File: TetStruct.h

package info (click to toggle)
vecgeom 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,928 kB
  • sloc: cpp: 88,717; ansic: 6,894; python: 1,035; sh: 582; sql: 538; makefile: 29
file content (163 lines) | stat: -rw-r--r-- 5,645 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
// This file is part of VecGeom and is distributed under the
// conditions in the file LICENSE.txt in the top directory.
// For the full list of authors see CONTRIBUTORS.txt and `git log`.

/// Declaration of a struct with data members for the UnplacedTet class
/// @file volumes/TetStruct.h
/// @author Raman Sehgal, Evgueni Tcherniaev

#ifndef VECGEOM_VOLUMES_TETSTRUCT_H_
#define VECGEOM_VOLUMES_TETSTRUCT_H_
#include "VecGeom/base/Global.h"
#include "VecGeom/base/Vector3D.h"

namespace vecgeom {

inline namespace VECGEOM_IMPL_NAMESPACE {

/// Struct encapsulating data members of the unplaced tetrahedron
template <typename T = double>
struct TetStruct {

  Vector3D<T> fVertex[4]; ///< Array of the tetrahedron vertices
  struct {
    Vector3D<T> n; ///< Normal of the plane
    T d;           ///< Distance from  origin to the plane
  } fPlane[4];     ///< The tetrahedron face planes

  Precision fCubicVolume; ///< Volume of the tetrahedron
  Precision fSurfaceArea; ///< Surface area of the tetrahedron

  /// Empty constructor
  VECCORE_ATT_HOST_DEVICE
  TetStruct() {}

  /// Constructor from four points
  /// @param p0 Point given as array
  /// @param p1 Point given as array
  /// @param p2 Point given as array
  /// @param p3 Point given as array
  VECCORE_ATT_HOST_DEVICE
  TetStruct(const T p0[], const T p1[], const T p2[], const T p3[])
  {
    Vector3D<T> vertices[4];
    vertices[0].Set(p0[0], p0[1], p0[2]);
    vertices[1].Set(p1[0], p1[1], p1[2]);
    vertices[2].Set(p2[0], p2[1], p2[2]);
    vertices[3].Set(p3[0], p3[1], p3[2]);

    CalculateCached(vertices[0], vertices[1], vertices[2], vertices[3]);
  }

  /// Constructor from four points
  /// @param p0 Point given as 3D vector
  /// @param p1 Point given as 3D vector
  /// @param p2 Point given as 3D vector
  /// @param p3 Point given as 3D vector
  VECCORE_ATT_HOST_DEVICE
  TetStruct(const Vector3D<T> p0, const Vector3D<T> p1, const Vector3D<T> p2, const Vector3D<T> p3)
      : fCubicVolume(0.), fSurfaceArea(0.)
  {

    CalculateCached(p0, p1, p2, p3);
  }

  /// Set the tetrahedron data members
  /// @param p0 Point given as array
  /// @param p1 Point given as array
  /// @param p2 Point given as array
  /// @param p3 Point given as array
  VECCORE_ATT_HOST_DEVICE
  void CalculateCached(const Vector3D<T> p0, const Vector3D<T> p1, const Vector3D<T> p2, const Vector3D<T> p3)
  {
    // Fill all the cached values
    fVertex[0] = p0;
    fVertex[1] = p1;
    fVertex[2] = p2;
    fVertex[3] = p3;

    // if (CheckDegeneracy()) std::cout << "DeGenerate Tetrahedron not allowed" << std::endl;
    CheckDegeneracy();

    Vector3D<Precision> n0 = (fVertex[1] - fVertex[0]).Cross(fVertex[2] - fVertex[0]).Unit();
    Vector3D<Precision> n1 = (fVertex[2] - fVertex[1]).Cross(fVertex[3] - fVertex[1]).Unit();
    Vector3D<Precision> n2 = (fVertex[3] - fVertex[2]).Cross(fVertex[0] - fVertex[2]).Unit();
    Vector3D<Precision> n3 = (fVertex[0] - fVertex[3]).Cross(fVertex[1] - fVertex[3]).Unit();

    if (n0.Dot(fVertex[3] - fVertex[0]) > 0) n0 = -n0;
    if (n1.Dot(fVertex[0] - fVertex[1]) > 0) n1 = -n1;
    if (n2.Dot(fVertex[1] - fVertex[2]) > 0) n2 = -n2;
    if (n3.Dot(fVertex[2] - fVertex[3]) > 0) n3 = -n3;

    fPlane[0].n = n0;
    fPlane[0].d = -n0.Dot(fVertex[0]);
    // fPlane[0].d = n0.Dot(fVertex[0]);

    fPlane[1].n = n1;
    fPlane[1].d = -n1.Dot(fVertex[1]);
    // fPlane[1].d = n1.Dot(fVertex[1]);

    fPlane[2].n = n2;
    fPlane[2].d = -n2.Dot(fVertex[2]);
    // fPlane[2].d = n2.Dot(fVertex[2]);

    fPlane[3].n = n3;
    fPlane[3].d = -n3.Dot(fVertex[3]);
    // fPlane[3].d = n3.Dot(fVertex[3]);

    for (int i = 0; i < 4; i++) {
      // std::cout << "Plane[" << i << "] = " << fPlane[i].n << "  " << fPlane[i].d << std::endl;
    }
  }

  /// Set volume of the tetrahedron
  VECCORE_ATT_HOST_DEVICE
  void CalcCapacity()
  {
    fCubicVolume =
        vecCore::math::Abs((fVertex[1] - fVertex[0]).Dot((fVertex[2] - fVertex[0]).Cross(fVertex[3] - fVertex[0]))) /
        6.;
  }

  /// Set surface area of the tetrahedron
  VECCORE_ATT_HOST_DEVICE
  void CalcSurfaceArea()
  {
    fSurfaceArea = ((fVertex[1] - fVertex[0]).Cross(fVertex[2] - fVertex[0]).Mag() +
                    (fVertex[2] - fVertex[1]).Cross(fVertex[3] - fVertex[1]).Mag() +
                    (fVertex[3] - fVertex[2]).Cross(fVertex[0] - fVertex[2]).Mag() +
                    (fVertex[0] - fVertex[3]).Cross(fVertex[1] - fVertex[3]).Mag()) *
                   0.5;
  }

  /// Set the tetrahedron
  /// @param p0 Point given as array
  /// @param p1 Point given as array
  /// @param p2 Point given as array
  /// @param p3 Point given as array
  VECCORE_ATT_HOST_DEVICE
  void SetParameters(const Vector3D<T> p0, const Vector3D<T> p1, const Vector3D<T> p2, const Vector3D<T> p3)
  {
    CalculateCached(p0, p1, p2, p3);
  }

  /// Check correctness of the tetrahedron data
  /// @return false if tetrahedron is degenerate
  VECCORE_ATT_HOST_DEVICE
  bool CheckDegeneracy()
  {
    CalcCapacity();
    CalcSurfaceArea();
    if (fCubicVolume < kTolerance * kTolerance * kTolerance) return true;
    Precision s0 = (fVertex[1] - fVertex[0]).Cross(fVertex[2] - fVertex[0]).Mag() * 0.5;
    Precision s1 = (fVertex[2] - fVertex[1]).Cross(fVertex[3] - fVertex[1]).Mag() * 0.5;
    Precision s2 = (fVertex[3] - fVertex[2]).Cross(fVertex[0] - fVertex[2]).Mag() * 0.5;
    Precision s3 = (fVertex[0] - fVertex[3]).Cross(fVertex[1] - fVertex[3]).Mag() * 0.5;
    return (vecCore::math::Max(vecCore::math::Max(vecCore::math::Max(s0, s1), s2), s3) < 2 * kTolerance);
  }
};

} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom

#endif