddFacet(i, tcl->fFacets[0], tcl->fIfacets[0]);
}
/// Create the next cluster of closest neighbour facets using the GridHelper structure.
/** @return Created cluster of neighbour facets */
TessellatedCluster<NVERT, Real_v> *CreateCluster()
{
// Create cluster starting from fCandidates list
unsigned nfacets = 0;
assert(fCandidates.size() > 0); // call the method with at least one candidate in the list
constexpr int rankmax = 3; // ??? how to determine an appropriate value ???
int rank = 0;
fCluster.clear();
int ifacet = fCandidates[0];
fCluster.push_back(ifacet);
while (fCandidates.size() < kVecSize && rank < rankmax) {
GatherNeighborCandidates(fCandidates[0], rank++);
}
if (fCandidates.size() < kVecSize) return nullptr;
fCandidates.erase(fCandidates.begin());
// Add facets with maximum neighborhood weight to existing cluster
int iref = 0;
while (nfacets < kVecSize) {
nfacets = AddCandidatesToCluster(4 >> iref++); // 4 common vertices, 2, 1 or none
}
// The cluster is now complete, create a tessellated cluster object
TessellatedCluster<NVERT, Real_v> *tcl = new TessellatedCluster<NVERT, Real_v>();
int i = 0;
for (auto ifct : fCluster) {
Facet_t *facet = fFacets[ifct];
tcl->AddFacet(i++, facet, ifct);
}
fNcldist[fCluster.size()]++;
return tcl;
}
/// Create partial cluster starting from fCandidates list
/** @return Created cluster*/
TessellatedCluster<NVERT, Real_v> *MakePartialCluster()
{
for (auto ifacet : fCandidates) {
fCluster.push_back(ifacet);
}
fNcldist[fCluster.size()]++;
fCandidates.clear();
while (fCluster.size() < kVecSize)
fCluster.push_back(fCluster[0]);
// The cluster is now complete, create a tessellated cluster object
TessellatedCluster<NVERT, Real_v> *tcl = new TessellatedCluster<NVERT, Real_v>();
int i = 0;
for (auto ifacet : fCluster) {
Facet_t *facet = fFacets[ifacet];
tcl->AddFacet(i++, facet, ifacet);
}
return tcl;
}
/// Add candidates to and existing cluster.
/** A neighbourhood weight is computed for each facet candidate according the number of vertices
contained in grid cells already occupied by the cluster.
@param weightmin Minimum accepted weight
@return New size of the cluster
*/
int AddCandidatesToCluster(int weightmin)
{
// Add all candidate having the required weight to the cluster, until cluster
// is complete
for (auto it = fCandidates.begin(); it != fCandidates.end() && fCluster.size() < kVecSize;) {
int weight = NeighborToCluster(*it);
if (weight >= weightmin) {
fCluster.push_back(*it);
it = fCandidates.erase(it);
} else {
++it;
}
}
return fCluster.size();
}
/// Compute the weight of neighbourhood of a facet with respect to a cluster.
/** @param ifacet Facet index
@return Number of facet vertices contained by grid cells occupied by the cluster
*/
int NeighborToCluster(int ifacet)
{
Facet_t *facet = fFacets[ifacet];
int weight = 0;
for (auto icand : fCluster) {
Facet_t *other = fFacets[icand];
weight += facet->IsNeighbor(*other);
}
return weight;
}
/// Add all facets touching a cell to the list of candidates to be added to the next cluster.
/** @param ind Triplet of cell indices on (x,y,z) */
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
void AddCandidatesFromCell(int ind[3])
{
GridCell *cell = fHelper->GetCell(ind);
if (cell->fUsed) return;
for (auto neighbor : cell->fArray) {
if (!fSelected->TestBitNumber(neighbor)) {
fSelected->SetBitNumber(neighbor);
fCandidates.push_back(neighbor);
}
}
cell->fUsed = true;
}
/// Gather candidates from cells neighboring the cell containing the center of the facet
/** @param ifacet Facet index for which neighbours are searched
@param rank Maximum distance between the reference cell containing the center of the facet
and the other cells where neighbours are looked for
@return Size of the list of candidates.
*/
int GatherNeighborCandidates(int ifacet, int rank)
{
int ind0[3], ind[3];
const Facet_t *facet = fFacets[ifacet];
fHelper->GetCell(facet->fCenter, ind0);
if (rank == 0) {
AddCandidatesFromCell(ind0);
return (fCandidates.size());
}
// Establish cell index limits for the requested rank
int limits[6];
bool limited[6] = {false};
for (int i = 0; i < 3; ++i) {
limits[2 * i] = ind0[i] - rank;
if (limits[2 * i] < 0) {
limits[2 * i] = 0;
limited[2 * i] = true;
}
limits[2 * i + 1] = ind0[i] + rank;
if (limits[2 * i + 1] > fHelper->fNgrid - 1) {
limits[2 * i + 1] = fHelper->fNgrid - 1;
limited[2 * i + 1] = true;
}
}
// Gather all cells for the given rank
for (int iax1 = 0; iax1 < 3; ++iax1) {
int iax2 = (iax1 + 1) % 3;
int iax3 = (iax1 + 2) % 3;
for (int iside = 0; iside < 2; ++iside) {
if (limited[2 * iax1 + iside]) continue;
ind[iax1] = limits[2 * iax1 + iside];
for (ind[iax2] = limits[2 * iax2]; ind[iax2] <= limits[2 * iax2 + 1]; ind[iax2]++) {
for (ind[iax3] = limits[2 * iax3]; ind[iax3] <= limits[2 * iax3 + 1]; ind[iax3]++) {
AddCandidatesFromCell(ind);
}
}
}
}
return (fCandidates.size());
}
/// Method for adding a new triangular facet
/** @param vt0 First vertex
@param vt1 Second vertex
@param vt2 Third vertex
@param absolute If true then vt0, vt1 and vt2 are the vertices to be added in
anti-clockwise order looking from the outsider. If false the vertices are relative
to the first: vt0, vt0+vt1, vt0+vt2, in anti-clockwise order when looking from the outsider.
*/
VECCORE_ATT_HOST_DEVICE
bool AddTriangularFacet(Vector3D<T> const &vt0, Vector3D<T> const &vt1, Vector3D<T> const &vt2, bool absolute = true)
{
assert(NVERT == 3);
Facet_t *facet = new Facet_t;
bool added = false;
if (absolute)
added = facet->SetVertices(vt0, vt1, vt2);
else
added = facet->SetVertices(vt0, vt0 + vt1, vt0 + vt1 + vt2);
if (!added) {
delete facet;
return false;
}
AddFacet(facet);
return true;
}
/// Method for adding a new quadrilateral facet
/** @param vt0 First vertex
@param vt1 Second vertex
@param vt2 Third vertex
@param vt3 Fourth vertex
@param absolute If true then vt0, vt1, vt2 and vt3 are the vertices to be added in
anti-clockwise order looking from the outsider. If false the vertices are relative
to the first: vt0, vt0+vt1, vt0+vt2, vt0+vt3 in anti-clockwise order when looking from the
outsider.
*/
VECCORE_ATT_HOST_DEVICE
bool AddQuadrilateralFacet(Vector3D<T> const &vt0, Vector3D<T> const &vt1, Vector3D<T> const &vt2,
Vector3D<T> const &vt3, bool absolute = true)
{
// We should check the quadrilateral convexity to correctly define the
// triangle facets
// CheckConvexity()vt0, vt1, vt2, vt3, absolute);
assert(NVERT <= 4);
Facet_t *facet = new Facet_t;
if (NVERT == 3) {
if (absolute) {
if (!facet->SetVertices(vt0, vt1, vt2)) {
delete facet;
return false;
}
} else {
if (!facet->SetVertices(vt0, vt0 + vt1, vt0 + vt1 + vt2)) {
delete facet;
return false;
}
}
AddFacet(facet);
facet = new Facet_t;
if (absolute) {
if (!facet->SetVertices(vt0, vt2, vt3)) {
delete facet;
return false;
}
} else {
if (!facet->SetVertices(vt0, vt0 + vt2, vt0 + vt2 + vt3)) {
delete facet;
return false;
}
}
AddFacet(facet);
return true;
} else if (NVERT == 4) {
// Add a single facet
if (absolute) {
if (!facet->SetVertices(vt0, vt1, vt2, vt3)) {
delete facet;
return false;
}
} else {
if (!facet->SetVertices(vt0, vt0 + vt1, vt0 + vt1 + vt2, vt0 + vt1 + vt2 + vt3)) {
delete facet;
return false;
}
}
AddFacet(facet);
return true;
}
return false;
}
}; // end class
} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom
#endif
|